Which Classes of Antibiotics Are Associated with the Acquisition of Carbapenemase-Producing Enterobacterales?
Abstract
1. Introduction
1.1. Global Antimicrobial Resistance and Antibiotic Misuse
1.2. Why Focus on Carbapenemase-Producing Enterobacterales (CPE)?
1.3. Horizontal Gene Transfer and One Health Perspective
1.4. Objective of the Study
2. Materials and Methods
2.1. Study Design and Definitions
Definitions
2.2. Statistics
2.3. Ethics
3. Results
3.1. Antibiotic Consumption Before the Risk Period
3.2. Antibiotic Use During the Risk Period
4. Discussion
4.1. Microbiota Disruption and Antibiotic Pressure
4.2. Impact of Metronidazole and Definitions of Anti-Anaerobic Activity
4.3. Interpretation Cautions and Role of Fluoroquinolones
4.4. Antibiotic Use Patterns and the Role of Timing
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BLBLI | Beta-lactam/beta-lactam inhibitor |
CPE | Carbapenemase producing Enterobacterales |
ICU | Intensive care unit |
IQR | Interquartile range |
MDR | Multidrug resistant |
MDRO | Multidrug resistant organism |
NDM | New-Delhi metallobetalactamase |
References
- Kim, S.; Covington, A.; Pamer, E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Pettigrew, M.M.; Johnson, J.K.; Harris, A.D. The human microbiota: Novel targets for hospital-acquired infections and antibiotic resistance. Ann. Epidemiol. 2016, 26, 342–347. [Google Scholar] [CrossRef]
- Sullivan, A.; Edlund, C.; Nord, C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001, 1, 101–114. [Google Scholar] [CrossRef]
- Lewis, B.B.; Buffie, C.G.; Carter, R.A.; Leiner, I.; Toussaint, N.C.; Miller, L.C.; Gobourne, A.; Ling, L.; Pamer, E.G. Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection with Oral Vancomycin Compared with Metronidazole. J. Infect. Dis. 2015, 212, 1656–1665. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, Z.; Tan, L.; Wang, X.; Xue, Y.; Wang, S.; Wang, Q.; Das, R.; Lin, H.; Hou, J.; et al. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. Sci. Total Environ. 2019, 705, 135674. [Google Scholar] [CrossRef]
- Isaac, S.; Scher, J.U.; Djukovic, A.; Jiménez, N.; Littman, D.R.; Abramson, S.B.; Pamer, E.G.; Ubeda, C. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2017, 72, 128–136. [Google Scholar] [CrossRef]
- Donskey, C.J.; Chowdhry, T.K.; Hecker, M.T.; Hoyen, C.K.; Hanrahan, J.A.; Hujer, A.M.; Hutton-Thomas, R.A.; Whalen, C.C.; Bonomo, R.A.; Rice, L.B. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 2000, 343, 1925–1932. [Google Scholar] [CrossRef]
- Goldmann, D.A.; Weinstein, R.A.; Wenzel, R.P.; Tablan, O.C.; Duma, R.J.; Gaynes, R.P.; Schlosser, J.; Martone, W.J. Strategies to Prevent and Control the Emergence and Spread of Antimicrobial-Resistant Microorganisms in Hospitals. A challenge to hospital leadership. JAMA 1996, 275, 234–240. [Google Scholar] [CrossRef]
- Harris, H.C.; Buckley, A.M.; Spittal, W.; Ewin, D.; Clark, E.; Altringham, J.; Bentley, K.; Moura, I.B.; Wilcox, M.H.; Woodford, N.; et al. The effect of intestinal microbiota dysbiosis on growth and detection of carbapenemase-producing Enterobacterales within an in vitro gut model. J. Hosp. Infect. 2021, 113, 1–9. [Google Scholar] [CrossRef]
- Perez, F.; Pultz, M.J.; Endimiani, A.; Bonomo, R.A.; Donskey, C.J. Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob. Agents Chemother. 2011, 55, 2585–2589. [Google Scholar] [CrossRef]
