It Is Useless to Resist: Biofilms in Metalworking Fluid Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Species
2.2. Biocides
2.3. Metalworking Fluids
2.4. Mini “Microbial Evolution and Growth Arena” (MEGA) Experiments
2.5. Laboratory Biofilm Assays
2.6. Assessment of Population Dynamics by qPCR and Metagenomics in MWF Sediments
2.7. Alkanolamine Assays
3. Results
3.1. Adaptation to Toxic MWF Ingredients
3.1.1. Bactericide Toxicity
3.1.2. MWF Toxicity
3.2. Taxonomy Changes in MWF Sediments
MWF M | Start | UH 2w | UH 4w | LH 2w | LH 4w | SN 4w |
---|---|---|---|---|---|---|
Jaccard index | n.a. | 97.3 | 95.5 | 95.1 | 74.5 | 59.9 |
Total genera | 62 | 61 | 61 | 61 | 61 | 33 |
Gammaproteobacteria [%] | 57.4 | 55.3 | 49.7 | 46.1 | 31.6 | 39.9 |
Actinomycetes [%] | 14.5 | 11.0 | 9.6 | 13.7 | 14.6 | 0.7 |
Alphaproteobacteria [%] | 11.6 | 19.2 | 23.0 | 23.0 | 34.3 | 24.6 |
Betaproteobacteria [%] | 7.6 | 4.5 | 5.1 | 4.5 | 4.8 | 26.2 |
Clostridia [%] | 0.7 | 1.3 | 1.2 | 1.2 | 1.3 | 0.0 |
Methanobrevibacter [%] | 1.7 | 2.1 | 2.9 | 4.4 | 5.3 | 0.4 |
MWF S | Start | UH 2w | UH 4w | LH 2w | LH 4w | SN 4w |
Jaccard index | n.a. | 84.9 | 69.8 | 39.1 | 20.6 | 29.8 |
Total genera | 62 | 40 | 41 | 41 | 30 | 39 |
Gammaproteobacteria [%] | 57.4 | 51.2 | 37.5 | 18.6 | 5.5 | 18.9 |
Actinomycetes [%] | 14.5 | 27.3 | 33.1 | 31.8 | 32.8 | 9.0 |
Alphaproteobacteria [%] | 11.6 | 12.5 | 17.0 | 20.9 | 22.1 | 50.0 |
Betaproteobacteria [%] | 7.6 | 0.8 | 4.7 | 3.8 | 3.9 | 15.2 |
Clostridia [%] | 0.7 | 2.1 | 1.9 | 10.7 | 10.6 | 1.4 |
Methanobrevibacter [%] | 1.7 | 1.0 | 1.1 | 6.2 | 12.9 | 0.3 |
3.3. Functionality of Biofilms in MWF Systems: Alkanolamine Assays
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Nadell, C.D.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 2017, 8, 327. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Schultze, L.B.; Maldonado, A.; Lussi, A.; Sculean, A.; Eick, S. The impact of the pH value on biofilm formation. Monogr. Oral. Sci. 2021, 29, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Padgett-Pagliai, K.A.; Pagliai, F.A.; da Silva, D.R.; Gardner, C.L.; Lorca, G.L.; Gonzalez, C.F. Osmotic stress induces long-term biofilm survival in Liberibacter crescens. BMC Microbiol. 2022, 22, 52. [Google Scholar] [CrossRef]
- Shaikh, S.; Rashid, N.; Onwusogh, U.; McKay, G.; Mackey, H.R. Effect of nutrients deficiency on biofilm formation and single cell protein production with a purple non-sulphur bacteria enriched culture. Biofilm 2023, 5, 100098. [Google Scholar] [CrossRef]
- Passman, F.J.; Küenzi, P. Microbiology in metalworking fluids. Tribol. Transact. 2020, 6, 1147–1171. [Google Scholar] [CrossRef]
- Canter, N.M. The chemistry of metalworking fluids. In Metalworking Fluids, 3rd ed.; Byers, J.P., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 143–169. [Google Scholar] [CrossRef]
- Di Martino, P. Ways to improve biocides for metalworking fluid. AIMS Microbiol. 2021, 7, 13–27. [Google Scholar] [CrossRef]
- Canter, N.M. Antimicrobial pesticides (microbicides): Additives needed to extend the use of metalworking fluids. Tribol. Lubr. Technol. 2023, 14–24. Available online: http://digitaleditions.walsworthprintgroup.com/publication/?m=5716&i=799455&p=16&ver=html5 (accessed on 28 April 2025).
