Comparison of Differentially Expressed Genes in Human and Canine Osteosarcoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Analysis
2.1.1. Differentially Expressed Gene Analysis
2.1.2. STRING and KEGG Pathway Analysis
2.2. Immunohistochemistry
2.2.1. Specimen Preparation and Ethics
2.2.2. Antibody Selection
2.2.3. Immunohistochemistry and Microscopy
2.2.4. H-Scoring and Statistical Analysis
3. Results
3.1. Genetic Analysis
Comparison of Significant DEGs in Canine and Human OSA
3.2. Immunohistochemical Characterisation
3.2.1. H-Score Analysis
3.2.2. ASPN H-Score Analysis
3.2.3. STK3 H-Score Analysis
3.2.4. BAMBI H-Score Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASPN | Asporin/PLAP-1 |
BAMBI | BMP and activin membrane-bound inhibitor |
BMP | Bone morphogenic protein |
CAF | Cancer-associated fibroblast |
CCND1/2 | Cyclin D1/2 |
DEG | Differentially expressed gene |
EMT | Epithelial–mesenchymal transition |
GJA1 | Gap junction protein alpha 1/Connexin 43 |
IHC | Immunohistochemistry |
LEF1 | Lymphoid enhancer-binding factor |
MAP | Methotrexate/doxorubicin/cisplatin combination drug treatment |
MMP | Matrix metalloproteinase |
MSC | Mesenchymal stem cell |
NAPA | Napabucasin |
NQO1 | NAD(P)H; quinone oxidoreductase |
OR | Odds ratio |
OSA | Osteosarcoma |
P21 | Cyclin-dependent kinase inhibitor 1aCDKN1A |
SEM | Standard error of the mean |
SLRPs | Small leucine-rich proteoglycans |
STK3 | Serine-threonine kinase 3/MST2 |
TGF-β | Transforming growth factor-beta |
TME | Tumour microenvironment |
UTR | Untranslated region |
Appendix A
Common UP Genes | Common DOWN Genes | ||
---|---|---|---|
HEY1 | MAMDC2 | NPR3 | LCN2 |
PTBP2 | MXRA5 | CXCL12 | TGFBR3 |
GJA1 | PRSS35 | TGM2 | PPP3CC |
PDGFD | NETO2 | NQO1 | GAMT |
LEF1 | SNRPB2 | ADCY4 | SORT1 |
LAPTM4B | CGNL1 | MGST1 | HP |
BMP2 | ASPN | SH2D4A | PLIN1 |
LRRC15 | GJB2 | RNF123 | LMCD1 |
NPTX2 | EMC7 | CRAT | UROS |
TRPS1 | SATB2 | SIX1 | SLC25A37 |
YES1 | COCH | ABCA8 | HAGH |
PTN | LUM | CES2 | GMPR |
MERTK | NDNF | SLC14A1 | ANKRD2 |
WLS | BAMBI | NEXN | CILP |
EDNRA | CTHRC1 | FBXO30 | TFPI |
HEY2 | RAB31 | EPAS1 | KAT2B |
IGF2BP3 | STK3 | FHL1 | UBXN6 |
DPT | NACA | GADD45A | APOD |
CAT | SLC44A2 | ||
PPP1R3C | FLNC | ||
FYCO1 | SQSTM1 | ||
HSPB6 | TXNIP | ||
CRYAB | NFIX | ||
DMTN | TPM2 | ||
PBLD | CAPN1 |
Appendix B
References
- Fenger, J.M.; London, C.A.; Kisseberth, W.C. Canine osteosarcoma: A naturally occurring disease to inform pediatric oncology. ILAR J. 2014, 55, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog models of naturally occurring cancer. Trends. Mol. Med. 2011, 17, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Rutland, C.S.; Cockcroft, J.M.; Lothion-Roy, J.; Harris, A.E.; Jeyapalan, J.N.; Simpson, S.; Alibhai, A.; Bailey, C.; Ballard-Reisch, A.C.; Rizvanov, A.A.; et al. Immunohistochemical Characterisation of GLUT1, MMP3 and NRF2 in Osteosarcoma. Front. Vet. Sci. 2021, 8, 704598. [Google Scholar] [CrossRef] [PubMed]
- Urlic, I.; Jovicic, M.S.; Ostojic, K.; Ivkovic, A. Cellular and Genetic Background of Osteosarcoma. Curr. Issues Mol. Biol. 2023, 45, 4344–4358. [Google Scholar] [CrossRef]
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma Overview. Rheumatol. Ther. 2017, 4, 25–43. [Google Scholar] [CrossRef]
