Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation of Cerebral Arteries
2.3. RNA Sequencing of Cerebral Arteries of PCC and ACC
2.3.1. RNA Extraction
2.3.2. RNA Sequencing Analysis
2.3.3. Bioinformatic Analysis
2.4. Gene Ontology (GO) Analysis
2.5. Statistical Analysis and Calculations
3. Results
3.1. Protein Levels of Enzymes and Receptors of AA Cascade in BA and MCA
3.1.1. Vasoconstrictor Enzymes and Receptors
- Expression of COX1 and COX2 is lower in BA than in MCA arteries
- Protein level of thromboxane A2 synthase is similar, whereas the thromboxane A2 receptor is lower in BA than in MCA arteries
- The protein level of Cyp4A is lower in BA than in MCA arteries
3.1.2. Vasodilator Enzymes and Receptors
- Protein levels of prostacyclin synthase and prostacyclin receptor are higher in BA than in MCA
- The protein levels of neuronal and endothelial NOS enzymes are similar between BA and MCA arteries
3.2. Gene Expression of Enzymes and Receptors of AA Cascade in Cerebral Arteries of PCC and ACC
3.2.1. Expression of Multiple Genes Involved in Vascular Tone Regulation Is Different in Cerebral Arteries of PCC and ACC
3.2.2. Gene Ontology (GO) Analysis of DEGs in Cerebral Arteries of PCC and ACC
4. Discussion
- (1)
- The levels of enzymes and receptors involved in the production and action of arachidonic acid constrictor metabolites are lower in the basilar artery (BA) than in the intracranial middle cerebral artery (MCA);
- (2)
- The level of enzymes responsible for producing dilator mediators and receptors (such as PGIS and IP receptors) is greater in BA than in MCA;
- (3)
- The expression of nearly 1000 genes varies between cerebral arteries of the posterior (CAPCC) and anterior cerebral circulation (CAACC);
- (4)
- The expression of 636 genes involved in the regulation of canonical pathways of flow-dependent vascular tone differs between the cerebral arteries of the PCC and ACC;
- (5)
- Vasodilation-related canonical pathways are more prominent in CAPCC compared to CAACC, while vasoconstriction-related canonical pathways are more prominent in CAACC compared to CAPCC;
- (6)
- The expression of nine genes involved in flow-dependent vasodilation and vasoconstriction differs between the CAPCC and CAACC. Specifically, vasodilator genes are predominantly upregulated in the CAPCC relative to CAACC.
4.1. Physiological Implications of Our Findings: BA vs. MCA
4.2. Autoregulation of CBF and Flow-Dependent Responses
4.3. Expressions of Enzymes Producing AA Metabolites and Their Receptors in the MCA and the BA Correspond to Their Vasomotor Responses to Flow
PGI2 and NO: Mediators and/or Modulators of Flow-Induced Responses in Cerebral Arteries
4.4. Genes Regulating Enzyme Expression, Producing Mediators of Vascular Tone Show Differential Expression Patterns Between Cerebral Arteries of the PCC and the ACC
4.4.1. Expression of Genes of Key Enzymes and Receptors of the AA Pathway and NO Synthases
4.4.2. Expression of Multiple Genes Involved in the Canonical Pathways of Vascular Tone Regulation Differs in Cerebral Arteries of the PCC and ACC
4.4.3. Multiple Genes Regulating Flow-Dependent Vascular Tone Show Differential Expression Patterns Between Cerebral Arteries of the Posterior and Anterior Cerebral Circulation
4.5. Physiological Importance and Possible Clinical Applications of Findings
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Standring, S.; Gray, H. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 42nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; 1588p. [Google Scholar]
- Mokri, B. The Monro-Kellie hypothesis: Applications in CSF volume depletion. Neurology 2001, 56, 1746–1748. [Google Scholar] [CrossRef]
