Acute Kidney Injury After Peripheral Interventions Using Carbon Dioxide Angiography—Risk Factors Beyond Iodinated Contrast Media
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient and Procedural Characteristics
3.2. Postinterventional AKI, Periprocedural Complications, and Predictors of AKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malyar, N.; Fürstenberg, T.; Wellmann, J.; Meyborg, M.; Lüders, F.; Gebauer, K.; Bunzemeier, H.; Roeder, N.; Reinecke, H. Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: A nationwide population-based analysis. Eur. Heart J. 2013, 34, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Latus, J.; Schwenger, V.; Schlieper, G.; Reinecke, H.; Hoyer, J.; Persson, P.B.; Remppis, B.A.; Mahfoud, F. Contrast medium-induced acute kidney injury-Consensus paper of the working group “Heart and Kidney” of the German Cardiac Society and the German Society of Nephrology. Internist 2021, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Saratzis, A.; Harrison, S.; Barratt, J.; Sayers, R.D.; Sarafidis, P.A.; Bown, M.J. Intervention Associated Acute Kidney Injury and Long-Term Cardiovascular Outcomes. Am. J. Nephrol. 2015, 42, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Safley, D.M.; Salisbury, A.C.; Tsai, T.T.; Secemsky, E.A.; Kennedy, K.F.; Rogers, R.K.; Latif, F.; Shammas, N.W.; Garcia, L.; Cavender, M.A.; et al. Acute Kidney Injury Following In-Patient Lower Extremity Vascular Intervention from the National Cardiovascular Data Registry. JACC Cardiovasc. Interv. 2021, 14, 333–341. [Google Scholar] [CrossRef]
- McCullough, P.A.; Choi, J.P.; Feghali, G.A.; Schussler, J.M.; Stoler, R.M.; Vallabahn, R.C.; Mehta, A. Contrast-Induced Acute Kidney Injury. J. Am. Coll. Cardiol. 2016, 68, 1465–1473. [Google Scholar] [CrossRef]
- Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009, 53, 961–973. [Google Scholar] [CrossRef]
- See, E.J.; Jayasinghe, K.; Glassford, N.; Bailey, M.; Johnson, D.W.; Polkinghorne, K.R.; Toussaint, N.D.; Bellomo, R. Long-term risk of adverse outcomes after acute kidney injury: A systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019, 95, 160–172. [Google Scholar] [CrossRef]
- Mohebi, R.; Karimi Galougahi, K.; Garcia, J.J.; Horst, J.; Ben-Yehuda, O.; Radhakrishnan, J.; Chertow, G.M.; Jeremias, A.; Cohen, D.J.; Cohen, D.J.; et al. Long-Term Clinical Impact of Contrast-Associated Acute Kidney Injury Following PCI: An ADAPT-DES Substudy. JACC Cardiovasc. Interv. 2022, 15, 753–766. [Google Scholar] [CrossRef]
- Prasad, A.; Hughston, H.; Michalek, J.; Trevino, A.; Gupta, K.; Martinez, J.P.; Hoang, D.T.; Wu, P.B.; Banerjee, S.; Masoomi, R. Acute kidney injury in patients undergoing endovascular therapy for critical limb ischemia. Catheter. Cardiovasc. Interv. 2019, 94, 636–641. [Google Scholar] [CrossRef]
- Peripheral Arterial Disease Guidelines: The Cinderella of Cardiovascular Medicine Gets the Attention It Deserves [Internet]. Available online: http://ouci.dntb.gov.ua/en/works/73ZPVP09/ (accessed on 29 November 2024).