- Rosenberg, A.E.; Cleton-Jansen, A.M.; De Pinieux, G.; Deyrup, A.T.; Hauben, E.; Squire, J. Conventional osteosarcoma. In WHO Classification of Tumours of Soft Tissue and Bone; IARC: Lyon, France, 2013. [Google Scholar]
- Simpson, S.; Dunning, M.D.; de Brot, S.; Grau-Roma, L.; Mongan, N.P.; Rutland, C.S. Comparative review of human and canine osteosarcoma: Morphology, epidemiology, prognosis, treatment and genetics. Acta Vet. Scand. 2017, 59, 71. [Google Scholar] [CrossRef]
- Simpson, S.; Rizvanov, A.A.; Jeyapalan, J.N.; de Brot, S.; Rutland, C.S. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front. Vet. Sci. 2022, 9, 965391. [Google Scholar] [CrossRef]
- Morello, E.; Martano, M.; Buracco, P. Biology, diagnosis and treatment of canine appendicular osteosarcoma: Similarities and differences with human osteosarcoma. Vet. J. 2011, 189, 268–277. [Google Scholar] [CrossRef]
- Makielski, K.M.; Mills, L.J.; Sarver, A.L.; Henson, M.S.; Spector, L.G.; Naik, S.; Modiano, J.F. Risk Factors for Development of Canine and Human Osteosarcoma: A Comparative Review. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef]
- O’Neill, D.G.; Edmunds, G.L.; Urquhart-Gilmore, J.; Church, D.B.; Rutherford, L.; Smalley, M.J.; Brodbelt, D.C. Dog breeds and conformations predisposed to osteosarcoma in the UK: A VetCompass study. Canine. Med. Genet. 2023, 10, 8. [Google Scholar] [CrossRef]
- Edmunds, G.L.; Smalley, M.J.; Beck, S.; Errington, R.J.; Gould, S.; Winter, H.; Brodbelt, D.C.; O’Neill, D.G. Dog breeds and body conformations with predisposition to osteosarcoma in the UK: A case-control study. Canine Med. Genet. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Pfeiffer, R.; Murphy, G.; Daw, N.C.; Patino-Garcia, A.; Troisi, R.J.; Hoover, R.N.; Douglass, C.; Schuz, J.; Craft, A.W.; et al. Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 2011, 22, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.M.; Khanna, C. Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs. Vet. Sci. 2015, 2, 210–230. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, J.W.V.; de Medeiros Fernandes, T.A.A.; Fernandes, J.V., Jr.; de Azevedo, J.C.V.; Lanza, D.C.F.; Bezerra, C.M.; Andrade, V.S.; de Araujo, J.M.G.; Fernandes, J.V. Biology and pathogenesis of human osteosarcoma. Oncol. Lett. 2020, 19, 1099–1116. [Google Scholar]
- Troisi, R.; Masters, M.N.; Joshipura, K.; Douglass, C.; Cole, B.F.; Hoover, R.N. Perinatal factors, growth and development, and osteosarcoma risk. Br. J. Cancer 2006, 95, 1603–1607. [Google Scholar] [CrossRef]
- Frank, L.A.; Rohrbach, B.W.; Bailey, E.M.; West, J.R.; Oliver, J.W. Steroid hormone concentration profiles in healthy intact and neutered dogs before and after cosyntropin administration. Domest. Anim. Endocrinol. 2003, 24, 43–57. [Google Scholar] [CrossRef]
- Sheng, G.; Gao, Y.; Yang, Y.; Wu, H. Osteosarcoma and Metastasis. Front. Oncol. 2021, 11, 780264. [Google Scholar] [CrossRef]
- Szewczyk, M.; Lechowski, R.; Zabielska, K. What do we know about canine osteosarcoma treatment? Review. Vet. Res. Commun. 2015, 39, 61–67. [Google Scholar] [CrossRef]
- Boerman, I.; Selvarajah, G.T.; Nielen, M.; Kirpensteijn, J. Prognostic factors in canine appendicular osteosarcoma—A meta-analysis. BMC Vet. Res. 2012, 8, 56. [Google Scholar] [CrossRef]
- Misaghi, A.; Goldin, A.; Awad, M.; Kulidjian, A.A. Osteosarcoma: A comprehensive review. SICOT J. 2018, 4, 12. [Google Scholar] [CrossRef]