- Paramythiotou, E.; Lucet, J.-C.; Timsit, J.-F.; Vanjak, D.; Paugam-Burtz, C.; Trouillet, J.-L.; Belloc, S.; Kassis, N.; Karabinis, A.; Andremont, A. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: Role of antibiotics with antipseudomonal activity. Clin. Infect. Dis. 2004, 38, 670–677. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Lai, L.-C.; Chen, Y.-A.; Lin, K.-Y.; Chou, Y.-H.; Chen, H.-C.; Wang, S.-S.; Wang, J.-T.; Chang, S.-C. Colonization with Multidrug-Resistant Organisms Among Healthy Adults in the Community Setting: Prevalence, Risk Factors, and Composition of Gut Microbiome. Front. Microbiol. 2020, 11, 1402. [Google Scholar] [CrossRef]
- Donskey, C.J.; Hanrahan, J.A.; Hutton, R.A.; Rice, L.B. Effect of parenteral antibiotic administration on persistence of vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. J. Infect. Dis. 1999, 180, 384–390. [Google Scholar] [CrossRef]
- Grohs, P.; Kernéis, S.; Sabatier, B.; Lavollay, M.; Carbonnelle, E.; Rostane, H.; Souty, C.; Meyer, G.; Gutmann, L.; Mainardi, J.L. Fighting the spread of AmpC-hyperproducing Enterobacteriaceae: Beneficial effect of replacing ceftriaxone with cefotaxime. J. Antimicrob. Chemother. 2014, 69, 786–789. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Gharbi, M.; Moore, L.S.P.; Gilchrist, M.; Thomas, C.P.; Bamford, K.; Brannigan, E.T.; Holmes, A.H. Forecasting carbapenem resistance from antimicrobial consumption surveillance: Lessons learnt from an OXA-48-producing Klebsiella pneumoniae outbreak in a West London renal unit. Int. J. Antimicrob. Agents 2015, 46, 150–156. [Google Scholar] [CrossRef]
- Pilmis, B.; Jullien, V.; Tabah, A.; Zahar, J.-R.; Brun-Buisson, C. Piperacillin-tazobactam as alternative to carbapenems for ICU patients. Ann. Intensive Care 2017, 7, 113. [Google Scholar] [CrossRef]
- Bhalla, A.; Pultz, N.J.; Ray, A.J.; Hoyen, C.K.; Eckstein, E.C.; Donskey, C.J. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect. Control Hosp. Epidemiol. 2003, 24, 644–649. [Google Scholar] [CrossRef]
- Le Guern, R.; Grandjean, T.; Bauduin, M.; Figeac, M.; Millot, G.; Loquet, A.; Faure, K.; Kipnis, E.; Dessein, R. Impact of the Timing of Antibiotic Administration on Digestive Colonization with Carbapenemase-Producing Enterobacteriaceae in a Murine Model. Antimicrob. Agents Chemother. 2019, 63, e00360–19. [Google Scholar] [CrossRef]
- Atamna-Mawassi, H.; Huberman-Samuel, M.; Hershcovitz, S.; Karny-Epstein, N.; Kola, A.; Cortés, L.E.L.; Leibovici, L.; Yahav, D. Interventions to reduce infections caused by multidrug resistant Enterobacteriaceae (MDR-E): A systematic review and meta-analysis. J. Infect. 2021, 83, 156–166. [Google Scholar] [CrossRef]
- French, C.E.; Coope, C.; Conway, L.; Higgins, J.P.T.; McCulloch, J.; Okoli, G.; Patel, B.C.; Oliver, I. Control of carbapenemase-producing Enterobacteriaceae outbreaks in acute settings: An evidence review. J. Hosp. Infect. 2017, 95, 3–45. [Google Scholar] [CrossRef]
- Burdet, C.; Grall, N.; Linard, M.; Bridier-Nahmias, A.; Benhayoun, M.; Bourabha, K.; Magnan, M.; Clermont, O.; d’Humières, C.; Tenaillon, O.; et al. Ceftriaxone and Cefotaxime Have Similar Effects on the Intestinal Microbiota in Human Volunteers Treated by Standard-Dose Regimens. Antimicrob. Agents Chemother. 2019, 63, e02244–18. [Google Scholar] [CrossRef]
- Yassour, M.; Vatanen, T.; Siljander, H.; Hämäläinen, A.-M.; Härkönen, T.; Ryhänen, S.J.; Franzosa, E.A.; Vlamakis, H.; Huttenhower, C.; Gevers, D.; et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 2016, 8, 343ra81. [Google Scholar] [CrossRef]
