Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Study Groups
- Static Cold Storage (SCS): conventional method of preservation.
- Hypothermic Machine Perfusion (HMP): was performed utilizing the Liver Assist® system (Organ Assist, Groningen, The Netherlands) (Figure 1), applied exclusively to grafts from donors meeting extended criteria (ECD). Specific indications in this cohort included donor age > 65 years, moderate-to-severe liver steatosis assessed intraoperatively by frozen biopsy, elevated serum transaminase levels (>3 times the normal upper limit), prolonged intensive care unit (ICU) stay (>7 days), prolonged cold ischemia time (>6 h) or anticipated ischemia time > 6 h due to logistical delays.
- The perfusion protocol was initiated immediately upon graft arrival at the transplant center, maintaining perfusion temperatures at 8–12 °C. Flow rates were set at 150–300 mL/min for the portal vein and 50–150 mL/min for the hepatic artery, with perfusion pressures held at 3–5 mmHg (portal vein) and 25–30 mmHg (hepatic artery). Oxygenation was delivered using a gas mixture of 100% O2. Perfusion duration was standardized to 2 h for 6 patients and extended to 3 h for 2 patients.
2.3. Data Collection and Variables
2.4. Statistical Analysis
3. Results
3.1. Preoperative Parameters
3.2. Intraoperative and Ischemia Parameters
3.3. Hemodynamic Response and Post-Reperfusion Markers
3.4. Postoperative Parameters
- Early Graft Function and Biochemical Markers (Day 7)
- Complications
3.5. Survival Outcomes
4. Discussion
4.1. HMP vs. SCS
4.2. HOPE vs. DHOPE
4.2.1. Strengths of the Study
4.2.2. Limitations of the Study
5. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HMP | Hypothermic Machine Perfusion |
SCS | Static Cold Storage |
ECD | Extended Criteria Donor |
DCD | Donation after Circulatory Death |
DBD | Donation after Brain Death |
EAD | Early Allograft Dysfunction |
UW | University of Wisconsin (solution) |
HOPE | Hypothermic Oxygenated Perfusion |
DHOPE | Dual Hypothermic Oxygenated Perfusion |
PRI | Post-Reperfusion Injury Index |
CIT | Cold ischemia time |
INR | International Normalized Ratio |
AST | Aspartate Aminotransferase |
ALT | Alanine Aminotransferase |
SD | Standard Deviation |
MELD | Model for End-Stage Liver Disease |
∆MAP% | Normalized difference of Mean Arterial Pressure |
NAS | Non-Anastomotic Strictures |
RCT | Randomized controlled trials |
LDH | Lactate dehydrogenase |
GGT | Gamma-glutamyl transferase |
RR | Risk ratio |
OR | Odd ratio |
CI | Confidence interval |
HCC | Hepatocellular carcinoma |
HVB | hepatic virus B |
HVB-D | hepatic virus B-D |
HVC | hepatic virus C |
ICU | intensive care unit |
NASH | non alcoholic steatohepatitis |
References
- Berenguer, M.; de Martin, E.; Hessheimer, A.J.; Levitsky, J.; Maluf, D.G.; Mas, V.R.; Selzner, N.; Hernàndez-Èvole, H.; Lutu, A.; Wahid, N.; et al. European Society for Organ Transplantation Consensus Statement on Biomarkers in Liver Transplantation. Transpl. Int. 2023, 36, 11358. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, T.; Chen, C.; Zhao, Q.; Ma, Y.M.; Guo, Y.M.; Hong, X.M.; Yu, J.; Huang, C.; Ju, W.; et al. Transplantation of Extended Criteria Donor Livers Following Continuous Normothermic Machine Perfusion Without Recooling. Transplantation 2022, 106, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Pandya, K.; Sastry, V.; Panlilio, M.T.; Yip, T.C.F.; Salimi, S.; West, C.; Virtue, S.; Wells, M.; Crawford, M.; Pulitano, C.; et al. Differential Impact of Extended Criteria Donors After Brain Death or Circulatory Death in Adult Liver Transplantation. Liver Transpl. 2020, 26, 1603–1617. [Google Scholar] [CrossRef] [PubMed]