- Simon, M.A.; Aschliman, M.A.; Thomas, N.; Mankin, H.J. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J. Bone Joint Surg. Am. 1986, 68, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online 2021, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Gorlick, R.; Khanna, C. Osteosarcoma. J. Bone Miner. Res. 2010, 25, 683–691. [Google Scholar] [CrossRef]
- Abarrategi, A.; Tornin, J.; Martinez-Cruzado, L.; Hamilton, A.; Martinez-Campos, E.; Rodrigo, J.P.; Gonzalez, M.V.; Baldini, N.; Garcia-Castro, J.; Rodriguez, R. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem. Cells Int. 2016, 2016, 3631764. [Google Scholar] [CrossRef]
- Kundu, Z.S. Classification, imaging, biopsy and staging of osteosarcoma. Indian J. Orthop. 2014, 48, 238–246. [Google Scholar] [CrossRef]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsuchiya, H. Current and Emerging Targets in Immunotherapy for Osteosarcoma. J. Oncol. 2019, 2019, 7035045. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.L.; Schiller, T.D. Limb-sparing surgery using tantalum metal endoprosthesis in a dog with osteosarcoma of the distal radius. Can. Vet. J. 2010, 51, 497–500. [Google Scholar]
- Straw, R.C.; Withrow, S.J. Limb-sparing surgery versus amputation for dogs with bone tumors. Vet. Clin. N. Am. Small Anim Pract. 1996, 26, 135–143. [Google Scholar] [CrossRef]
- Geller, D.S.; Gorlick, R. Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin. Adv. Hematol. Oncol. 2010, 8, 705–718. [Google Scholar]
- Rougraff, B.T.; Simon, M.A.; Kneisl, J.S.; Greenberg, D.B.; Mankin, H.J. Limb salvage compared with amputation for osteosarcoma of the distal end of the femur. A long-term oncological, functional, and quality-of-life study. JBJS 1994, 76, 649–656. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Yu, X.C.; Lin, J.H.; Hu, Y.C. Guideline for Limb-Salvage Treatment of Osteosarcoma. Orthop. Surg. 2020, 12, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- DeLaney, T.F.; Park, L.; Goldberg, S.I.; Hug, E.B.; Liebsch, N.J.; Munzenrider, J.E.; Suit, H.D. Radiotherapy for local control of osteosarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 492–498. [Google Scholar] [CrossRef]
- Plana, D.; Palmer, A.C.; Sorger, P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022, 12, 606–624. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Hawkins, C.J. Recent and Ongoing Research into Metastatic Osteosarcoma Treatments. Int. J. Mol. Sci. 2022, 23, 3817. [Google Scholar] [CrossRef]
- Jaffe, N.; Puri, A.; Gelderblom, H. Osteosarcoma: Evolution of treatment paradigms. Sarcoma 2013, 2013, 203531. [Google Scholar] [CrossRef]
- Antman, K.H.; Montella, D.; Rosenbaum, C.; Schwen, M. Phase II trial of ifosfamide with mesna in previously treated metastatic sarcoma. Cancer Treat. Rep. 1985, 69, 499–504. [Google Scholar]
- Lilienthal, I.; Herold, N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int. J. Mol. Sci. 2020, 21, 6885. [Google Scholar] [CrossRef] [PubMed]
- MacEwen, E.G.; Kurzman, I.D. Canine osteosarcoma: Amputation and chemoimmunotherapy. Vet. Clin. N. Am. Small Anim. Pract. 1996, 26, 123–133. [Google Scholar] [CrossRef]
- Rathore, R.; Van Tine, B.A. Pathogenesis and Current Treatment of Osteosarcoma: Perspectives for Future Therapies. J. Clin. Med. 2021, 10, 1182. [Google Scholar] [CrossRef]