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef]
- Jakobi, T.; Meyborg, M.; Freisinger, E.; Gebauer, K.; Stella, J.; Engelbertz, C.; Reinecke, H.; Malyar, N.M. Feasibility and impact of carbon dioxide angiography on acute kidney injury following endovascular interventions in patients with peripheral artery disease and renal impairment. J. Nephrol. 2021, 34, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Bürckenmeyer, F.; Schmidt, A.; Diamantis, I.; Lehmann, T.; Malouhi, A.; Franiel, T.; Zanow, J.; Teichgräber, U.; Aschenbach, R. Image quality and safety of automated carbon dioxide digital subtraction angiography in femoropopliteal lesions: Results from a randomized single-center study. Eur. J. Radiol. 2021, 135, 109476. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.L.E.L.; Björck, M. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Ghumman, S.S.; Weinerman, J.; Khan, A.; Cheema, M.S.; Garcia, M.; Levin, D.; Suri, R.; Prasad, A. Contrast induced-acute kidney injury following peripheral angiography with carbon dioxide versus iodinated contrast media: A meta-analysis and systematic review of current literature. Catheter. Cardiovasc. Interv. 2017, 90, 437–448. [Google Scholar] [CrossRef]
- Wagner, G.; Glechner, A.; Persad, E.; Klerings, I.; Gartlehner, G.; Moertl, D.; Steiner, S. Risk of Contrast-Associated Acute Kidney Injury in Patients Undergoing Peripheral Angiography with Carbon Dioxide Compared to Iodine-Containing Contrast Agents: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7203. [Google Scholar] [CrossRef]
- Gupta, A.; Dosekun, A.K.; Kumar, V. Carbon dioxide-angiography for patients with peripheral arterial disease at risk of contrast-induced nephropathy. World J. Cardiol. 2020, 12, 76–90. [Google Scholar] [CrossRef]
- Grossman, P.M.; Ali, S.S.; Aronow, H.D.; Boros, M.; Nypaver, T.J.; Schreiber, T.L.; Park, Y.J.; Henke, P.K.; Gurm, H.S. Contrast-induced nephropathy in patients undergoing endovascular peripheral vascular intervention: Incidence, risk factors, and outcomes as observed in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. J. Interv. Cardiol. 2017, 30, 274–280. [Google Scholar] [CrossRef]
- Katsogridakis, E.; Lea, T.; Yap, T.; Batchelder, A.; Saha, P.; Diamantopoulos, A.; Saratzis, N.; Davies, R.; Zayed, H.; Bown, M.J.; et al. Acute kidney injury following endovascular intervention for peripheral artery disease. Br. J. Surg. 2021, 108, 152–159. [Google Scholar] [CrossRef]
- Peng, F.; Su, J.; Lin, J.; Niu, W. Impact of Renin-Angiotensin-Aldosterone System-blocking Agents on the Risk of Contrast-induced Acute Kidney Injury: A Prospective Study and Meta-analysis. J. Cardiovasc. Pharmacol. 2015, 65, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Ali-Hassan-Sayegh, S.; Mirhosseini, S.J.; Ghodratipour, Z.; Sarrafan-Chaharsoughi, Z.; Rahimizadeh, E.; Karimi-Bondarabadi, A.A.; Haddad, F.; Shahidzadeh, A.; Mahdavi, P.; Dehghan, A.-M.; et al. Strategies Preventing Contrast-Induced Nephropathy After Coronary Angiography: A Comprehensive Meta-Analysis and Systematic Review of 125 Randomized Controlled Trials. Angiology 2017, 68, 389–413. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, J.; Jeon, K.