- Banker, A.; Bhatt, N.; Rao, P.S.; Agrawal, P.; Shah, M.; Nayak, M.; Mohanka, R. A Review of Machine Perfusion Strategies in Liver Transplantation. J. Clin. Exp. Hepatol. 2023, 13, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Yao, L.; Zhao, M.; Peng, L.-P.; Liu, M. Organ preservation: From the past to the future. Acta Pharmacol. Sin. 2018, 39, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, W.; Merkle, F.; Weitkemper, H.H. History of extracorporeal circulation: The conceptional and developmental period. J. Extra Corpor. Technol. 2003, 35, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Šušak, S.; Redžek, A.; Rosić, M.; Velicki, L.; Okiljević, B. Development of cardiopulmonary bypass—A historical review. Srp. Arh. Celok. Lek. 2016, 144, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, O.S.; Namsrai, B.-E.; Pruett, T.L.; Bischof, J.C.; Toner, M.; Finger, E.B.; Uygun, K. Current practice and novel approaches in organ preservation. Front. Transplant. 2023, 2, 1156845. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.I.; Nozdrin, M.; Yiu, J.; Papalois, V. Machine Perfusion for Abdominal Organ Preservation: A Systematic Review of Kidney and Liver Human Grafts. J. Clin. Med. 2019, 8, 1221. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Brown, R.J.; Nicholson, M.L. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021, 105, e202–e214. [Google Scholar] [CrossRef] [PubMed]
- Tchilikidi, K.Y. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J. Gastrointest. Surg. 2019, 11, 126–142. [Google Scholar] [CrossRef] [PubMed]
- Rijkse, E.; IJzermans, J.N.; Minnee, R.C. Machine perfusion in abdominal organ transplantation: Current use in the Netherlands. World J. Transplant. 2020, 10, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Serifis, N.; Matheson, R.; Cloonan, D.; Rickert, C.G.; Markmann, J.F.; Coe, T.M. Machine Perfusion of the Liver: A Review of Clinical Trials. Front. Surg. 2021, 8, 625394. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S., Jr.; et al. Hypothermic machine preservation in human liver transplantation: The first clinical series. Am. J. Transpl. 2010, 10, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Yemaneberhan, K.H.; Kang, M.; Jang, J.H.; Kim, J.H.; Kim, K.S.; Park, H.B.; Choi, D. Beyond the icebox: Modern strategies in organ preservation for transplantation. Clin. Transpl. Res. 2024, 38, 377–403. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; Da Silva, R.T.; Carbonell, T.; Palmeira, C.; Folch-Puy, E.; Roselló-Catafau, J.; Adam, R.; Panisello-Rosello, A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int. J. Mol. Sci. 2022, 23, 5742. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Dutkowski, P. Hypothermic Machine Preservation of the Liver: State of the Art. Curr. Transpl. Rep. 2018, 5, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Braga, V.S.; Boteon, A.P.C.S.; Heloisa BPaglione Pecora, R.A.A.; Boteon, Y.L. Extended criteria brain-dead organ donors: Prevalence and impact on the utilisation of livers for transplantation in Brazil. World J. Hepatol. 2023, 15, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Kang, Y.; Liu, H.; Hilmi, I. Current and Future Applications of Machine Perfusion and Other Dynamic Preservation Strategies in Liver Transplantation. OBM Transplant. 2024, 8, 1–23. [Google Scholar] [CrossRef]
