Microbiota of Cervical Canal in Nine Patients Diagnosed with Ectopic Pregnancy: Case Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Group
2.1.2. Chemicals and Media Used
- Amies medium (Deltalab, S.L., Barcelona, Spain) (transport medium for quantitative microbiological culture).
- eNAT® (Copan, Perotti, Italy) (transport medium for qualitative molecular detection of Chlamydia trachomatis, Mycoplasma genitalium, and Ureaplasma spp.).
- AmpliSens® DNA-sorb-AM nucleic acid extraction kit (Ecoli s.r.o, Purkyňova, Slovak Republic) (for bacterial DNA isolation).
- AmpliSens® C.trachomatis/Ureaplasma/M.genitalium-MULTIPRIME-FRT PCR kit (Ecoli Dx, Prague, Czech Republic) (for multiplex real-time PCR).
- Microbiological determinations were conducted using the following media: Transparent Chromogenic UTI Medium (OXOID Deutschland GmbH, Wesel, Germany), Columbia Agar with Sheep Blood (OXOID Deutschland GmbH, Wesel, Germany), Sabouraud Glucose Selective Agar (OXOID Deutschland GmbH, Wesel, Germany), Schaedler Anaerobe KV Selective Agar (OXOID Deutschland GmbH, Wesel, Germany), Gardnerella vaginalis selective medium (OXOID Deutschland GmbH, Wesel, Germany), Rogosa + H2O2 Agar (HEIPHA, Eppelheim, Germany), MacConkey No. 3 (OXOID Deutschland GmbH, Wesel, Germany), Enterococcus Agar (Bile Esculin Azide Agar, GRASO, Krąg, Poland), and Chromogenic Candida Selective Agar (GRASO, Krąg, Poland). Identification was based on colony morphology, Gram staining, and biochemical characterization.
2.2. Quantitative Microbiological Culture
2.3. Qualitative Detection
3. Results
3.1. Study Group Characteristics
3.2. Qualitative and Quantitative Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goksedef, B.P.; Kef, S.; Akca, A.; Bayik, R.N. Risk factors for rupture in tubal ectopic pregnancy: Definition of the clinical findings. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 154, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, T.; Wrona, W.; Paszkowska, M.; Radomański, T. Ciąża ektopowa, W. Ciąża Ektopowa. W Położnictwo i Ginekologia, 2nd ed.; Bręborowicz, G., Ed.; Wydawnictwo Lekarskie PZWL: Warszawa, Ploand, 2018. [Google Scholar]
- Jakiel, G.; Robak-Chołubek, D.; Tkaczuk-Włach, J. Ciążą ektopowa. Przegląd Menopauzalny 2006, 1, 61–64. [Google Scholar]
- Pniewska-Undro, K.; Wydra, D.; Abacjew-Chmyłko, A. Leczenie zachowawcze ciąży ektopowej. Gin. Perinat. Prakt. 2017, 2, 16–21. [Google Scholar]
- Sobstyl, M.; Tkaczuk-Włach, J.; Bednarek, W.; Jakiel, G. Diagnosis and treatment of ectopic pregnancy. Przegląd Menopauzalny 2012, 5, 431–435. [Google Scholar] [CrossRef]
- Alur-Gupta, S.; Cooney, L.; Senapati, S.; Sammel, M.; Barnhart, K. Two-dose versus single-dose methotrexate for treatment of ectopic pregnancy: A meta-analysis. Am. J. Obstet. Gynecol. 2019, 221, 95–108.e2. [Google Scholar] [CrossRef]
- Mpiima, D.P.; Wasswa Salongo, G.; Lugobe, H.; Ssemujju, A.; Mumbere Mulisya, O.; Masinda, A.; Twizerimana, H.; Ngonzi, J. Association Between Prior Chlamydia trachomatis Infection and Ectopic Pregnancy at a Tertiary Care Hospital in South Western Uganda. Obstet. Gynecol. Int. 2018, 2018, 4827353. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Wang, T.; Xian, J.; Song, J.; Qiao, Y.; Mu, Z.; Liu, H.; Sun, Z. Relation of Chlamydia trachomatis Infections to Ectopic Pregnancy: A Meta-Analysis and Systematic Review. Medicine 2020, 99, e18489. [Google Scholar] [CrossRef]
- Thirunavuk Arasoo, V.J.; Masalamani, M.; Ramadas, A.; Dominic, N.A.; Liew, D.D.; Sia, R.W.J.; Wanigaratne, A.; Weerawarna, K.; Wong, W.L.L.; Jeganathan, R. Association Between Chlamydial Infection With Ectopic and Full-Term Pregnancies: A Case-Control Study. Trop. Med. Infect. Dis. 2022, 7, 285. [Google Scholar] [CrossRef]