-H.; Jung, J.-H.; Lee, S.E.; Han, J.-K.; Kim, H.-L.; Yang, H.-M.; Park, K.W.; Kang, H.-J.; et al. Efficacy of Short-Term High-Dose Statin Pretreatment in Prevention of Contrast-Induced Acute Kidney Injury: Updated Study-Level Meta-Analysis of 13 Randomized Controlled Trials. PLoS ONE 2014, 9, e111397. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, C.; Song, Q.; Yang, X.; Wei, Z. Effect of Angiotensin-Converting Enzyme Inhibitors in Contrast-Induced Nephropathy: A Meta-Analysis. Nephron 2016, 133, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; McDonald, J.S.; Bida, J.P.; Carter, R.E.; Fleming, C.J.; Misra, S.; Williamson, E.E.; Kallmes, D.F. Intravenous Contrast Material–induced Nephropathy: Causal or Coincident Phenomenon? Radiology 2013, 267, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, J.; van de Peppel, W.R.; Sijpkens, Y.W.; Brulez, H.F.; de Vries, P.M.; Nicolaie, M.A.; Putter, H.; Huisman, M.V.; van der Kooij, W.; van Kooten, C.; et al. No increase in Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin excretion following intravenous contrast enhanced-CT. Eur. Radiol. 2015, 25, 1926–1934. [Google Scholar] [CrossRef]
- Ehrmann, S.; Quartin, A.; Hobbs, B.P.; Robert-Edan, V.; Cely, C.; Bell, C.; Lyons, G.; Pham, T.; Schein, R.; Geng, Y.; et al. Contrast-associated acute kidney injury in the critically ill: Systematic review and Bayesian meta-analysis. Intensive Care Med. 2017, 43, 785–794. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Comin, J.; Williamson, E.E.; Katzberg, R.W.; Murad, M.H.; Kallmes, D.F. Frequency of Acute Kidney Injury Following Intravenous Contrast Medium Administration: A Systematic Review and Meta-Analysis. Radiology 2013, 267, 119–128. [Google Scholar] [CrossRef]
- Legrand, M.; Rossignol, P. Cardiovascular Consequences of Acute Kidney Injury. N. Engl. J. Med. 2020, 382, 2238–2247. [Google Scholar] [CrossRef]
Variable | Overall (n = 340) | No AKI (n = 295) | AKI (n = 45) | p Value |
---|---|---|---|---|
Demographics | ||||
Age, years | 74.26 ± 10.27 | 75.0 ± 9.14 | 69.42 ± 15.06 | 0.019 |
Male gender | 69.1% (235) | 69.5% (205) | 66.7% (30) | 0.730 |
BMI (kg/m2) | 27.91 ± 5.03 | 27.76 ± 4.99 | 28.90 ± 5.26 | 0.156 |
Obesity (BMI ≥ 30) | 29.4% (100) | 28.5% (84) | 35.6% (16) | 0.380 |
Medical history | ||||
Hypertension | 92.4% (314) | 92.5% (273) | 91.1% (41) | 0.762 |
Hyperlipidemia | 63.5% (216) | 62.4% (184) | 71.1% (32) | 0.319 |
Smoking | 0.887 | |||
Current | 18.8% (64) | 19.0% (56) | 17.8% (8) | |
Prior | 29.7% (101) | 29.2% (86) | 33.3% (15) | |
Never | 51.5% (175) | 51.9% (153) | 48.9% (22) | |
Diabetes | 62.1% (211) | 61.4% (181) | 66.7% (30) | 0.621 |
Insulin depending | 36.2% (123) | 35.3% (104) | 42.2% (19) | 0.187 |
Coronary artery disease | 42.9% (146) | 42.0% (124) | 48.9% (22) | 0.421 |
Congestive Heart Failure | 22.9% (78) | 21.0% (62) | 35.6% (16) | 0.037 |
Prior MI | 16.5% (56) | 15.9% (47) | 20.0% (9) | 0.518 |
Atrial Fibrillation | 34.7% (118) | 34.2% (101) | 37.8% (17) | 0.737 |
Cerebrovascular disease | 3.8% (13) | 3.4% (10) | 6.7% (3) | 0.392 |
Stroke | 10.0% (34) | 9.2% (27) | 15.6% (7) | 0.185 |
Dementia | 3.2% (11) | 3.7% (11) | 0 | 0.371 |
