Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Construction and Electrotransformation of Biosynthetic Polysaccharide Plasmid
2.3. Induced Biosynthesis of Exogenous LPS and Glycoprotein
2.4. LPS Extraction
2.5. Silver Staining
2.6. Protein Purification
2.7. Western Blotting (WB)
2.8. Quantitative PCR Analysis
2.9. Mass Spectrometry Analysis
3. Results
3.1. Construction of Two Polysaccharides in the E. coli System
3.2. Construction of Co-Expression of Two Polysaccharides in E. coli System
3.3. Effect of IPTG Induction Time on Simultaneous Biosynthesis of Two Types of Polysaccharides
3.4. Construction and Characterization of SC-OPSECO1+KPO2α
3.5. Timing Analysis of SC-OPSECO1+KPO2α Biosynthesis in a Single Cell
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECO1 | Escherichia coli O1 serotype |
KPO2 | Klebsiella pneumoniae O2 serotype |
W3110ΔΔ | Escherichia coli W3110ΔwaaLΔwbbH-L |
IPTG | isopropyl-β-D-thiogalactoside |
GO | Gene Ontology |
LC-MS/MS | liquid chromatography–tandem mass spectrometry |
IAA | iodoacetamide |
MDR | multidrug-resistant |
XDR | extremely drug-resistant |
LPS | lipopolysaccharide |
OPS | O-antigenic polysaccharides |
ORI | origin of replication |
References
- Olivas-Flores, J.; Chávez-Méndez, J.R.; Castillo-Martínez, N.A.; Sánchez-Pérez, H.J.; Serrano-Medina, A.; Cornejo-Bravo, J.M. Antimicrobial Effect of Chitosan Nanoparticles and Allium Species on Mycobacterium tuberculosis and Several Other Microorganisms. Microorganisms 2024, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Lakoh, S.; Yendewa, G.A. Multidrug-resistant tuberculosis in Sierra Leone. Lancet Glob. Health 2022, 10, e459–e460. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Giordano, C.; Barnini, S.; Tiseo, G.; Leonildi, A.; Malacarne, P.; Menichetti, F.; Carattoli, A. Extremely drug-resistant NDM-9-producing ST147 Klebsiella pneumoniae causing infections in Italy, May 2020. Euro Surveill. 2020, 25, 2001779. [Google Scholar] [CrossRef]
- Hoffman, S.J.; Outterson, K.; Røttingen, J.A.; Cars, O.; Clift, C.; Rizvi, Z.; Rotberg, F.; Tomson, G.; Zorzet, A. An international legal framework to address antimicrobial resistance. Bull. World Health Organ. 2015, 93, 66. [Google Scholar] [CrossRef]
- Daugla, D.M.; Gami, J.P.; Gamougam, K.; Naibei, N.; Mbainadji, L.; Narbé, M.; Toralta, J.; Kodbesse, B.; Ngadoua, C.; Coldiron, M.E.; et al. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: A community study [corrected]. Lancet 2014, 383, 40–47. [Google Scholar] [CrossRef]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011, 17, 1602–1609. [Google Scholar] [CrossRef]
- Frasch, C.E. Preparation of bacterial polysaccharide-protein conjugates: Analytical and manufacturing challenges. Vaccine 2009, 27, 6468–6470. [Google Scholar] [CrossRef]
- Wacker, M.; Linton, D.; Hitchen, P.G.; Nita-Lazar, M.; Haslam, S.M.; North, S.J.; Panico, M.; Morris, H.R.; Dell, A.; Wren, B.W.; et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002, 298, 1790–1793. [Google Scholar] [CrossRef]
- Langdon, R.H.; Cuccui, J.; Wren, B.W. N-linked glycosylation in bacteria: An unexpected application. Future Microbiol. 2009, 4, 401–412. [Google Scholar] [CrossRef]
- Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.; Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [Google Scholar] [CrossRef]
- Wacker, M.; Feldman, M.F.; Callewaert, N.; Kowarik, M.; Clarke, B.R.; Pohl, N.L.; Hernandez, M.; Vines, E.D.; Valvano, M.A.; Whitfield, C.; et al. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA 2006, 103, 7088–7093. [Google Scholar] [CrossRef] [PubMed]
- Dow, J.M.; Mauri, M.; Scott, T.A.; Wren, B.W. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev. Vaccines 2020, 19, 507–527. [Google Scholar] [CrossRef] [PubMed]