- Woerther, P.-L.; d’Humières, C.; Lescure, X.; Dubreuil, L.; Rodriguez, C.; Barbier, F.; Fihman, V.; Ruppé, E. Is the term “anti-anaerobic” still relevant? Int. J. Infect. Dis. 2021, 102, 178–180. [Google Scholar] [CrossRef]
- Pilmis, B.; Jiang, O.; Mizrahi, A.; Nguyen Van, J.; Lourtet-Hascoët, J.; Voisin, O.; Le Lorc’h, E.; Hubert, S.; Ménage, E.; Azria, P.; et al. No significant difference between ceftriaxone and cefotaxime in the emergence of antibiotic resistance in the gut microbiota of hospitalized patients: A pilot study. Int. J. Infect. Dis. 2021, 104, 617–623. [Google Scholar] [CrossRef]
- De Lastours, V.; Goulenok, T.; Guérin, F.; Jacquier, H.; Eyma, C.; Chau, F.; Cattoir, V.; Fantin, B. Ceftriaxone promotes the emergence of AmpC-overproducing Enterobacteriaceae in gut microbiota from hospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 417–421. [Google Scholar] [CrossRef]
- Bernard, J.; Armand-Lefèvre, L.; Luce, E.; El Mniai, A.; Chau, F.; Casalino, E.; Andremont, A.; Ruppé, E. Impact of a short exposure to levofloxacin on faecal densities and relative abundance of total and quinolone-resistant Enterobacteriaceae. Clin. Microbiol. Infect. 2016, 22, e1–e4. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, J.P.; Lin, Q.; Van Heirstraeten, L.; Lammens, C.; Stewardson, A.J.; Godycki-Cwirko, M.; Coenen, S.; Goossens, H.; Harbarth, S.; Malhotra-Kumar, S.; et al. Long-term effects of ciprofloxacin treatment on the gastrointestinal and oropharyngeal microbiome are more pronounced after longer antibiotic courses. Int. J. Antimicrob. Agents 2024, 64, 107259. [Google Scholar] [CrossRef]
- Pilmis, B.; Le Monnier, A.; Zahar, J.-R. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020, 8, 269. [Google Scholar] [CrossRef]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin. Microbiol. Infect. 2015, 21, e1–e10. [Google Scholar] [CrossRef]
- Lakbar, I.; De Waele, J.J.; Tabah, A.; Einav, S.; Martin-Loeches, I.; Leone, M. Antimicrobial De-Escalation in the ICU: From Recommendations to Level of Evidence. Adv. Ther. 2020, 37, 3083–3096. [Google Scholar] [CrossRef]
- Snyder, G.M.; D’Agata, E.M.C. Diagnostic accuracy of surveillance cultures to detect gastrointestinal colonization with multidrug-resistant gram-negative bacteria. Am. J. Infect. Control 2012, 40, 474–476. [Google Scholar] [CrossRef]
Characteristics | Acquisition (n = 35) | No Acquisition (n = 70) | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|---|---|
p-Value | p-Value | OR (95%IC) | |||
Age (yr) (median, [IQR]) | 71.3 [66.9–79.9] | 69.7 [55.8–79.4] | 0.022 | 0.39 | 1.02 (0.98–1.06) |
ICU admission, n (%) | 13 (31.7) | 26 (37.1) | >0.99 | 0.28 | 0.33 (0.04–2.45) |
Hospitalization duration | 17 (7.25–30] | 15 [8–25] | 0.10 | 0.35 | 1.03 (0.97–1.10) |
Antibiotic therapy before hospitalization | |||||
Antibiotic therapy before hospitalization, n (%) | 20 (57.1) | 35 (50) | 0.53 | 0.68 | 2.4 (0.71–7.4) |
Antibiotic with biliary elimination, n (%) | 14/20 (70) | 10/35 (28.5) | 0.022 | 0.004 | 9.38 (1.93–75.2) |
Antibiotic with anti-anaerobic activity | 11/20 (55) | 20/35 (57.1) | 0.85 | 0.26 | 0.45 (0.10–1.81) |
Number of antibiotic family (median, IQR) | 2 [1.5–2] | 1 [1–3] | 0.74 | 0.95 | 1.03 (0.40–2.74) |
Class of Antibiotics | |||||
BLBLI | 6 (17.1) | 20 (28.6) | 0.19 | 0.086 | 0.24 (0.03–1.21) |
Aminoglycosides | 1 (2.8) | 6 (8.6) | 0.24 | 0.54 | 0.40 (0.01–6.29) |