Malignancy | 14.1% (48) | 12.9% (38) | 22.2% (10) | 0.107 |
COPD | 14.1% (48) | 13.2% (39) | 20.0% (9) | 0.249 |
Medication | ||||
Aspirin | 70.3% (239) | 71.9% (212) | 60.0% (27) | 0.116 |
Clopidogrel | 60.6% (206) | 60.0% (177) | 64.4% (29) | 0.626 |
Anticoagulants | 40.0% (136) | 38.6% (114) | 48.9% (22) | 0.196 |
Statins | 70.6% (240) | 72.5% (214) | 57.8% (26) | 0.053 |
Other lipid lowering drug | 5.0% (17) | 4.7% (14) | 6.7% (3) | 0.480 |
ACE inhibitor/ARB | 75.9% (258) | 78.6% (232) | 57.8% (26) | 0.004 |
Beta-blocker | 72.1% (245) | 72.2% (213) | 71.1% (32) | 0.860 |
Other antihypertensive drug | 68.2% (232) | 70.5% (208) | 53.3% (24) | 0.026 |
NSAR | 16.5% (56) | 15.9% (47) | 20.0% (9) | 0.518 |
Antibiotics | 12.1% (41) | 11.2% (33) | 17.8% (8) | 0.219 |
Neprotoxic agents * | 1.2% (4) | 1.0% (3) | 2.2% (1) | 0.435 |
Active chemotherapy | 0.6% (2) | 0.7% (2) | 0 | 1.000 |
Immunosuppressants | 7.4% (25) | 6.8% (20) | 11.1% (5) | 0.352 |
Clinical Symptoms | ||||
Claudicants | 45.6% (155) | 47.8% (141) | 31.1% (14) | 0.038 |
CLI | 54.4% (185) | 52.2% (154) | 68.9% (31) | 0.038 |
Rutherford class 4 | 15.9% (54) | 15.3% (45) | 20.0% (9) | 0.389 |
Rutherford class 5 | 23.8% (81) | 22.7% (67) | 31.1% (14) | 0.259 |
Rutherford class 6 | 14.7% (50) | 14.2% (42) | 17.8% (8) | 0.503 |
Baseline chronic kidney disease | ||||
KDIGO 1 | 0.9% (3) | 1.0% (3) | 0 | 1.000 |
KDIGO 2 | 4.7% (16) | 5.1% (15) | 2.2% (1) | 0.705 |
KDIGO 3 | 7.1% (24) | 7.8% (23) | 2.2% (1) | 0.225 |
KDIGO 4 | 78.8% (268) | 80.0% (236) | 71.1% (32) | 0.175 |
KDIGO 5 | 8.2% (28) | 5.8% (17) | 24.4% (11) | <0.001 |
Baseline Creatinine level, μmol/L | 195.72 ± 102.46 | 186.08 ± 91.0 | 258.96 ± 144.35 | 0.002 |
Baseline GFR, mL/min/1.73 m2 | 32.07 ± 15.61 | 33.19 ± 15.75 | 24.78 ± 12.54 | <0.001 |
Variable | Overall (n = 340) | No AKI (n = 295) | AKI (n = 45) | p Value |
---|---|---|---|---|
Prior peripheral vascular intervention * | 75.9% (258) | 76.6% (226) | 71.1% (32) | 0.455 |
Surgical | 37.1% (126) | 37.3% (110) | 35.6% (16) | 0.870 |
Endovascular | 68.2% (232) | 68.5% (202) | 66.7% (30) | 0.864 |
Treated area * | ||||
Aortoiliacal | 16.8% (57) | 15.3% (45) | 26.7% (12) | 0.083 |
Femoropopliteal | 76.2% (259) | 76.9% (227) | 71.1% (32) | 0.452 |
BTK | 32.6% (111) | 32.5% (96) | 33.3% (15) | 1.000 |
Severity | 0.183 | |||
Stenotic | 43.7% (142/325) | 45.2% (128/283) | 33.3% (14/42) | |
Occlusive | 56.3% (183/325) | 54.8% (155/283) | 66.7% (28/42) | |
Treatment * | ||||
Diagnostic angiography only | 16.2% (55) | 16.9% (50) | 11.1% (5) | 0.391 |
Covered stent | 4.4% (15) | 4.4% (13) | 4.4% (2) | 1.000 |
POBA | 55.6% (189) | 53.9% (159) | 66.7% (30) | 0.147 |
BMS | 22.6% (77) | 20.0% (59) | 40.0% (18) | 0.006 |
DES | 11.2% (38) | 10.5% (31) | 15.6% (7) | 0.313 |
DCB | 48.2% (164) | 49.2% (145) | 42.2% (19) | 0.426 |
Additional treatments † | 27.9% (95) | 26.8% (79) | 35.6% (16) | 0.218 |
Indication for CO2 use * | ||||
CKD stage 3–5 | 95.9% (326) | 95.6% (282) | 97.8% (44) | 0.703 |
Prior AKI after ICM application | 1.8% (6) | 2.0% (6) | 0 | 1.000 |
Known ICM allergy | 6.5% (22) | 6.4% (19) | 6.7% (3) | 1.000 |
Hyperthyroidism | 5.0% (17) | 5.1% (15) | 4.4% (2) | 1.000 |