- Kalynych, S.; Morona, R.; Cygler, M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol. Rev. 2014, 38, 1048–1065. [Google Scholar] [CrossRef]
- Greenfield, L.K.; Whitfield, C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr. Res. 2012, 356, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Laupland, K.B.; Gregson, D.B.; Church, D.L.; Ross, T.; Pitout, J.D. Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clin. Microbiol. Infect. 2008, 14, 1041–1047. [Google Scholar] [CrossRef]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef]
- Begier, E.; Rosenthal, N.A.; Gurtman, A.; Kartashov, A.; Donald, R.G.K.; Lockhart, S.P. Epidemiology of Invasive Escherichia coli Infection and Antibiotic Resistance Status Among Patients Treated in US Hospitals: 2009–2016. Clin. Infect. Dis. 2021, 73, 565–574. [Google Scholar] [CrossRef]
- Brisse, S.; Verhoef, J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int. J. Syst. Evol. Microbiol. 2001, 51, 915–924. [Google Scholar] [CrossRef]
- Brisse, S.; van Himbergen, T.; Kusters, K.; Verhoef, J. Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin. Microbiol. Infect. 2004, 10, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Maatallah, M.; Vading, M.; Kabir, M.H.; Bakhrouf, A.; Kalin, M.; Nauclér, P.; Brisse, S.; Giske, C.G. Klebsiella variicola is a frequent cause of bloodstream infection in the stockholm area, and associated with higher mortality compared to K. pneumoniae. PLoS ONE 2014, 9, e113539. [Google Scholar] [CrossRef] [PubMed]
- Berry, G.J.; Loeffelholz, M.J.; Williams-Bouyer, N. An Investigation into Laboratory Misidentification of a Bloodstream Klebsiella variicola Infection. J. Clin. Microbiol. 2015, 53, 2793–2794. [Google Scholar] [CrossRef] [PubMed]
- Long, S.W.; Linson, S.E.; Ojeda Saavedra, M.; Cantu, C.; Davis, J.J.; Brettin, T.; Olsen, R.J. Whole-Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2017, 2, e00290-17. [Google Scholar] [CrossRef]
- Shah, N.; Ghosh, A.; Kumar, K.; Dutta, T.; Mahajan, M. A review of safety and immunogenicity of a novel measles, mumps, rubella (MMR) vaccine. Hum. Vaccin. Immunother. 2024, 20, 2302685. [Google Scholar] [CrossRef]
- Rappuoli, R. Glycoconjugate vaccines: Principles and mechanisms. Sci. Transl. Med. 2018, 10, eaat4615. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, J.; Wang, K.; Li, X.; Sun, P.; Zhang, L.; Huang, J.; Liu, Y.; Hua, X.; Yu, Y.; et al. Production of a Promising Biosynthetic Self-Assembled Nanoconjugate Vaccine against Klebsiella Pneumoniae Serotype O2 in a General Escherichia Coli Host. Adv. Sci. 2021, 8, e2100549. [Google Scholar] [CrossRef]
- Lyu, Y.; Gu, M.; Chen, M.; Feng, E.; Zhu, L.; Pan, C.; Wang, D.; Liu, X.; Wang, H. Disruption of SpoIIID decreases sporulation, increases extracellular proteolytic activity and virulence in Bacillus anthracis. Biochem. Biophys. Res. Commun. 2019, 513, 651–656. [Google Scholar] [CrossRef]
- Pan, C.; Sun, P.; Liu, B.; Liang, H.; Peng, Z.; Dong, Y.; Wang, D.; Liu, X.; Wang, B.; Zeng, M.; et al. Biosynthesis of Conjugate Vaccines Using an O-Linked Glycosylation System. mBio 2016, 7, e00443-16. [Google Scholar] [CrossRef]
- Kumar, L.; Futschik, M.E. Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2007, 2, 5–7. [Google Scholar] [CrossRef]
- Kay, E.; Cuccui, J.; Wren, B.W. Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 2019, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Downing, T.; Lee, M.J.; Archbold, C.; McDonnell, A.; Rahm, A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022, 114, 110509. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.G.; Matos, J. Hold your horSSEs: Controlling structure-selective endonucleases MUS81 and Yen1/GEN1. Front. Genet. 2015, 6, 253. [Google Scholar] [CrossRef]