- Withrow, S.J.; Wilkins, R.M. Cross talk from pets to people: Translational osteosarcoma treatments. ILAR J. 2010, 51, 208–213. [Google Scholar] [CrossRef]
- Romanucci, M.; De Maria, R.; Morello, E.M.; Della Salda, L. Editorial: Canine osteosarcoma as a model in comparative oncology: Advances and perspective. Front. Vet. Sci. 2023, 10, 1141666. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Dunning, M.; de Brot, S.; Alibhai, A.; Bailey, C.; Woodcock, C.L.; Mestas, M.; Akhtar, S.; Jeyapalan, J.N.; Lothion-Roy, J.; et al. Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers 2020, 12, 2405. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Y.; Fu, Y.; Yang, Y.; Zhang, Y.; Chen, Y.; Li, D. Meta-analysis of differentially expressed genes in osteosarcoma based on gene expression data. BMC Med. Genet. 2014, 15, 80. [Google Scholar] [CrossRef]
- Duraiyan, J.; Govindarajan, R.; Kaliyappan, K.; Palanisamy, M. Applications of immunohistochemistry. J. Pharm. Bioallied Sci. 2012, 4, S307–S309. [Google Scholar]
- Allott, E.H.; Cohen, S.M.; Geradts, J.; Sun, X.; Khoury, T.; Bshara, W.; Zirpoli, G.R.; Miller, C.R.; Hwang, H.; Thorne, L.B.; et al. Performance of Three-Biomarker Immunohistochemistry for Intrinsic Breast Cancer Subtyping in the AMBER Consortium. Cancer Epidemiol. Biomark. Prev. 2016, 25 (Suppl. S2), 470–478. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 1 December 2024).
- Poudel, B.H.; Koks, S. The whole transcriptome analysis using FFPE and fresh tissue samples identifies the molecular fingerprint of osteosarcoma. Exp. Biol. Med. 2024, 249, 10161. [Google Scholar] [CrossRef]
- Ho, X.D.; Phung, P.; Q Le, V.; H Nguyen, V.; Reimann, E.; Prans, E.; Kõks, G.; Maasalu, K.; Le, N.T.; H Trinh, L.; et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples. Exp. Biol. Med. 2017, 242, 1802–1811. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
- Brot, S.; Cobb, J.; Alibhai, A.A.; Jackson-Oxley, J.; Haque, M.; Patke, R.; Harris, A.E.; Woodcock, C.L.; Lothion-Roy, J.; Varun, D.; et al. Immunohistochemical Investigation into Protein Expression Patterns of FOXO4, IRF8 and LEF1 in Canine Osteosarcoma. Cancers 2024, 16, 1945. [Google Scholar] [CrossRef]
- Goodenough, D.A.; Paul, D.L. Beyond the gap: Functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol. 2003, 4, 285–294. [Google Scholar] [CrossRef]
- Riquelme, M.A.; Wang, X.; Acosta, F.M.; Zhang, J.; Chavez, J.; Gu, S.; Zhao, P.; Xiong, W.; Zhang, N.; Li, G.; et al. Antibody-activation of connexin hemichannels in bone osteocytes with ATP release suppresses breast cancer and osteosarcoma malignancy. Cell Rep. 2024, 43, 114377. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Sun, B.; Liu, S.; Wang, J. Up-regulation of connexin 43 and gap junctional intercellular communication by Coleusin Factor is associated with growth inhibition in rat osteosarcoma UMR106 cells. Cell Biol. Int. 2007, 31, 1420–1427. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, K.; Yang, Z.; Li, Y.; Ma, X.; Bian, X.; Liu, F.; Li, L.; Liu, X.; Wu, W. Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin 43 SUMOylation. Int. J. Oncol. 2018, 53, 1323–1331. [Google Scholar] [CrossRef]