- Greenbaum, S.; Greenbaum, G.; Moran-Gilad, J.; Weintraub, A.Y. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am. J. Obstet. Gynecol. 2019, 220, 324–335. [Google Scholar] [CrossRef]
- Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol. 2015, 6, 81. [Google Scholar] [CrossRef]
- Younes, J.A.; Lievens, E.; Hummelen, R.; van der Westen, R.; Reid, G.; Petrova, M.I. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018, 26, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Kovachev, S. Defence factors of vaginal lactobacilli. Crit. Rev. Microbiol. 2018, 44, 31–39. [Google Scholar] [CrossRef]
- Macura, B.; Majewska-Szczepanik, M.; Strzępa, A. Wpływ mikrobioty macicy na zdrowie kobiety i jej potomstwa. Med. Ogólna Nauk. Zdrowiu 2020, 26, 230–239. [Google Scholar] [CrossRef]
- Venter, J.C.; Adams, M.D.; Myers, E.W. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef]
- Sawicka-Grzelak, A.; Milewska, I.; Pietrzak, B.; Bomba-Opon, D.; Mazanowska, N.; Wegrzyn, P.; Mlynarczyk, A.; Mlynarczyk, G. Ocena mikroflory bakteryjnej szyjki macicy u kobiet w ciąży. Perinatol. Neonatol. Ginekol. 2012, 5, 26–29. [Google Scholar]
- Benner, M.; Ferwerda, G.; Joosten, I.; van der Molen, R.G. How uterine microbiota might be responsible for receptive, fertile endometrium. Hum. Reprod. Update 2018, 24, 393–415. [Google Scholar] [CrossRef]
- Quayle, A.J. The Innate and Early Immune Response to Pathogen Challenge in the Female Genital Tract and the Pivotal Role of Epithelial Cells. J. Reprod. Immunol. 2002, 57, 61–79. [Google Scholar] [CrossRef]
- Altmäe, S. Commentary: Uterine microbiota: Residents, tourists, or invaders? Front. Immunol. 2018, 9, 1874. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yang, D.; Xu, C.; Huang, Y.; Qing, Q.; Li, D.; Liao, J.; Ding, Y.; Zhou, J.; et al. Chlamydia trachomatis and mycoplasma infections in tubal pregnancy. Sci. Rep. 2019, 9, 15979. [Google Scholar] [CrossRef]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36466. [Google Scholar] [CrossRef]
- Serrano, M.G.; Parikh, H.I.; Brooks, J.P.; Edwards, D.J.; Arodz, T.J.; Edupuganti, L.; Huang, B.; Girerd, P.H.; Bokhari, Y.A.; Bradley, S.P.; et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med. 2019, 25, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.F.; Zhang, Y.X.; Chen, S.; Liu, X.R.; Zhu, F.F.; Huang, Y.X.; Liu, X.J.; Luo, S.P.; Deng, G.P.; Gao, J. Non-Lactobacillus-Dominated Vaginal Microbiota Is Associated With a Tubal Pregnancy in Symptomatic Chinese Women in the Early Stage of Pregnancy: A Nested Case-Control Study. Front. Cell. Infect. Microbiol. 2021, 11, 659505. [Google Scholar] [CrossRef] [PubMed]
- Teh, H.E.; Pung, C.K.; Arasoo, V.J.T.; Yap, P.S.X. A Landscape View of the Female Genital Tract Microbiome in Healthy Controls and Women With Reproductive Health Conditions Associated With Ectopic Pregnancy. Br. J. Biomed. Sci. 2024, 80, 12098. [Google Scholar] [CrossRef] [PubMed]
- Gerede, A.; Nikolettos, K.; Vavoulidis, E.; Margioula-Siarkou, C.; Petousis, S.; Giourga, M.; Fotinopoulos, P.; Salagianni, M.; Stavros, S.; Dinas, K.; et al. Vaginal Microbiome and Pregnancy Complications: A Review. J. Clin. Med. 2024, 13, 3875. [Google Scholar] [CrossRef]
- Chen, W.; Wei, K.; He, X.; Wei, J.; Yang, L.; Li, L.; Chen, T.; Tan, B. Identification of uterine microbiota in infertile women receiving in vitro fertilization with and without chronic endometritis. Front. Cell Dev. Biol. 2021, 9, 693267. [Google Scholar] [CrossRef]