- Brune, K.D.; Leneghan, D.B.; Brian, I.J.; Ishizuka, A.S.; Bachmann, M.F.; Draper, S.J.; Biswas, S.; Howarth, M. Plug-and-Display: Decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci. Rep. 2016, 6, 19234. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, S.E. Human papillomavirus (HPV) vaccines in adults: Learnings from long-term follow-up of quadrivalent HPV vaccine clinical trials. Hum. Vaccin. Immunother. 2023, 19, 2184760. [Google Scholar] [CrossRef]
- D’Agostini, T.L.; Zambom, F.F.F.; Moraes, J.C.; França, A.P.; Camargo, J.P.; Ribeiro, M.; Barata, R.B.; Silva, A.I.D.; Ramos, A.N., Jr.; França, A.P.; et al. Vaccination coverage, delay and loss to follow-up of the triple viral vaccine, in live births between 2017 and 2018 in Brazilian cities. Epidemiol. Serv. Saude 2025, 33, e20231218. [Google Scholar] [CrossRef]
- Lalwani, S.K.; Agarkhedkar, S.; Sundaram, B.; Mahantashetti, N.S.; Malshe, N.; Agarkhedkar, S.; Van Der Meeren, O.; Mehta, S.; Karkada, N.; Han, H.H.; et al. Immunogenicity and safety of 3-dose primary vaccination with combined DTPa-HBV-IPV/Hib in Indian infants. Hum. Vaccin. Immunother. 2017, 13, 120–127. [Google Scholar] [CrossRef]
- Izadi, S.; Mohammadi, M.; Sartipi, M.; Karami, M.; Karimi, H. Acute adverse events following immunization with DTP-HB-Hib pentavalent vaccine in the first year of life. East. Mediterr. Health J. 2023, 29, 6–14. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, Z.; Chen, S.; Liu, J.; Jia, J.; Huang, Y.; Liu, Q.; Cheung, C.Y.; Sin, D.D.; Yang, T.; et al. Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis. Theranostics 2024, 14, 5512–5527. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, K.; Chen, K.; Liu, J.; Dai, K.; Zhao, P. HAS2 facilitates glioma cell malignancy and suppresses ferroptosis in an FZD7-dependent manner. Cancer Sci. 2024, 115, 2602–2616. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Sun, P.; Li, T.; Yan, X.; Ye, J.; Wu, J.; Zhu, L.; Wang, H.; Pan, C. Production of Promising Heat-Labile Enterotoxin (LT) B Subunit-Based Self-Assembled Bioconjugate Nanovaccines against Infectious Diseases. Vaccines 2024, 12, 347. [Google Scholar] [CrossRef] [PubMed]
Strains and Plasmids | Characteristic | Source |
---|---|---|
W3110 | Wild-type strain of Escherichia Coli W3110 | Laboratory stock |
pACYC184-OPSKPO2α | Encoded O2 serotype self-promoter and OPS of K. pneumoniae, Cmr | Laboratory stock |
pSC101tac | pSC101 plasmid skeleton containing tac promoter, Tcr | This work |
pSC101-tac-OPSECO1 | Encoded O1 serotype OPS of Escherichia Coli, Tcr | This work |
W3110ΔwaaLΔwbbH-L (W3110ΔΔ) | waaL, wbbH, wbbI, wbbJ, wbbK, wbbL genes were knocked out in the W3110 strain | Laboratory stock |
pET28a-pgIL-spycatcher4573 | Cloning spycatcher4573 gene in pET28a, Kanr | Laboratory stock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Liao, H.; Meng, S.; Guo, Y.; Zhu, L.; Wang, H.; Lyu, Y. Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell. Life 2025, 15, 858. https://doi.org/10.3390/life15060858
Hao J, Liao H, Meng S, Guo Y, Zhu L, Wang H, Lyu Y. Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell. Life. 2025; 15(6):858. https://doi.org/10.3390/life15060858
Chicago/Turabian StyleHao, Jingjing, Haoqian Liao, Shuhong Meng, Yan Guo, Li Zhu, Hengliang Wang, and Yufei Lyu. 2025. "Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell" Life 15, no. 6: 858. https://doi.org/10.3390/life15060858
APA StyleHao, J., Liao, H., Meng, S., Guo, Y., Zhu, L., Wang, H., & Lyu, Y. (2025). Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell. Life, 15(6), 858. https://doi.org/10.3390/life15060858