- King, T.J.; Bertram, J.S. Connexins as targets for cancer chemoprevention and chemotherapy. Biochim. Biophys. Acta 2005, 1719, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Wakshlag, J.J.; Balkman, C.A.; Morgan, S.K.; McEntee, M.C. Evaluation of the protective effects of all-trans-astaxanthin on canine osteosarcoma cell lines. Am. J. Vet. Res. 2010, 71, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Mao, L.; Lei, X.; Luo, C.; Zhang, Y.; Zhong, X.; Yin, Z.; Xu, X.; Li, D.; Zheng, Q. miR-1297 inhibits osteosarcoma cell proliferation and growth by targeting CCND2. Am. J. Cancer Res. 2022, 12, 3464–3478. [Google Scholar]
- Zhang, F.; Zhu, Y.; Fan, G.; Hu, S. MicroRNA-2682-3p inhibits osteosarcoma cell proliferation by targeting CCND2, MMP8 and Myd88. Oncol. Lett. 2018, 16, 3359–3364. [Google Scholar] [CrossRef]
- Heidari, N.; Vosough, M.; Bagherifard, A.; Sami, S.H.; Sarabi, P.A.; Behmanesh, A.; Shams, R. Exploring circulating MiRNA signature for osteosarcoma detection: Bioinformatics-based analyzing and validation. Pathol. Res. Pract. 2024, 263, 155615. [Google Scholar] [CrossRef]
- Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [Google Scholar] [CrossRef]
- Liu, W.; Wang, D.; Liu, L.; Wang, L.; Yan, M. miR-140 inhibits osteosarcoma progression by impairing USP22-mediated LSD1 stabilization and promoting p21 expression. Mol. Ther. Nucleic Acids 2021, 24, 436–448. [Google Scholar] [CrossRef]
- Li, X.; Su, H.; Tang, W.; Shu, S.; Zhao, L.; Sun, J.; Fan, H. Targeting LEF1-mediated epithelial-mesenchymal transition reverses lenvatinib resistance in hepatocellular carcinoma. Investig. New Drugs 2024, 42, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.T.; Park, H.J. Implications of NQO1 in cancer therapy. BMB Rep. 2015, 48, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Terai, K.; Dong, G.Z.; Oh, E.T.; Park, M.T.; Gu, Y.; Song, C.W.; Park, H.J. Cisplatin enhances the anticancer effect of beta-lapachone by upregulating NQO1. Anticancer Drugs 2009, 20, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Zuo, D.; Shogren, K.L.; Zang, J.; Jewison, D.E.; Waletzki, B.E.; Miller, A.L., 2nd; Okuno, S.H.; Cai, Z.; Yaszemski, M.J.; Maran, A. Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells. J. Exp. Clin. Cancer Res. 2018, 37, 244. [Google Scholar] [CrossRef]
- Guo, G.; Gao, Z.; Tong, M.; Zhan, D.; Wang, G.; Wang, Y.; Qin, J. NQO1 is a determinant for cellular sensitivity to anti-tumor agent Napabucasin. Am. J. Cancer Res. 2020, 10, 1442–1454. [Google Scholar]
- Kaseb, H.; Tan, C.; Townsend, J.P.; Costa, J.; Laskin, W.B. Genomic Landscape of Osteosarcoma of Bone in an Older-Aged Patient Population and Analysis of Possible Etiologies Based on Molecular Signature. Genet. Test. Mol. Biomark. 2024, 28, 351–359. [Google Scholar] [CrossRef]
- Kirpensteijn, J.; Kik, M.; Teske, E.; Rutteman, G.R. TP53 gene mutations in canine osteosarcoma. Vet. Surg. 2008, 37, 454–460. [Google Scholar] [CrossRef]
- Meazza, C.; Luksch, R.; Daolio, P.; Podda, M.; Luzzati, A.; Gronchi, A.; Parafioriti, A.; Gandola, L.; Collini, P.; Ferrari, A.; et al. Axial skeletal osteosarcoma: A 25-year monoinstitutional experience in children and adolescents. Med. Oncol. 2014, 31, 875. [Google Scholar] [CrossRef]
- Ognjanovic, S.; Olivier, M.; Bergemann, T.L.; Hainaut, P. Sarcomas in TP53 germline mutation carriers: A review of the IARC TP53 database. Cancer 2012, 118, 1387–1396. [Google Scholar] [CrossRef]