- Van Leeuwen, O.B.; Porte, R.J. Ex situ machine preservation of donor livers for transplantation: HOPE for all? Br. J. Surg. 2021, 108, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, O.F.; Satish, S.; Müller, P.C.; Dutkowski, P.; Schlegel, A. Single versus dual hypothermic oxygenated perfusion in liver transplantation: A call for risk-matched outcome analyses. Int. J. Surg. 2025, 111, 4043–4049. [Google Scholar] [CrossRef] [PubMed]
- Dutkowski, P.; Polak, W.G.; Muiesan, P.; Schlegel, A.; Verhoeven, C.J.; Scalera, I.; DeOliveira, M.L.; Kron, P.; Clavien, P.-A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis. Ann. Surg. 2015, 262, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Kron, P.; Schlegel, A.; Muller, X.; Gaspert, A.; Clavien, P.A.; Dutkowski, P. Hypothermic Oxygenated Perfusion: A Simple and Effective Method to Modulate the Immune Response in Kidney Transplantation. Transplantation 2019, 103, e128–e136. [Google Scholar] [CrossRef] [PubMed]
- Boteon, Y.; Flores Carvalho, M.A.; Panconesi, R.; Muiesan, P.; Schlegel, A. Preventing Tumour Recurrence after Liver Transplantation: The Role of Machine Perfusion. Int. J. Mol. Sci. 2020, 21, 5791. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, L.; Franchi, E.; Lonati, C.; Widmer, J.; Gatti, S.; Dondossola, D.E.; Schlegel, A. Hypothermic Machine Perfusion of the Liver. The reasons for Success. Eur. J. Transplant. 2022, 1, 35–46. [Google Scholar] [CrossRef]
- Croome, K.P. Introducing Machine Perfusion into Routine Clinical Practice for Liver Transplantation in the United States: The Moment Has Finally Come. J. Clin. Med. 2023, 12, 909. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Cheng, W.; Cao, P.; Cai, S.; Zhang, L.; Zhong, K.; Nie, Y. Effects of machine perfusion strategies on different donor types in liver transplantation: A systematic review and meta-analysis. Int. J. Surg. 2023, 109, 3617–3630. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Kang, Y.; Freeman, J.A.; Fortunato, F.L.; Pinsky, M.R. Postreperfusion syndrome: Cardiovascular collapse following hepatic reperfusion during liver transplantation. Transpl. Proc. 1987, 19 (Suppl. S3), 54–55. [Google Scholar] [PubMed]
- Deschênes, M.; Belle, S.H.; Krom, R.A.; Zetterman, R.K.; Lake, J.R. Early allograft dysfunction after liver transplantation: A Definition and Predictors of Outcome: 1. Transplantation 1998, 66, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Lurje, I.; Tolba, R.H.; Neumann, U.P.; Tacke, F.; Lurje, G. Machine perfusion for liver transplantation in the era of marginal organs—New kids on the block. Liver Int. 2019, 39, 228–249. [Google Scholar] [CrossRef] [PubMed]
- Lüer, B.; Koetting, M.; Efferz, P.; Minor, T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transpl. Int. 2010, 23, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar] [PubMed]
- Van Rijn, R.; Schurink, I.J.; De Vries, Y.; Van Den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Jakubauskas, M.; Jakubauskiene, L.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Machine Perfusion in Liver Transplantation: A Systematic Review and Meta-Analysis. Visc. Med. 2022, 38, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Garzali, I.U. Early outcome of machine perfusion vs static cold storage of liver graft: A systemic review and meta-analysis of randomized controlled trials. Hepatol. Forum 2024, 5, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Nie, Y.; Li, J.; Xie, H.; Zhou, L.; Yu, J.; Zheng, S.-S. A Systematic Review and Meta-Analysis of Machine Perfusion vs. Static Cold Storage of Liver Allografts on Liver Transplantation Outcomes: The Future Direction of Graft Preservation. Front. Med. 2020, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Staubli, S.M.; Ceresa, C.D.L.; Pollok, J.M. