Biochemical and Physiological Profiles of Nakaseomyces glabratus Isolates from Bulgarian Clinical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Yeasts
2.2. Yeast Identification
2.3. Genomic DNA Extraction and Amplification and Sequencing of ITS1+2 Region
2.4. pH Measurement
2.5. Enzymatic Activities
2.5.1. Lipase Activity
2.5.2. Esterase Activity
2.5.3. Protease Activity
2.5.4. Assimilation of Soluble Starch
2.5.5. Arbutin Test
2.6. Biofilm Formation and EPS Sythesis–Crystal Violet Assay
2.6.1. Crystal Violet Assay
2.6.2. Exoplysaccharide (EPS) Synthesys
2.6.3. Isolation of EPS
2.7. Antifungal Activity Against C. parapsilosis ATCC 22019
2.7.1. Culturing of Yeast Isolates
2.7.2. Preparation of Inoculum
2.7.3. Application of Etest Strips
2.7.4. Determination of Minimal Inhibitory Concentrations (MICs) and Susceptibility
2.7.5. Quality Control
3. Results
3.1. pH Range for Growth
3.2. Enzyme Secretion
3.2.1. Enzyme Activities—Lipase, Esterase, Protease, Amilase, Β-Glucosidase
3.2.2. Assimilation of Arbutin
3.3. Biofilm Formation
EPS Synthesis
3.4. Antifungal Activity
3.5. Antifungal Drug Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mroczyńska, M.; Brillowska-Dąbrowska, A. Virulence of Clinical Candida Isolates. Pathogens 2021, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Odoj, K.; Garlasco, J.; Pezzani, M.D.; Magnabosco, C.; Ortiz, D.; Manco, F.; Galia, L.; Foster, S.K.; Arieti, F.; Tacconelli, E. Tracking Candidemia Trends and Antifungal Resistance Patterns across Europe: An In-Depth Analysis of Surveillance Systems and Surveillance Studies. J. Fungi 2024, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Javidnia, J.; Faeli, L.; Moslemi, A.; Hedayati, M.; Haghani, I.; Aghili, S.; Moazeni, M.; Badiee, P.; Roudbari, M.; et al. Molecular Epidemiology and Antifungal Susceptibility Profile in Nakaseomyces glabrata Species Complex: A 5-Year Countrywide Study. J. Clin. Lab. Anal. 2024, 38, e25042. [Google Scholar] [CrossRef] [PubMed]
- Roetzer, A.; Gabaldón, T.; Schüller, C. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: Important adaptations for an opportunistic pathogen. FEMS Microbiol. Lett. 2011, 314, 1–9. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; De Montigny, J.; Marck, C.; Neuvéglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef]
- Carreté, E.; Ksiezopolska, C.; Pegueroles, C.; Gómez-Molero, E.; Saus, E.; Iraola-Guzmán, S.; Loska, D.; Bader, O.; Fairhead, C.; Gabaldón, T. Patterns of genomic variation in the opportunistic pathogen Candida glabrata suggest the existence of mating and a secondary association with humans. Curr. Biol. 2018, 28, 15–27.e7. [Google Scholar] [CrossRef]
- Xu, Z.; Green, B.; Benoit, N.; Sobel, J.D.; Schatz, M.C.; Wheelan, S.; Cormack, B.P. Cell wall protein variation, break-induced replication, and subtelomere dynamics in Candida glabrata. Mol. Microbiol. 2021, 116, 260–276. [Google Scholar] [CrossRef]
- Megri, Y.; Arastehfar, A.; Boekhout, T.; Daneshnia, F.; Hörtnagl, C.; Sartori, B.; Hafez, A.; Pan, W.; Lass-Flörl, C.; Hamrioui, B. Candida tropicalis is the most prevalent yeast species causing candidemia in Algeria: The urgent need for antifungal stewardship and infection control measures. Antimicrob. Resist. Infect. Control 2020, 1, 50. [Google Scholar] [CrossRef]