- He, Y.; de Castro, L.F.; Shin, M.H.; Dubois, W.; Yang, H.H.; Jiang, S.; Mishra, P.J.; Ren, L.; Gou, H.; Lal, A.; et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells. Stem Cells 2015, 33, 1304–1319. [Google Scholar] [CrossRef]
- Thoenen, E.; Curl, A.; Iwakuma, T. TP53 in bone and soft tissue sarcomas. Pharmacol. Ther. 2019, 202, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Velletri, T.; Xie, N.; Wang, Y.; Huang, Y.; Yang, Q.; Chen, X.; Chen, Q.; Shou, P.; Gan, Y.; Cao, G.; et al. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis. 2016, 7, e2015. [Google Scholar] [CrossRef] [PubMed]
- Merline, R.; Schaefer, R.M.; Schaefer, L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J. Cell Commun. Signal 2009, 3, 323–335. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Liu, S.Y.; Xu, S.Y.; Ni, G.X. Asporin and osteoarthritis. Osteoarthr. Cartil. 2015, 23, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Kizawa, H.; Kou, I.; Iida, A.; Sudo, A.; Miyamoto, Y.; Fukuda, A.; Mabuchi, A.; Kotani, A.; Kawakami, A.; Yamamoto, S.; et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat. Genet. 2005, 37, 138–144. [Google Scholar] [CrossRef]
- Gruber, H.E.; Ingram, J.A.; Hoelscher, G.L.; Zinchenko, N.; Hanley, E.N., Jr.; Sun, Y. Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc. Arthritis Res. Ther. 2009, 11, R47. [Google Scholar] [CrossRef]
- Nakajima, M.; Kizawa, H.; Saitoh, M.; Kou, I.; Miyazono, K.; Ikegawa, S. Mechanisms for asporin function and regulation in articular cartilage. J. Biol. Chem. 2007, 282, 32185–32192. [Google Scholar] [CrossRef]
- Ramos-Vara, J.A.; Kiupel, M.; Baszler, T.; Bliven, L.; Brodersen, B.; Chelack, B.; Czub, S.; Del Piero, F.; Dial, S.; Ehrhart, E.J.; et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2008, 20, 393–413. [Google Scholar] [CrossRef]
- Lall, S.P.; Alsafwani, Z.W.; Batra, S.K.; Seshacharyulu, P. ASPORIN: A root of the matter in tumors and their host environment. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189029. [Google Scholar] [CrossRef]
- Zhan, S.; Li, J.; Ge, W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front. Oncol. 2019, 9, 948. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Chen, L.; Sun, X.; Zhao, Y.; Guo, Q.; Zhu, S.; Li, P.; Min, L.; Zhang, S. Cytoplasmic Asporin promotes cell migration by regulating TGF-beta/Smad2/3 pathway and indicates a poor prognosis in colorectal cancer. Cell Death Dis. 2019, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Huang, G.M. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J. Bone Oncol. 2023, 43, 100513. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Takagane, K.; Konno, T.; Itoh, G.; Kuriyama, S.; Yanagihara, K.; Yashiro, M.; Yamada, S.; Murakami, S.; Tanaka, M. Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Sci. 2021, 112, 1251–1261. [Google Scholar] [CrossRef]
- Satoyoshi, R.; Kuriyama, S.; Aiba, N.; Yashiro, M.; Tanaka, M. Asporin activates coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. Oncogene 2015, 34, 650–660. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Han, Y.; Bi, J.; Wu, Y.; Xiang, D.; Zhang, Y.; Bi, W.; Xu, M.; Li, J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024, 907, 148286. [Google Scholar] [CrossRef]