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering 2023, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, R.; van Leeuwen, O.B.; Matton, A.P.M.; Burlage, L.C.; Wiersema-Buist, J.; Heuvel, M.C.v.D.; de Kleine, R.H.J.; de Boer, M.T.; Gouw, A.S.H.; Porte, R.J. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transpl. 2018, 24, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Porte, R.J.; Dutkowski, P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J. Hepatol. 2022, 76, 1330–1347. [Google Scholar] [CrossRef] [PubMed]
- Mugaanyi, J.; Dai, L.; Lu, C.; Mao, S.; Huang, J.; Lu, C. A Meta-Analysis and Systematic Review of Normothermic and Hypothermic Machine Perfusion in Liver Transplantation. J. Clin. Med. 2022, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.-Y.; Feng, X.; Tao, J.; Ao, Y.-P.; Wu, X.-H.; Qi, S.-G.; He, Z.-B.; Shi, Z.-R. Benefits of Hypothermic Oxygenated Perfusion Versus Static Cold Storage in Liver Transplant: A Comprehensive Systematic Review and Meta-analysis. J. Clin. Exp. Hepatol. 2024, 14, 101337. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Zhang, L.; Xia, L.; Zhang, J.; Wei, Z.; Zhou, R. Hypothermic oxygenated perfusion in liver transplantation: A meta-analysis of randomized controlled trials and matched studies. Int. J. Surg. 2023, 110, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Bezinover, D.; Kadry, Z.; McCullough, P.; McQuillan, P.M.; Uemura, T.; Welker, K.; Mastro, A.M.; Janicki, P.K. Release of cytokines and hemodynamic instability during the reperfusion of a liver graft. Liver Transpl. 2011, 17, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Brüggenwirth, I.M.A.; Lantinga, V.A.; Rayar, M.; Berg, A.P.v.D.; Blokzijl, H.; Reyntjens, K.M.E.M.; Porte, R.J.; de Meijer, V.E. Prolonged dual hypothermic oxygenated machine preservation (DHOPE-PRO) in liver transplantation: Study protocol for a stage 2, prospective, dual-arm, safety and feasibility clinical trial. BMJ Open Gastroenterol. 2022, 9, e000842. [Google Scholar] [CrossRef] [PubMed]
- Brüggenwirth, I.M.; Lantinga, V.A.; Lascaris, B.; Thorne, A.M.; Meerdink, M.; Blokzijl, H.; Reyntjens, K.M.; Lisman, T.; Porte, R.J.; de Meijer, V.E.; et al. Prolonged hypothermic machine perfusion enables daytime liver transplantation—An IDEAL stage 2 prospective clinical trial. eClinicalMedicine 2024, 68, 102411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhang, M.; Ma, Z.; Wu, S. Hypothermic machine perfusion reduces the incidences of early allograft dysfunction and biliary complications and improves 1-year graft survival after human liver transplantation: A meta-analysis. Medicine 2019, 98, e16033. [Google Scholar] [CrossRef] [PubMed]
- Jaber, F.; Abuelazm, M.; Soliman, Y.; Madi, M.; Abusuilik, H.; Mazen Amin, A.; Saeed, A.; Gowaily, I.; Abdelazeem, B.; Rana, A.; et al. Machine perfusion strategies in liver transplantation: A systematic review, pairwise, and network meta-analysis of randomized controlled trials. Liver Transpl. 2025, 31, 596–615. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Uluk, D.; Pavicevic, S.; Lurje, I.; Froněk, J.; Keller, T.; Strnad, P.; Jiang, D.; Gevers, T.; Koliogiannis, D.; et al. Improved outcomes after hypothermic oxygenated machine perfusion in liver transplantation–Long-term follow-up of a multicenter randomized controlled trial. Hepatol. Commun. 2024, 8, e0376. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.T.P.; Isaac, J.R.; Clavien, P.