- Smeda, J.S.; Payne, G.W. Alterations in autoregulatory and myogenic function in the cerebrovasculature of Dahl salt-sensitive rats. Stroke 2003, 34, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.; Rozsa, B.; Springo, Z.; Doczi, T.; Koller, A. Isolated human and rat cerebral arteries constrict to increases in flow: Role of 20-HETE and TP receptors. J. Cereb. Blood Flow Metab. 2011, 31, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Szenasi, A.; Amrein, K.; Czeiter, E.; Szarka, N.; Toth, P.; Koller, A. Molecular Pathomechanisms of Impaired Flow-Induced Constriction of Cerebral Arteries Following Traumatic Brain Injury: A Potential Impact on Cerebral Autoregulation. Int. J. Mol. Sci. 2021, 22, 6624. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lv, W.; Zhang, H.; Liu, Y.; Li, L.; Jefferson, J.R.; Guo, Y.; Li, M.; Gao, W.; Fang, X.; et al. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience 2020, 42, 1387–1410. [Google Scholar] [CrossRef]
- Fujii, K.; Heistad, D.D.; Faraci, F.M. Flow-mediated dilatation of the basilar artery in vivo. Circ. Res. 1991, 69, 697–705. [Google Scholar] [CrossRef]
- Paravicini, T.M.; Miller, A.A.; Drummond, G.R.; Sobey, C.G. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase. J. Cereb. Blood Flow Metab. 2006, 26, 836–845. [Google Scholar] [CrossRef]
- Madden, J.A.; Christman, N.J. Integrin signaling, free radicals, and tyrosine kinase mediate flow constriction in isolated cerebral arteries. Am. J. Physiol. 1999, 277, H2264–H2271. [Google Scholar] [CrossRef]
- Garcia-Roldan, J.L.; Bevan, J.A. Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res. 1990, 66, 1445–1448. [Google Scholar] [CrossRef]
- Ngai, A.C.; Winn, H.R. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ. Res. 1995, 77, 832–840. [Google Scholar] [CrossRef]
- Koller, A.; Toth, P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J. Vasc. Res. 2012, 49, 375–389. [Google Scholar] [CrossRef]
- Roman, R.J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 2002, 82, 131–185. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.M.; Renic, M.; Flasch, A.K.; Harder, D.R.; Falck, J.; Roman, R.J. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H2455–H2465. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, D.; Lange, A.R.; Lowry, T.F.; Taheri, M.R.; Birks, E.K.; Hudetz, A.G.; Narayanan, J.; Falck, J.R.; Okamoto, H.; Roman, R.J.; et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ. Res. 2000, 87, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, D.; Lange, A.R.; Narayanan, J.; Aebly, M.R.; Jacobs, E.R.; Harder, D.R. Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current. J. Physiol. 1998, 507 Pt 3, 771–781. [Google Scholar] [CrossRef]
- Rocic, P.; Schwartzman, M.L. 20-HETE in the regulation of vascular and cardiac function. Pharmacol. Ther. 2018, 192, 74–87. [Google Scholar] [CrossRef]
- Harder, D.R.; Gebremedhin, D.; Narayanan, J.; Jefcoat, C.; Falck, J.R.; Campbell, W.B.; Roman, R. Formation and action of a P-450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am. J. Physiol. 1994, 266, H2098–H2107. [Google Scholar] [CrossRef]
- Imig, J.D.; Simpkins, A.N.; Renic, M.; Harder, D.R. Cytochrome P450 eicosanoids and cerebral vascular function. Expert Rev. Mol. Med. 2011, 13, e7. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Dela Paz, N.G.; Melchior, B.; Frangos, J.A. Shear stress induces Galpha(q/11) activation independently of G protein-coupled receptor activation in endothelial cells. Am. J. Physiol. Cell Physiol. 2017, 312, C428–C437. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, M.; Wang, M.; Li, X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc. Med. 2022, 32, 61–70. [Google Scholar] [CrossRef]