- Vaduva, C.C.; Sandulescu, M.S.; Tenovici, M.; Siminel, M.A.; Novac, M.B. Results of in vitro fertilization after diagnosis and treatment of chronic endometritis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- McQueen, D.B.; Perfetto, C.O.; Hazard, F.K.; Lathi, R.B. Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertil. Steril. 2015, 104, 927–931. [Google Scholar] [CrossRef]
(a) | ||||||||||
Patient | Age | Obstetric History | Body Weight [kg] | Height [cm] | BMI | Recent Cytology Result | Additional Diseases | Past Surgeries | Drugs Used | Initial BHCG Value [mIU/mL] |
1 | 36 | (1-0-4) | 92 | 163 | 34.63 | Not provided | Obesity | 2019—laparoscopy, excision of right fallopian tube, ectopic pregnancy | Lack | 746.2 |
2 | 36 | (0-0-2) | 58 | 164 | 21.56 | Not provided | Lack | 2021—ectopic pregnancy; 2021—hydrops of fallopian tubes, bilateral removal | Lack | 2727 |
3 | 27 | (0-0-2) | 119 | 180 | 36.73 | Not provided | Obesity | 2022—abrasion after miscarriage | Lack | 3258.0 |
4 | 42 | (0-0-1) | 70 | 171 | 23.94 | Not provided | Hypothyroidism, insulin resistance | Not provided | levothyroxine (100 µg) and metformin (1000 mg XR) | 914.0 |
5 | 35 | (1-0-0) | 94 | 168 | 33.3 | Not provided | Obesity | 2022—abrasion after miscarriage at 16 wp (triploidy) | Lack | 4422.0 |
6 | 30 | (0-0-0) | 56 | 168 | 19.84 | Not provided | Lack | Hysteroscopy—removal of endometrial polyp | Lack | 2493.0 |
7 | 30 | (0-0-0) | 54 | 163 | 20.32 | 2023—result normal | Lack | Cesarean section | Lack | 1604.0 |
8 | 43 | (2-0-0) | 63 | 168 | 22.32 | 2023—result normal | Hashimoto’s disease | Not provided | Lack | 4136.0 |
9 | 41 | (0-0-2) | 56 | 161 | 21.6 | 2023—result normal | Lack | 2010—laparoscopic cholecystectomy | Lack | 991.2 |
(b) | ||||||||||
Patient | Diagnosis | Treatment | ||||||||
1 | Fallopian tube pregnancy on the left side—leprous miscarriage. Status after removal of the right fallopian tube due to ectopic pregnancy. Obesity | Observation. Leprous miscarriage | ||||||||
2 | Ectopic pregnancy of unknown location—pregnancy in the uterine part of the fallopian tube. Obstructive obstetric history. Status after left ectopic fallopian tube pregnancy (2021). Status after laparoscopic removal of both fallopian tubes (2021). Condition after infertility treatment | Two doses of Methotrexate 100 mg IM | ||||||||
3 | Pregnancy III, week 4, left fallopian tube pregnancy. Obesity | One dose of MTX 100 mg IM | ||||||||
4 | Pregnancy II, week 7. Left-sided ectopic fallopian tube pregnancy. Bleeding from the genital tract. Hypothyroidism. Insulin resistance. Status after removal of endometrial polyp | Two doses of MTX 100 mg IM | ||||||||
5 | Pregnancy II, week 10, ectopic right fallopian tube pregnancy. Condition after cesarean section | Two doses of MTX 100 mg IM | ||||||||
6 | Right-sided ectopic fallopian tube pregnancy | Two doses of MTX 100 mg IM | ||||||||
7 | Right-sided fallopian tube pregnancy. Unicornuate uterus—no left adnexa. Post-hemorrhagic anemia | Two doses of MTX 100 mg IM, then bleeding into peritoneal cavity. Laparoscopic excision of right fallopian tube | ||||||||
8 | Pregnancy III, week 6. Right-sided ectopic fallopian tube pregnancy | Two doses of MTX 100 mg IM | ||||||||
9 | Right-sided ectopic fallopian tube pregnancy | Two doses of MTX 100 mg IM |
Microflora | Patient 1. | Patient 2. | Patient 3. | Patient 4. | Patient 5. | |
protective | Lactobacillus spp. H2O2 RV ≥ 5 × 107, S = 2 × 105 | 9 × 107 | 5 × 108 | ↓ RV | 6 × 107 | 4 × 105 |
associated | Lactobacillus spp. RV ≥ 5 × 107, S = 2 × 105 | 9 × 107 | 5 × 108 | ↓ RV | 6 × 107 | 4 × 105 |