- Dorafshan, S.; Razmi, M.; Safaei, S.; Gentilin, E.; Madjd, Z.; Ghods, R. Periostin: Biology and function in cancer. Cancer Cell Int. 2022, 22, 315. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Zhang, L.; Feng, Y.; Lv, J.; Wu, Z.; Yang, R.; Wu, T.; Li, J.; Zhou, R.; et al. Periostin promotes the proliferation and metastasis of osteosarcoma by increasing cell survival and activates the PI3K/Akt pathway. Cancer Cell Int. 2022, 22, 34. [Google Scholar] [CrossRef]
- Tasheva, E.S.; Klocke, B.; Conrad, G.W. Analysis of transcriptional regulation of the small leucine rich proteoglycans. Mol. Vis. 2004, 10, 758–772. [Google Scholar] [PubMed]
- Varelas, X.; Miller, B.W.; Sopko, R.; Song, S.; Gregorieff, A.; Fellouse, F.A.; Sakuma, R.; Pawson, T.; Hunziker, W.; McNeill, H.; et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 2010, 18, 579–591. [Google Scholar] [CrossRef]
- Morice, S.; Danieau, G.; Redini, F.; Brounais-Le-Royer, B.; Verrecchia, F. Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Cancers 2020, 12, 645. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Tan, H.; Li, Y.; Nguyen, T.M.; Dhungana, Y.; Guy, C.; Vogel, P.; Neale, G.; Rankin, S.; et al. Hippo Kinases Mst1 and Mst2 Sense and Amplify IL-2R-STAT5 Signaling in Regulatory T Cells to Establish Stable Regulatory Activity. Immunity 2018, 49, 899–914 e896. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, F.; Zhang, Z.G.; Yang, X.M.; Zhang, R. STK3 Suppresses Ovarian Cancer Progression by Activating NF-kappaB Signaling to Recruit CD8(+) T-Cells. J. Immunol. Res. 2020, 2020, 7263602. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Mi, B.; Xiong, Y.; Wang, R.; Liu, T.; Hu, L.; Yan, C.; Zeng, R.; Lin, J.; Fu, H.; et al. Bioactive nanocomposite hydrogel enhances postoperative immunotherapy and bone reconstruction for osteosarcoma treatment. Biomaterials 2025, 312, 122714. [Google Scholar] [CrossRef]
- Schirmer, A.U.; Driver, L.M.; Zhao, M.T.; Wells, C.I.; Pickett, J.E.; O’Bryne, S.N.; Eduful, B.J.; Yang, X.; Howard, L.; You, S.; et al. Non-canonical role of Hippo tumor suppressor serine/threonine kinase 3 STK3 in prostate cancer. Mol. Ther. 2022, 30, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Schirmer, A.U.; Loh, C.; Drewry, D.H.; Macias, E. Targeting the Divergent Roles of STK3 Inhibits Breast Cancer Cell Growth and Opposes Doxorubicin-Induced Cardiotoxicity In Vitro. Cancers 2023, 15, 2817. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Paula Zen Petisco Fiore, A.; Guardia, G.D.A.; Tomasin, R.; Azevedo Reis Teixeira, A.; Giordano, R.J.; Schechtman, D.; Pagano, M.; Galante, P.A.F.; Bruni-Cardoso, A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024, 43, 2938–2950. [Google Scholar] [CrossRef]
- Cho, Y.K.; Son, Y.; Saha, A.; Kim, D.; Choi, C.; Kim, M.; Park, J.H.; Im, H.; Han, J.; Kim, K.; et al. STK3/STK4 signalling in adipocytes regulates mitophagy and energy expenditure. Nat. Metab. 2021, 3, 428–441. [Google Scholar] [CrossRef]
- Ardestani, A.; Lupse, B.; Maedler, K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends. Endocrinol. Metab. 2018, 29, 492–509. [Google Scholar] [CrossRef]
- Sekiya, T.; Oda, T.; Matsuura, K.; Akiyama, T. Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling. Biochem. Biophys. Res. Commun. 2004, 320, 680–684. [Google Scholar] [CrossRef]
- Zhou, L.; Park, J.; Jang, K.Y.; Park, H.S.; Wagle, S.; Yang, K.H.; Lee, K.B.; Park, B.H.; Kim, J.R. The overexpression of BAMBI and its involvement in the growth and invasion of human osteosarcoma cells. Oncol. Rep. 2013, 30, 1315–1322. [Google Scholar] [CrossRef]