- Carreté, L.; Ksiezopolska, E.; Gómez-Molero, E.; Angoulvant, A.; Bader, O.; Fairhead, C.; Gabaldón, T. Genome Comparisons of Candida glabrata Serial Clinical Isolates Reveal Patterns of Genetic Variation in Infecting Clonal Populations. Front. Microbiol. 2019, 10, 112. [Google Scholar] [CrossRef]
- Schmidt, P.; Walker, J.; Selway, L.; Stead, D.; Yin, Z.; Enjalbert, B.; Weig, M.; Brown, A.J. Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics 2008, 8, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.; Birse, C.; Zhou, S.; Matson, R.; Liu, H. DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 2001, 276, 48988–48990. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Borelli, C.; Korting, H.C.; Hube, B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Tyski, S.; Tylewska, S.; Hryniewicz, W.; Jeljaszewicz, J. Induction of human neutrophils chemotaxis by staphylococcal lipase. Zentbl. Bakteriol. Mikrobiol. Hyg. 1987, 265, 360–368. [Google Scholar]
- Longshaw, C.M.; Farrell, A.M.; Wright, J.D.; Holland, K.T. Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: Comparison of sequence with those of other staphylococcal lipases. Microbiology 2000, 146, 1419–1427. [Google Scholar] [CrossRef]
- Miskin, J.E.; Farrell, A.M.; Cunliffe, W.J.; Holland, K.T. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology 1997, 143, 1745–1755. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Mirbod, F.; Filler, S.G.; Banno, Y.; Cole, G.T.; Kitajima, Y.; Edwards, J.E., Jr.; Nozawa, Y.; Ghannoum, M.A. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect. Immun. 1995, 63, 1993–1998. [Google Scholar] [CrossRef]
- Rudek, W. Esterase activity in Candida species. J. Clin. Microbiol. 1978, 8, 756–769. [Google Scholar] [CrossRef]
- Slifkin, M. Tween 80 opacity test responses of various Candida species. J. Clin. Microbiol. 2000, 38, 4626–4628. [Google Scholar] [CrossRef]
- Nouraei, H.; Pakshir, K.; Shahrabadi, Z.; Zomorodian, K. High detection of virulence factors by Candida species isolated from bloodstream of patients with candidemia. Microb. Pathog. 2020, 149, 104574. [Google Scholar] [CrossRef]
- Modrzewska, B.; Kurnatowski, P.; Khalid, K. Comparison of proteolytic activity of Candida sp. strains depending on their origin. J. Mycol. Méd. 2016, 26, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Gupta H‡a Gupta P‡a Kairamkondaa, M.; Poluri, K. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv. 2022, 12, 17570. [Google Scholar]
- Kojic, E.M.; Darouiche, R.O. Candida infections of medical devices. Clin. Microbiol. Rev. 2004, 17, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; Williams, C. The clinical importance of fungal biofilms. Adv. Appl. Microbiol. 2013, 84, 27–83. [Google Scholar]
- Biswas, S.K.; Chaffin, W.L. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr. Microbiol. 2005, 51, 100–104. [Google Scholar] [CrossRef]
- Ramage, G.; Rajendran, R.; Sherry, L.; Williams, C. Fungal biofilm resistance. Int. J. Microbiol. 2012, 2012, 528521. [Google Scholar] [CrossRef]
- Mathe, L.; Van Dijck, P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 2013, 59, 251–264. [Google Scholar] [CrossRef]
- Nett, J.; Lincoln, L.; Marchillo, K.; Andes, D. Beta-1,3 glucan as a test for central venous catheter biofilm infection. J. Infect. Dis. 2007, 195, 1705–1712. [Google Scholar] [CrossRef]
- Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.; Hoff, B.; VanHandel, M.; Andes, D. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents C 2007, 51, 510–520. [Google Scholar] [CrossRef]