- Di Maiuta, N.; Rüfenacht, A.; Küenzi, P. Assessment of bacteria and archaea in metalworking fluids using massive parallel 16S rRNA gene tag sequencing. Lett. Appl. Microbiol. 2017, 65, 266–273. [Google Scholar] [CrossRef]
- Elansky, S.N.; Chudinova, E.M.; Elansky, A.S.; Kah, M.O.; Sanzhieva, D.A.; Mukabenova, B.A.; Dedov, A.G. Microorganisms in spent water-miscible metalworking fluids as a resource of strains for their disposal. J. Clean. Prod. 2022, 350, 131438. [Google Scholar] [CrossRef]
- Ruiz, C.; von Känel, G.; Burkard, S.; Küenzi, P. Fusarium spp. in metalworking fluid systems: Companions forever. Pathogens 2024, 13, 990. [Google Scholar] [CrossRef]
- The Ultimate Guide to Central Coolant Filtration Systems. Available online: https://www.edjetech.com/blog/guide-to-central-coolant-filtration-systems (accessed on 28 April 2025).
- Flemming, H.C. Biofouling and me: My Stockholm syndrome with biofilms. Water Res. 2020, 173, 115576. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C. Microbial biofouling: Unsolved problems, insufficient approaches, and possible solutions. In Biofilm Highlights; Flemming, H.C., Wingender, J., Szewzyk, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 81–109. [Google Scholar] [CrossRef]
- Qi, P.; Zeng, Y.; Zhan, D.; Sun, Y.; Wang, P. The biofilm-metal interface: A hotspot for microbiologically influenced corrosion. Cell Rep. 2025, 6, 102500. [Google Scholar] [CrossRef]
- STLE MWF Education & Training Committee. Metalworking fluid basics. Tribol. Lubr. Technol. 2023, 54–61. Available online: http://digitaleditions.walsworthprintgroup.com/publication/?m=5716&i=783486&p=56&ver=html5 (accessed on 28 April 2025).
- Trafny, E.A.; Lewandowski, R.; Zawistowska-Marciniak, I.; Sterpinska, M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J. Microbiol. Biotechnol. 2013, 29, 1635–1643. [Google Scholar] [CrossRef]
- Trafny, E.A.; Lewandowski, R.; Kozlowska, K.; Zawinstowska-Marciniak, I.; Stepinska, M. Microbial contamination and biofilms on machines of metal industry using metalworking fluids with or without biocides. Int. Biodeterior. Biodegrad. 2015, 99, 31–38. [Google Scholar] [CrossRef]
- Singh, S.; Adapa, L.M.; Hankins, N. Influences of ammonium and phosphate stimulation on metalworking fluid biofilm reactor development and performance. New Biotechnol. 2017, 39, 240–246. [Google Scholar] [CrossRef]
- Özcan, S.S.; Dieser, M.; Parker, A.; Balasubramanian, N.; Foreman, C.M. Quorum sensing inhibition as a promising method to control biofilm growth in metalworking fluids. J. Ind. Microbiol. Biotechnol. 2019, 46, 1103–1111. [Google Scholar] [CrossRef]
- McGlennen, M.; Dieser, M.; Foreman, C.M.; Warnat, S. Monitoring biofilm growth and dispersal in real-time with impedance biosensors. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad022. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. OJEU. 2012. Available online: https://eur-lex.europa.eu/eli/reg/2012/528/oj (accessed on 28 April 2025).