Cephalosporins | 11 (31.4) | 13 (18.6) | 0.15 | 0.094 | 4.11 (0.79–23.9) |
Fluoroquinolones | 8 (22.8) | 3 (4.3) | 0.005 | <0.001 | 90.3 (7.39–3898) |
Anti-staphylococci | 2 (5.7) | 6 (8.6) | 0.59 | 0.21 | 0.2 (0.1–10.8) |
Metronidazole | 2 (5.7) | 5 (7.1) | 0.78 | 0.076 | 0.07 (0.02–1.31) |
Carbapenems | 4 (11.4) | 2 (2.8) | 0.086 | 0.087 | 30 (0.1–82.2) |
Other BL | 1 (2.8) | 6 (8.5) | 0.24 | 0.13 | 0.13 (0.2–1.72) |
Macrolides | 3 (8.6) | 4 (5.7) | 0.59 | 0.75 | 0.68 (0.06–7.25) |
Antibiotic therapy during hospitalization | |||||
Antibiotic therapy during hospitalization, n (%) | 32 (91.4) | 63 (90) | 0.85 | 0.72- | 0.52 (0.43–3.4) |
Antibiotic with biliary elimination, n (%) | 23/32 (71.8) | 47/63 (74.6) | 0.36 | 0.12 | 0.34 (0.24–1.77) |
Number of antibiotic with biliary elimination (median [IQR]) | 2 [1–2] | 1 [1–2.5] | 0.87 | 0.77 | 1.22 (0.31–5.17) |
Duration of antibiotic with biliary elimination (d) (median [IQR]) | 7 [2–18] | 8 [4.25–14] | 0.43 | 0.44 | 0.96 (0.84–1.08) |
Antibiotic with anti-anaerobic activity | 26/32 (81.3) | 47/63 (74.6) | 0.91 | 0.72 | 1.12 (0.87–2.45) |
Number of antibiotic with anti-anaerobic activity (median [IQR]) | 2 [1–3] | 2 [1–3] | 0.84 | 0.25 | 0.45 (0.10–1.78) |
Duration of antibiotic with anti-anaerobic activity (d) (median [IQR]) | 9 [7.25–16.5] | 10 [7–20] | 0.55 | 0.91 | 1.01 (0.89–1.12) |
Total antibiotic duration (d) (median [IQR]) | 7 [3–10.25] | 5 [3–8] | 0.47 | 0.57 | 1.03 (0.92–1.14) |
Class of antibiotics | |||||
BLBLI | 21 (60) | 41 (58.5) | 0.89 | 0.13 | 1.85 (0.63–5.83) |
Aminoglycosides | 8 (22.8) | 13 (18.6) | 0.61 | 0.75 | 1.53 (0.28–8.96) |
Cephalosporins | 20 (57.2) | 37 (52.8) | 0.68 | 0.27 | 0.75 (0.22–2.56) |
Fluoroquinolones | 7 (20) | 17 (24.3) | 0.62 | 0.62 | 0.53 (0.10–2.35) |
Anti-staphylococci | 11 (31.4) | 25 (35.7) | 0.66 | 0.65 | 1.34 (0.37–4.76) |
Metronidazole | 8 (22.8) | 8 (11.4) | 0.13 | 0.029 | 6.94 (1.22–49.1) |
Carbapenems | 6 (17.1) | 21 (30) | 0.15 | 0.12 | 0.29 (0.05–1.37) |
Other BL | 4 (11.4) | 16 (22.8) | 0.15 | 0.33 | 0.45 (0.07–2.17) |
Macrolides | 8 (22.8) | 13 (18.5) | 0.61 | 0.78 | 1.22 (0.28–4.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadou, L.; Pilmis, B.; Eid, R.; Moenne Locoz, P.; Lefèvre, S.; Jauréguy, F.; Rathouin, V.; Zahar, J.-R.; Foucault-Fruchard, L. Which Classes of Antibiotics Are Associated with the Acquisition of Carbapenemase-Producing Enterobacterales? Life 2025, 15, 1072. https://doi.org/10.3390/life15071072
Sadou L, Pilmis B, Eid R, Moenne Locoz P, Lefèvre S, Jauréguy F, Rathouin V, Zahar J-R, Foucault-Fruchard L. Which Classes of Antibiotics Are Associated with the Acquisition of Carbapenemase-Producing Enterobacterales? Life. 2025; 15(7):1072. https://doi.org/10.3390/life15071072
Chicago/Turabian StyleSadou, Lisa, Benoît Pilmis, Rasha Eid, Pierre Moenne Locoz, Sophie Lefèvre, Françoise Jauréguy, Vanessa Rathouin, Jean-Ralph Zahar, and Laura Foucault-Fruchard. 2025. "Which Classes of Antibiotics Are Associated with the Acquisition of Carbapenemase-Producing Enterobacterales?" Life 15, no. 7: 1072. https://doi.org/10.3390/life15071072
APA StyleSadou, L., Pilmis, B., Eid, R., Moenne Locoz, P., Lefèvre, S., Jauréguy, F., Rathouin, V., Zahar, J.-R., & Foucault-Fruchard, L. (2025). Which Classes of Antibiotics Are Associated with the Acquisition of Carbapenemase-Producing Enterobacterales? Life, 15(7), 1072. https://doi.org/10.3390/life15071072