- Silva, S.; Henriques, M.; Martins, A.; Oliveira, R.; Williams, D.; Azeredo, J. Biofilms of non-Candida albicans Candida species: Quantification, structure and matrix composition. Med. Mycol. 2009, 47, 681–689. [Google Scholar] [CrossRef]
- Bonassoli, L.A.; Bertoli, M.; Svidzinski, T.I.E. High frequency of Candida parapsilosis on the hands of healthy hosts. J. Hosp. Infect. 2005, 59, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cerdeira, C.; Pinto-Almazán, R.; Saunte, D.M.L.; Hay, R.; Szepietowski, J.C.; Moreno-Coutiño, G.; Skerlev, M.; Prohic, A.; Martínez-Herrera, E. Virulence and resistance factors of Nakaseomyces glabratus (formerly known as Candida glabrata) in Europe: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2025, 39, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, a Taxonomic Study, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 87–110. [Google Scholar]
- Gerrits van den Ende, A.H.G.; de Hoog, S.G. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud. Mycol. 1999, 43, 151–162. [Google Scholar]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J.J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In PCR Protocols: A Guide to Methods and Application; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 312–322. [Google Scholar]
- Atlas, R.M.; Atlas, R.M. Handbook of Microbiological Media, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Strauss, M.L.A.; Jolly, N.P.; Lambrechts, M.G.; van Resemburg, P. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 2001, 91, 182–190. [Google Scholar] [CrossRef]
- Caridi, A.; Pulvirenti, A.; Restuccia, C.; Sidari, R. Screening for yeasts able to hydrolyse arbutin in the presence of glucose or ethanol. Ann. Microbiol. 2005, 55, 43–46. [Google Scholar]
- Gulati, M.; Lohse, M.B.; Ennis, C.L.; Gonzalez, R.E.; Perry, A.M.; Bapat, P.; Arevalo, A.V.; Rodriguez, D.L.; Nobile, C.J. In Vitro Culturing and Screening of Candida albicans Biofilms. Curr. Protoc. Microbiol. 2018, 50, e60. [Google Scholar] [CrossRef]
- Rusinova-Videva, S.; Ognyanov, M.; Georgiev, Y.; Kambourova, M.; Adamov, A.; Krasteva, V. Production and chemical characterization of exopolysaccharides by Antarctic yeasts Vishniacozyma victoriae and Tremellomycetes sp. Appl. Sci. 2022, 12, 1805. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Blaut, M.; Braune, A.; Wunderlich, S.; Sauer, P.; Schneider, H.; Glatt, H. Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Food Chem. Toxicol. 2006, 44, 1940–1947. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Cai, L.; Tang, L.; Liu, L. Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Front. Microbiol. 2015, 6, 843. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Khan, J.; Kaur, M.; Vanega, J.D.T.; Patiño, O.A.A.; Ramasubramanian, A.K.; Kao, K.C. CgSTE11 mediates cross tolerance to multiple environmental stressors in Candida glabrata. Sci. Rep. 2019, 9, 17036. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, B.; Bahaaldden, N.; Mahammad, S. Estimation of esterase activity, adhesion ability, in various Candida species. AIP Conf. Proc. 2019, 1, 020063-20. [Google Scholar]
- Rasheed, M.; Kumar, N.; Kaur, R. Global Secretome Characterization of the Pathogenic Yeast Candida glabrata. J. Proteome Res. 2020, 19, 49–63. [Google Scholar] [CrossRef]