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef] [PubMed]
- Minnullina, L.; Kostennikova, Z.; Evtugin, V.; Akosah, Y.; Sharipova, M.; Mardanova, A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int. Microbiol. 2022, 25, 111–122. [Google Scholar] [CrossRef]
- Mirghani, R.; Saba, T.; Khaliq, H.; Mitchell, J.; Do, L.; Chambi, L.; Diaz, K.; Kennedy, T.; Alkassab, K.; Huynh, T.; et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022, 8, 239–277. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Aranjani, J.M.; Valappil, V.K.; Nair, G. Unveiling the potential bacteriophage therapy: A systematic review. Future Sci. OA 2025, 11, 2468114. [Google Scholar] [CrossRef]
- Baym, M.; Lieberman, T.D.; Kelsic, E.D.; Chait, R.; Gross, R.; Yelin, I.; Kishony, R. Spatiotemporal microbial evolution on antibiotic landscapes. Science 2016, 353, 1147–1151. [Google Scholar] [CrossRef]
- Piccardi, P.; Vessman, B.; Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. USA 2019, 116, 15979–15984. [Google Scholar] [CrossRef]
- Baidin, V.; Owens, T.W.; Lazarus, M.B.; Kahne, D. Simple secondary amines inhibit growth of gram-negative bacteria through highly selective binding to phenylalanyl-tRNA synthetase. J. Am. Chem. Soc. 2021, 143, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Brutto, P. Amines 101 for Metalworking Fluids. Available online: https://www.stle.org/Shared_Content/End_Users/Metalworking_Fluids/Microbiology_Articles_Full/Amines_101_for_Metalworking_Fluids.aspx (accessed on 28 April 2025).
- Hammarlund, S.P.; Harcombe, W.R. Refining the stress gradient hypothesis in a microbial community. Proc. Natl. Acad. Sci. USA 2019, 116, 15760–15762. [Google Scholar] [CrossRef]
- Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. [Google Scholar] [CrossRef]
- Yue, J.C.; Clayton, M.K. A similarity measure based on species proportions. Commun. Stat. Theory Methods 2005, 34, 2123–2131. [Google Scholar] [CrossRef]
- Ghoul, M.; Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 2016, 24, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.G. Biofilm dispersion. In Biofilm Highlights; Flemming, H.C., Wingender, J., Szewzyk, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–28. [Google Scholar] [CrossRef]
- Hammermann, J. The Importance of Cutting Fluid Filtration in Metalworking: Why Do You Need It? Available online: https://machining.amiad.com/blog/the-importance-of-cutting-fluid-filtration-in-metalworking-why-do-you-need-it/ (accessed on 28 April 2025).
Time [min] | Phase A [%] | Phase B [%] |
---|---|---|
0.00 | 95 | 5 |
5.00 | 70 | 30 |
10.00 | 70 | 30 |
20.00 | 50 | 50 |
22.00 | 95 | 5 |
25.00 | 95 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Känel, G.; Steinmann, L.Y.; Mauz, B.; Lukesch, R.; Küenzi, P. It Is Useless to Resist: Biofilms in Metalworking Fluid Systems. Life 2025, 15, 890. https://doi.org/10.3390/life15060890
von Känel G, Steinmann LY, Mauz B, Lukesch R, Küenzi P. It Is Useless to Resist: Biofilms in Metalworking Fluid Systems. Life. 2025; 15(6):890. https://doi.org/10.3390/life15060890
Chicago/Turabian Stylevon Känel, Giulia, Lara Ylenia Steinmann, Britta Mauz, Robert Lukesch, and Peter Küenzi. 2025. "It Is Useless to Resist: Biofilms in Metalworking Fluid Systems" Life 15, no. 6: 890. https://doi.org/10.3390/life15060890
APA Stylevon Känel, G., Steinmann, L. Y., Mauz, B., Lukesch, R., & Küenzi, P. (2025). It Is Useless to Resist: Biofilms in Metalworking Fluid Systems. Life, 15(6), 890. https://doi.org/10.3390/life15060890