associated | Streptococcus spp. RV < 2 × 104 | ↓ RV | ↓ RV | S. agalactiae 4 × 104 | ↓ RV | ↓ RV |
associated | Anaerobic bacteria RV < 2 × 106 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | ↓ RV |
associated | Gardnerella vaginalis RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | ↓ RV |
associated | Candida spp.and other yeast-like fungi RV < 2 × 104 | ↓ RV | Saccharomyces cerevisiae 6 × 106 | Candida albicans 2 × 105 | ↓ RV | ↓ RV |
associated | Enterococcus spp. RV < 2 × 104 | 3 × 105 | 8 × 105 | 4 × 104 | ↓ RV | ↓ RV |
associated | E. coli RV < 2 × 104 | 4 × 105 | ↓ RV | ↓ RV | ↓ RV | ↓ RV |
pathogenic | Staphylococcus aureus RV < 2 × 104 | ↓ RV | 3 × 105 | ↓ RV | ↓ RV | ↓ RV |
associated | Staphylococcus spp. CNS RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | 1 × 105 |
pathogenic | Acinetobacter calcoaceticus RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | ↓ RV |
pathogenic | Chlamydia trachomatis | (−) | (−) | (−) | (−) | (−) |
pathogenic | Ureaplasma spp. | (−) | (−) | (+) | (−) | (−) |
pathogenic | Mycoplasma genitalium | (−) | (−) | (−) | (−) | (−) |
Microflora | Patient 6. | Patient 7. | Patient 8. | Patient 9. | ||
protective | Lactobacillus spp. H2O2 RV ≥ 5 × 107, S = 2 × 105 | 1 × 109 | 7 × 108 | 4 × 107 | ↓ RV | |
associated | Lactobacillus spp. RV ≥ 5 × 107, S = 2 × 105 | 1 × 109 | 7 × 108 | 4 × 107 | ↓ RV | |
associated | Streptococcus spp. RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
associated | Anaerobic bacteria RV < 2 × 106 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
associated | Gardnerella vaginalis RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
associated | Candida spp. and other yeast-like fungi RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
associated | Enterococcus spp. RV < 2 × 104 | 1 × 104 | ↓ RV | ↓ RV | 4 × 107 | |
associated | E. coli RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
pathogenic | Staphylococcus aureus RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | ↓ RV | |
associated | Staphylococcus spp. CNS RV < 2 × 104 | ↓ RV | ↓ RV | ↓ RV | 7 × 105 | |
pathogenic | Acinetobacter calcoaceticus RV < 2 × 104 | 2 × 104 | ↓ RV | ↓ RV | ↓ RV | |
pathogenic | Chlamydia trachomatis | (−) | (−) | (−) | (−) | |
pathogenic | Ureaplasma spp. | (+) | (−) | (+) | (−) | |
pathogenic | Mycoplasma genitalium | (−) | (−) | (−) | (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarek, K.; Wszołek, K.; Szewc, M.; Gałęcka, M.; Mruczyński, A.; Bruszewski, A.; Wierzchowski, M.; Wilczak, M.; Chmaj-Wierzchowska, K. Microbiota of Cervical Canal in Nine Patients Diagnosed with Ectopic Pregnancy: Case Series. Life 2025, 15, 949. https://doi.org/10.3390/life15060949
Bednarek K, Wszołek K, Szewc M, Gałęcka M, Mruczyński A, Bruszewski A, Wierzchowski M, Wilczak M, Chmaj-Wierzchowska K. Microbiota of Cervical Canal in Nine Patients Diagnosed with Ectopic Pregnancy: Case Series. Life. 2025; 15(6):949. https://doi.org/10.3390/life15060949
Chicago/Turabian StyleBednarek, Kinga, Katarzyna Wszołek, Monika Szewc, Mirosława Gałęcka, Adrian Mruczyński, Alan Bruszewski, Marcin Wierzchowski, Maciej Wilczak, and Karolina Chmaj-Wierzchowska. 2025. "Microbiota of Cervical Canal in Nine Patients Diagnosed with Ectopic Pregnancy: Case Series" Life 15, no. 6: 949. https://doi.org/10.3390/life15060949
APA StyleBednarek, K., Wszołek, K., Szewc, M., Gałęcka, M., Mruczyński, A., Bruszewski, A., Wierzchowski, M., Wilczak, M., & Chmaj-Wierzchowska, K. (2025). Microbiota of Cervical Canal in Nine Patients Diagnosed with Ectopic Pregnancy: Case Series. Life, 15(6), 949. https://doi.org/10.3390/life15060949