- Kaur, R.; Ma, B.; Cormack, B.P. A Family of Glycosylphosphatidylinositol-Linked Aspartyl Proteases Is Required for Virulence of Candida glabrata. Proc. Natl. Acad. Sci. USA 2007, 104, 7628–7633. [Google Scholar] [CrossRef]
- Vincent, M.; Johnny, Q.; Adeni, D.S.A.; Suhaili, N. Potential of Candida glabrata from ragi as a bioethanol producer using selected carbohydrate substrates. Nusant. Biosci. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Kang, M.J.; Ha, H.W.; Kim, G.H.; Lee, S.K.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of Metabolism by Intestinal Bacteria in Arbutin-Induced Suppression of Lymphoproliferative Response in vitro. Biomol. Ther. 2012, 20, 196–200. [Google Scholar] [CrossRef]
- Fonseca, E.; Silva, S.; Rodrigues, C.F.; Alves, C.T.; Azeredo, J.; Henriques, M. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression. Biofouling 2014, 30, 447–457. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Rodrigues, M.E.; Silva, S.; Henriques, M. Candida glabrata Biofilms: How Far Have We Come? J. Fungi 2017, 3, 11. [Google Scholar] [CrossRef]
- Seneviratne, C.J.; Wang, Y.; Jin, L.; Abiko, Y.; Samaranayakeet, L. Proteomics of drug resistance in Candida glabrata biofilms. Proteomics 2010, 10, 1444–1454. [Google Scholar] [CrossRef]
- Mutlu Sariguzel, F.; Berk, E.; Koc, A.N.; Sav, H.; Demir, G. Investigation of the relationship between virulence factors and genotype of Candida spp. isolated from blood cultures. J. Infect. Dev. Ctries. 2015, 9, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [PubMed]
- Taff, H.T.; Nett, J.E.; Zarnowski, R.; Ross, K.M.; Sanchez, H.; Cain, M.T.; Hamaker, J.; Mitchell, A.P.; Andes, D.R. A Candida biofilm-induced pathway for matrix glucan delivery: Implications for drug resistance. PLoS Pathog. 2012, 8, e1002848. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Chen, S.-A.; Halliday, C.; Kennedy, K.; Playford, E.; Marriott, D.; Slavin, M.; Sorrell, T.; Sintchenko, V. Identification of genetic markers of resistance to echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next-generation sequencing: A feasibility study. Clin. Microbiol. Infect. 2017, 23, 676.e7–676.e10. [Google Scholar] [CrossRef]
- Hassan, Y.; Chew, S.Y.; Than, L.T.L. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J. Fungi 2021, 7, 667. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Kwa, A.L.; Cheng, S.; Du, C.; Clancy, C.J. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob. Agents Chemother. 2012, 56, 4862–4869. [Google Scholar] [CrossRef]
- Walker, L.A.; Gow, N.A.; Munro, C.A. Fungal echinocandin resistance. Fungal Genet. Biol. 2010, 47, 117–126. [Google Scholar] [CrossRef]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated MIC values. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Kwa, A.L.; Cheng, S.; Du, C.; Clancy, C. The presence of an FKS mutation rather than MIC is the strongest predictor of clinical failure in Candida glabrata infections treated with an echinocandin. Antimicrob. Agents Chemother. 2015, 59, 6822–6830. [Google Scholar]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J. EUCAST definitive document E.DEF 7.3.2: Method for the determination of broth dilution MICs of antifungal agents for yeasts. Clin. Microbiol. Infect. 2017, 23, 418–425. [Google Scholar]