- Qi, F.; Shen, W.; Wei, X.; Cheng, Y.; Xu, F.; Zheng, Y.; Li, L.; Qin, C.; Li, X. CSNK1D-mediated phosphorylation of HNRNPA2B1 induces miR-25-3p/miR-93-5p maturation to promote prostate cancer cell proliferation and migration through m(6)A-dependent manner. Cell Mol. Life Sci. 2023, 80, 156. [Google Scholar] [CrossRef] [PubMed]
- Ho, X.D.; Nguyen, H.G.; Trinh, L.H.; Reimann, E.; Prans, E.; Koks, G.; Maasalu, K.; Le, V.Q.; Nguyen, V.H.; Le, N.T.N.; et al. Analysis of the Expression of Repetitive DNA Elements in Osteosarcoma. Front. Genet. 2017, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Reimann, E.; Koks, S.; Ho, X.D.; Maasalu, K.; Martson, A. Whole exome sequencing of a single osteosarcoma case--integrative analysis with whole transcriptome RNA-seq data. Hum. Genom. 2014, 8, 20. [Google Scholar]
Nuclear | Cytoplasmic | ||||
Absent | Low | Moderate | High | ||
[ASPN, n = 18] | |||||
Absent | 2 (11.11%) | 1 (5.56%) | - | - | |
Low | - | 14 (77.78%) | - | - | |
Moderate | - | - | - | - | |
High | - | - | - | 1 (5.56%) | |
[STK3, n = 19] | |||||
Absent | - | 3 (15.79%) | 2 (10.53%) | 1 (5.26%) | |
Low | 1 (5.26%) | 4 (21.05%) | 6 (31.58%) | 2 (10.53%) | |
Moderate | - | - | - | - | |
High | - | - | - | - | |
[BAMBI, n = 18] | |||||
Absent | - | 2 (11.11%) | 3 (16.67%) | - | |
Low | - | 1 (5.56%) | 7 (38.89%) | 5 (27.78%) | |
Moderate | - | - | - | - | |
High | - | - | - | - |
Protein (No. of Cases) | Staining Distribution (Diffuse/Multifocal/Focal) | Stromal Staining (% of Slides) | Cellular Location | H-Score | |
---|---|---|---|---|---|
Mean ± SEM (2 s.f) | Range (Min–Max) | ||||
ASPN (n = 18) | Diffuse | 86.67% | Nuclear Cytoplasmic | 10.56 ± 3.30 13.56 ± 3.50 | 0–165 0–155 |
STK3 (n = 19) | Diffuse | 84.21% | Nuclear Cytoplasmic | 4 ± 1.29 38.05 ± 6.69 | 0–17 0–102 |
BAMBI (n = 18) | Diffuse | 82.22% | Nuclear Cytoplasmic | 7.56 ± 2.31 72.78 ± 8.35 | 0–35 13–144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson-Oxley, J.; Alibhai, A.A.; Guerin, J.; Thompson, R.; Patke, R.; Harris, A.E.; Woodcock, C.L.; Varun, D.; Haque, M.; Modikoane, T.K.; et al. Comparison of Differentially Expressed Genes in Human and Canine Osteosarcoma. Life 2025, 15, 951. https://doi.org/10.3390/life15060951
Jackson-Oxley J, Alibhai AA, Guerin J, Thompson R, Patke R, Harris AE, Woodcock CL, Varun D, Haque M, Modikoane TK, et al. Comparison of Differentially Expressed Genes in Human and Canine Osteosarcoma. Life. 2025; 15(6):951. https://doi.org/10.3390/life15060951
Chicago/Turabian StyleJackson-Oxley, Jorja, Aziza A. Alibhai, Jack Guerin, Rachel Thompson, Rodhan Patke, Anna E. Harris, Corinne L. Woodcock, Dhruvika Varun, Maria Haque, Tinyiko K. Modikoane, and et al. 2025. "Comparison of Differentially Expressed Genes in Human and Canine Osteosarcoma" Life 15, no. 6: 951. https://doi.org/10.3390/life15060951
APA StyleJackson-Oxley, J., Alibhai, A. A., Guerin, J., Thompson, R., Patke, R., Harris, A. E., Woodcock, C. L., Varun, D., Haque, M., Modikoane, T. K., Kumari, A. A., Lothion-Roy, J., Brot, S. d., Dunning, M. D., Jeyapalan, J. N., Mongan, N. P., & Rutland, C. S. (2025). Comparison of Differentially Expressed Genes in Human and Canine Osteosarcoma. Life, 15(6), 951. https://doi.org/10.3390/life15060951