-A.; Muiesan, P.; Dutkowski, P. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J. Hepatol. 2019, 70, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Eden, J.; Brüggenwirth, I.M.; Berlakovich, G.; Buchholz, B.M.; Botea, F.; Camagni, S.; Cescon, M.; Cillo, U.; Colli, F.; Compagnon, P.; et al. Long-term outcomes after hypothermic oxygenated machine perfusion and transplantation of 1202 donor livers in a real-world setting (HOPE-REAL study). J. Hepatol. 2025, 82, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Endo, C.; van Rijn, R.; Huurman, V.; Schurink, I.; Berg, A.v.D.; Murad, S.D.; van Hoek, B.; de Meijer, V.E.; de Jonge, J.; van der Hilst, C.S.; et al. Cost-effectiveness of Dual Hypothermic Oxygenated Machine Perfusion Versus Static Cold Storage in DCD Liver Transplantation. Transplantation 2025, 109, e101–e108. [Google Scholar] [CrossRef] [PubMed]
- De Vries, Y.; Brüggenwirth, I.M.A.B.; Karangwa, S.A.; von Meijenfeldt, F.A.B.; van Leeuwen, O.B.; Burlage, L.C.; de Jong, I.E.M.; Gouw, A.S.H.; de Meijer, V.E.; Lisman, T.; et al. Dual Versus Single Oxygenated Hypothermic Machine Perfusion of Porcine Livers: Impact on Hepatobiliary and Endothelial Cell Injury. Transpl. Direct. 2021, 7, e741. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.T.; Tamai, M.; Schirren, M.; Drefs, M.; Jacobi, S.; Lange, C.M.; Ilmer, M.; Nieß, H.; Renz, B.; Werner, J.; et al. Mono-HOPE Versus Dual-HOPE in Liver Transplantation: A Propensity Score-Matched Evaluation of Early Graft Outcome. Transpl. Int. 2025, 38, 13891. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, D.; Dingfelder, J.; Riha, M.; Kacar, S.; Rauter, L.M.; Becker, N.; Zadeh, T.S.; Tortopis, C.; Starlinger, P.; Ristl, R.; et al. Dual hypothermic oxygenated machine perfusion of the liver reduces post-transplant biliary complications: A retrospective cohort study. Int. J. Surg. 2024, 110, 7909–7918. [Google Scholar] [CrossRef] [PubMed]
- Maspero, M.; Ali, K.; Cazzaniga, B.; Yilmaz, S.; Raj, R.; Liu, Q.; Quintini, C.; Miller, C.; Hashimoto, K.; Fairchild, R.L.; et al. Acute rejection after liver transplantation with machine perfusion versus static cold storage: A systematic review and meta-analysis. Hepatology 2023, 78, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Dutkowski, P.; Guarrera, J.V.; De Jonge, J.; Martins, P.N.; Porte, R.J.; Clavien, P.A. Evolving Trends in Machine Perfusion for Liver Transplantation. Gastroenterology 2019, 156, 1542–1547. [Google Scholar] [CrossRef]
- Selten, J.; Schlegel, A.; De Jonge, J.; Dutkowski, P. Hypo- and normothermic perfusion of the liver: Which way to go? Best Pract. Res. Clin. Gastroenterol. 2017, 31, 171–179. [Google Scholar] [CrossRef] [PubMed]
Variable | SCS | HMP | p |
---|---|---|---|
Age Years, mean (SD) | 47.90 (9.2) | 42.75 (8.53) | 0.14 |
Male Genger, n, (%) | 35 (60.3) | 6 (75) | 0.18 |
Urban living environment, n, (%) | 33 (56.9) | 4 (50) | 0.234 |
MELD Score, mean (SD) | 18.43 (5.78) | 15.33 (1.86) | 0.19 |
PRI, n, (%) | 19 (32.8) | 0 (0) | 0.451 |
Survival 1 year, n, (%) | 49 (84.4) | 8 (100) | 0.22 |
Aetiology, n, (%) HVB HVB-D HVC Toxic Autoimmune Hepatitis Wilson disease NASH Budd Chiari Disease HCC Colangiocarcinoma | 12 (20.7) 21 (36.2) 3 (5.2) 13 (22.4) 6 (10.3) 1 (1.7) 1 (1.7) 1 (1.7) 7 (12.1) 2 (3.4) | 2 (25) 4 (50) 0 (0) 2 (25) 0 (0) 0 (0) 0 (0) 2 (25) 0 (0) 0 (0) | 0.85 |
Complications, n, (%) Surgical complications Biliary complications Vascular complications Haemorrhage | 44 (75.9) 20 (34.4) 8 (13.7) 11 (18.9) 13 (22.4) | 2 (25) 0 (0) 0 (0) 0 (0) 0 (0) | 0.01 0.004 0.19 0.25 0.12 |