Strain № | Lipase Activity for 5 Days, Clear Zone, cm | Esterase Activity for 5 Days, Precipitated Zone, cm | Esterase Activity for 7 Days, Precipitated Zone, cm | Protease Activity for 5 Days | Amilase Activity for 5 Days | Β-Glucosidase Activity for 10 Days |
---|---|---|---|---|---|---|
P1 | 1.3 | 1.0 | unchanged | - | - | - |
P2 | 1.1 | 1.3 | unchanged | - | - | - |
P3 | 1.1 | 1.4 | unchanged | - | - | - |
P4 | 1.3 | 1.4 | unchanged | - | - | - |
P5 | 0.9 | 1.3 | unchanged | - | - | - |
P6 | 0.8 | 1.1 | unchanged | - | - | - |
P7 | 0.8 | 1.2 | unchanged | - | - | - |
P8 | 1.1 | 1.2 | unchanged | - | - | - |
P9 | 1.0 | 1.0 | unchanged | - | - | - |
P10 | 1.2 | 1.0 | unchanged | - | - | - |
P11 | 1.2 | 0.9 | unchanged | - | - | - |
P12 | 1.2 | 0.9 | unchanged | - | - | - |
P13 | 0.7 | 1.1 | unchanged | - | - | - |
P14 | 1.0 | 1.2 | unchanged | - | - | - |
P15 | 1.2 | 1.2 | unchanged | - | - | - |
P16 | 1.1 | 0.9 | unchanged | - | - | - |
P17 | 1.3 | 1.2 | unchanged | - | - | - |
P18 | 1.0 | 1.4 | unchanged | - | - | - |
P19 | 0.8 | 1.0 | unchanged | - | - | - |
P20 | 1.1 | 1.0 | 1.5 | - | - | - |
P24 | 1.3 | 0.9 | unchanged | - | - | - |
P26 | 1.2 | 1.3 | unchanged | - | - | - |
P28 | 1.2 | 1.0 | unchanged | - | - | - |
P29 | 1.2 | 1.3 | unchanged | - | - | - |
P32 | 1.1 | 1.4 | unchanged | - | - | - |
P37 | 1.3 | 1.4 | unchanged | - | - | - |
P38 | 1.3 | 1.4 | unchanged | - | - | - |
P39 | 1.1 | 1.0 | unchanged | - | - | - |
P41 | 1.1 | 1.2 | unchanged | - | - | - |
P44 | 1.3 | 0.9 | unchanged | - | - | - |
P68 | 0.9 | 1.0 | unchanged | - | - | |
P70 | 1.2 | 1.2 | unchanged | - | - | - |
P71 | 1.1 | 0.9 | 1.5 | - | - | - |
P73 | 0.8 | 1.3 | unchanged | - | - | - |
P75 | 1.2 | 1.4 | unchanged | - | - | - |
P79 | 1.3 | 1.0 | unchanged | - | - | - |
P87 | 1.3 | 1.0 | unchanged | - | - | - |
P90 | 1.1 | 1.1 | unchanged | - | - | - |
P92 | 1.1 | 1.0 | unchanged | - | - | - |
P93 | 1.3 | 0.9 | unchanged | - | - | - |
P95 | 0.9 | 1.2 | unchanged | - | - | - |
P97 | 1.2 | 1.4 | unchanged | - | - | - |
P99 | 1.3 | 1.0 | unchanged | - | - | - |
P100 | 1.1 | 1.1 | unchanged | - | - | - |
P102 | 1.3 | 1.3 | unchanged | - | - | - |
P105 | 1.2 | 1.2 | unchanged | - | - | - |
P106 | 1.2 | 1.0 | unchanged | - | - | - |
D77_3 wild strain | 1.2 | 1.0 | unchanged | - | - | - |
Antifungal | MIC Range (μg/ml) | MIC50 (μg/ml) | MIC90 (μg/ml) | Susceptible, n | Resistantn, n |
---|---|---|---|---|---|
Micafungin | 0.125–16 | 0.19 | 8 | 0 (0%) | 48 (100%) |
Anidulafungin | 0.004–16 | 0.032 | 3 | 27 (56%) | 21 (44%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radchenkova, N.; Stefanova, P.; Gouliamova, D. Biochemical and Physiological Profiles of Nakaseomyces glabratus Isolates from Bulgarian Clinical Samples. Life 2025, 15, 889. https://doi.org/10.3390/life15060889
Radchenkova N, Stefanova P, Gouliamova D. Biochemical and Physiological Profiles of Nakaseomyces glabratus Isolates from Bulgarian Clinical Samples. Life. 2025; 15(6):889. https://doi.org/10.3390/life15060889
Chicago/Turabian StyleRadchenkova, Nadja, Penka Stefanova, and Dilnora Gouliamova. 2025. "Biochemical and Physiological Profiles of Nakaseomyces glabratus Isolates from Bulgarian Clinical Samples" Life 15, no. 6: 889. https://doi.org/10.3390/life15060889
APA StyleRadchenkova, N., Stefanova, P., & Gouliamova, D. (2025). Biochemical and Physiological Profiles of Nakaseomyces glabratus Isolates from Bulgarian Clinical Samples. Life, 15(6), 889. https://doi.org/10.3390/life15060889