Periinterventional hydration (intravenous) | 65.6% (223) | 69.2% (204) | 42.2% (19) | <0.001 |
Prior CM exposure within 7 days | 0.6% (2) | 0.7% (2) | 1.000 | |
Bailout ICM use | 80.6% (274) | 81.0% (239) | 77.8% (35) | 0.685 |
ICM amount, mL | 21.23 ± 14.09 | 20.92 ± 13.86 | 23.31 ± 15.60 | 0.344 |
Reason for the bailout ICM use ‡ | ||||
Insufficient image quality | 88.0% (234/266) | |||
CO2 intolerance | 12.0% (32/266) | |||
Fluoroscopy time, mm:ss | 16:50 ± 13:33 | 16:17 ± 13:10 | 20:24 ± 15:37 | 0.058 |
Area-dose product Gycm2 | 83.91 ± 78.87 | 75.38 ± 64.75 | 139.86 ± 127.35 | <0.001 |
Complication associated with CO2 | 1.8% (6) | |||
Severe abdominal/leg pain | 0.9% (3/340) | |||
Nausea | 0.6% (2/340) | |||
Vomiting | 0.3% (1/340) | |||
Hypotension | - | |||
Gas embolism | - | |||
Procedural Success | 92.3 (262/284) | 92.7% (227/245) | 89.7% (35/39) | 0.520 |
Variable | Overall (n = 340) | No Bailout ICM (n = 66) | Bailout ICM (n = 274) | p Value |
---|---|---|---|---|
Postinterventional AKI (within 7 days) | 13.2% (45) | 15.2% (10) | 12.8 (35) | 0.685 |
No AKI | 86.8% (295) | 84.5 (56) | 87.2 (239) | 0.685 |
AKI Stage 1 | 9.4% (32) | 10.6 (7) | 9.1 (25) | 0.646 |
AKI Stage 2 | 0.9% (3) | 1.5 (1) | 0.7 (2) | 0.478 |
AKI Stage 3 | 2.9% (10) | 3.0 (2) | 2.9 (8) | 1.000 |
Detection of AKI (days) | 2.6 ± 1.76 | |||
New onset of dialysis within ≤7 days | 2.1% (7) |
Complications | Overall (n = 340) | No AKI (n = 295) | AKI (n = 45) | p Value |
---|---|---|---|---|
Periprocedural * | ||||
Pseudoaneurysm | 2.1% (7) | 2.0% (6) | 2.2% (1) | 1.000 |
Bleeding at the puncture site | 3.8% (13) | 3.4% (10) | 6.7% (3) | 0.392 |
TIA | - | |||
MI | 1.2% (4) | 0.3% (1) | 6.7% (3) | 0.008 |
Acute re-occlusion of target lesion within 24 h | 0.9% (3) | 1.0% (3) | 0 | 1.000 |
within 30 days | ||||
Major Amputations | 1.8% (6) | 1.0% (3) | 6.7% (3) | 0.033 |
Death within 30 days | 3.5% (12) | 3.4% (10) | 4.4% (2) | 0.664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wittig, T.; Fischer, S.; Winther, B.; Schmidt, A.; Scheinert, D.; Hoffmann, A.; Steiner, S. Acute Kidney Injury After Peripheral Interventions Using Carbon Dioxide Angiography—Risk Factors Beyond Iodinated Contrast Media. Life 2025, 15, 1046. https://doi.org/10.3390/life15071046
Wittig T, Fischer S, Winther B, Schmidt A, Scheinert D, Hoffmann A, Steiner S. Acute Kidney Injury After Peripheral Interventions Using Carbon Dioxide Angiography—Risk Factors Beyond Iodinated Contrast Media. Life. 2025; 15(7):1046. https://doi.org/10.3390/life15071046
Chicago/Turabian StyleWittig, Tim, Sarah Fischer, Birte Winther, Andrej Schmidt, Dierk Scheinert, Anne Hoffmann, and Sabine Steiner. 2025. "Acute Kidney Injury After Peripheral Interventions Using Carbon Dioxide Angiography—Risk Factors Beyond Iodinated Contrast Media" Life 15, no. 7: 1046. https://doi.org/10.3390/life15071046
APA StyleWittig, T., Fischer, S., Winther, B., Schmidt, A., Scheinert, D., Hoffmann, A., & Steiner, S. (2025). Acute Kidney Injury After Peripheral Interventions Using Carbon Dioxide Angiography—Risk Factors Beyond Iodinated Contrast Media. Life, 15(7), 1046. https://doi.org/10.3390/life15071046