Extended Criteria Donors (ECD) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Age > 65 years | x | x | x | x | ||||
Liver steatosis > 30% | x | x | x | |||||
Elevated serum transaminase | x | |||||||
Prolonged ICU stay | x | |||||||
Prolonged cold ischemia time | x | x |
Variable | SCS | HMP | p |
---|---|---|---|
∆MAP%, n (SD) | 21 (9.6) | 1 (1.5) | 0.006 |
INR—Day 7 > 1.6, n (%) | 8 (13.6) | 0 (0) | 0.32 |
Total Bilirubin—Day 7 > 10 mg/dL, n (%) | 0 (0) | 0 (0) | 0.06 |
AST—Day 7 > 2000 U/L, n (%) | 0 (0) | 0 (0) | 0.15 |
ALT—Day 7 > 2000 U/L, n (%) | 2 (3.4) | 0 (0) | 0.23 |
Variable | SCS Mean | SCS SD | HMP Mean | HMP SD | p-Value |
---|---|---|---|---|---|
Length of Hospital Stay (days) | 27.71 | 13.19 | 21.00 | 3.46 | 0.16 |
Total Bilirubin—Day 5 (mg/dL) | 2.59 | 1.59 | 1.50 | 0.95 | 0.06 |
Total Calcium—Day 7 (mg/dL) | 8.41 | 0.52 | 7.92 | 0.58 | 0.17 |
INR—Day 7 | 1.32 | 0.21 | 1.39 | 0.17 | 0.32 |
Potassium—Day 7 (mmol/L) | 3.91 | 0.40 | 3.83 | 0.31 | 0.56 |
Bicarbonate—Day 7 (mEq/L) | 24.62 | 4.77 | 23.63 | 0.60 | 0.70 |
AST—Day 7 (U/L) | 74.23 | 70.97 | 105.25 | 13.45 | 0.04 |
ALT—Day 7 (U/L) | 194.21 | 228.82 | 179.00 | 60.03 | 0.21 |
BMI (kg/m2) | 25.38 | 3.90 | 25.38 | 4.86 | 0.99 |
Estimated Blood Loss (mL) | 6881.82 | 4779.78 | 5200.00 | 1307.12 | 0.30 |
Operative Time (min) | 494.91 | 75.26 | 487.50 | 79.78 | 0.79 |
Warm Ischemia Time (min) | 56.63 | 12.13 | 57.75 | 1.75 | 0.79 |
Cold Ischemia Time (min) | 231.33 | 70.65 | 310.25 | 56.87 | 0.004 |
Total Ischemia Time (min) | 287.96 | 73.14 | 368.00 | 57.75 | 0.004 |
PRI | Mean | |||
---|---|---|---|---|
Estimate | Std. Error | 95% Confidence Interval | ||
Lower Bound | Upper Bound | |||
0 | 89.502 | 5.561 | 78.603 | 100.400 |
1 | 66.796 | 8.956 | 49.243 | 84.350 |
Overall | 85.764 | 5.050 | 75.866 | 95.662 |
Parameter | HOPE | DHOPE |
---|---|---|
Perfusion route | Portal vein only | Portal vein + Hepatic artery |
Temperature | 4–12 °C | 4–12 °C |
Oxygenation | Yes | Yes |
Technical complexity | Lower | Higher |
Main benefit | Reduces IRI, improves mitochondrial function | Reduces IRI, improves mitochondrial function Better biliary protection |
Typical indication | ECD, DCD livers | ECD, DCD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nastase, A.G.; Vasilescu, A.M.; Trofin, A.M.; Zabara, M.; Cadar, R.; Vasiluta, C.; Vlad, N.; Ciuntu, B.M.; Lupascu Ursulescu, C.; Muzica, C.; et al. Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study. Life 2025, 15, 1112. https://doi.org/10.3390/life15071112
Nastase AG, Vasilescu AM, Trofin AM, Zabara M, Cadar R, Vasiluta C, Vlad N, Ciuntu BM, Lupascu Ursulescu C, Muzica C, et al. Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study. Life. 2025; 15(7):1112. https://doi.org/10.3390/life15071112
Chicago/Turabian StyleNastase, Alexandru Grigorie, Alin Mihai Vasilescu, Ana Maria Trofin, Mihai Zabara, Ramona Cadar, Ciprian Vasiluta, Nutu Vlad, Bogdan Mihnea Ciuntu, Corina Lupascu Ursulescu, Cristina Muzica, and et al. 2025. "Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study" Life 15, no. 7: 1112. https://doi.org/10.3390/life15071112
APA StyleNastase, A. G., Vasilescu, A. M., Trofin, A. M., Zabara, M., Cadar, R., Vasiluta, C., Vlad, N., Ciuntu, B. M., Lupascu Ursulescu, C., Muzica, C., Girleanu, I., Buzincu, I., Iftimie, F., & Lupascu, C. D. (2025). Hypothermic Machine Perfusion Is Associated with Improved Short-Term Outcomes in Liver Transplantation: A Retrospective Cohort Study. Life, 15(7), 1112. https://doi.org/10.3390/life15071112