- Davies, P.F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 1995, 75, 519–560. [Google Scholar] [CrossRef]
- Malek, A.M.; Zhang, J.; Jiang, J.; Alper, S.L.; Izumo, S. Endothelin-1 gene suppression by shear stress: Pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J. Mol. Cell Cardiol. 1999, 31, 387–399. [Google Scholar] [CrossRef]
- Ungvari, Z.; Koller, A. Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle. Hypertension 2000, 36, 856–861. [Google Scholar] [CrossRef]
- Wojciak-Stothard, B.; Ridley, A.J. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 2003, 161, 429–439. [Google Scholar] [CrossRef]
- Lu, D.; Kassab, G.S. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 2011, 8, 1379–1385. [Google Scholar] [CrossRef]
- Tzima, E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ. Res. 2006, 98, 176–185. [Google Scholar] [CrossRef]
- Favre, J.; Vessieres, E.; Guihot, A.L.; Proux, C.; Grimaud, L.; Rivron, J.; Garcia, M.C.; Rethore, L.; Zahreddine, R.; Davezac, M.; et al. Membrane estrogen receptor alpha (ERalpha) participates in flow-mediated dilation in a ligand-independent manner. Elife 2021, 10, e68695. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Lee, M.D.; McCarron, J.G. Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J. Physiol. 2016, 594, 7267–7307. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Vera, T.M.; Vanhauwe, J.; Thomas, T.O.; Medkova, M.; Preininger, A.; Mazzoni, M.R.; Hamm, H.E. Insights into G protein structure, function, and regulation. Endocr. Rev. 2003, 24, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.P.; Rossitch, E., Jr.; Andon, N.A.; Loscalzo, J.; Dzau, V.J. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Investig. 1991, 88, 1663–1671. [Google Scholar] [CrossRef]
- Dixit, M.; Loot, A.E.; Mohamed, A.; Fisslthaler, B.; Boulanger, C.M.; Ceacareanu, B.; Hassid, A.; Busse, R.; Fleming, I. Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. Circ. Res. 2005, 97, 1236–1244. [Google Scholar] [CrossRef]
- Morse, C.J.; Boerman, E.M.; McDonald, M.W.; Padilla, J.; Olver, T.D. The role of nitric oxide in flow-induced and myogenic responses in 1A, 2A, and 3A branches of the porcine middle cerebral artery. J. Appl. Physiol. (1985) 2022, 133, 1228–1236. [Google Scholar] [CrossRef]
- Reich, K.M.; Gay, C.V.; Frangos, J.A. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell Physiol. 1990, 143, 100–104. [Google Scholar] [CrossRef]
- Santana Nunez, D.; Malik, A.B.; Lee, Q.; Ahn, S.J.; Coctecon-Murillo, A.; Lazarko, D.; Levitan, I.; Mehta, D.; Komarova, Y.A. Piezo1 induces endothelial responses to shear stress via soluble adenylyl Cyclase-IP(3)R2 circuit. iScience 2023, 26, 106661. [Google Scholar] [CrossRef]
- Abdul-Majeed, S.; Nauli, S.M. Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 2011, 58, 325–331. [Google Scholar] [CrossRef]
- Reitsamer, H.A.; Zawinka, C.; Branka, M. Dopaminergic vasodilation in the choroidal circulation by d1/d5 receptor activation. Investig. Ophthalmol. Vis. Sci. 2004, 45, 900–905. [Google Scholar] [CrossRef]
- Gao, W.; Gu, K.; Ma, L.; Yang, F.; Deng, L.; Zhang, Y.; Miao, M.Z.; Li, W.; Li, G.; Qian, H.; et al. Interstitial Fluid Shear Stress Induces the Synthetic Phenotype Switching of VSMCs to Release Pro-calcified Extracellular Vesicles via EGFR-MAPK-KLF5 Pathway. Int. J. Biol. Sci. 2024, 20, 2727–2747. [Google Scholar] [CrossRef] [PubMed]
- Sathanoori, R.; Rosi, F.; Gu, B.J.; Wiley, J.S.; Muller, C.E.; Olde, B.; Erlinge, D. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal 2015, 11, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Sathanoori, R.; Bryl-Gorecka, P.; Muller, C.E.; Erb, L.; Weisman, G.A.; Olde, B.; Erlinge, D. P2Y(2) receptor modulates shear stress-induced cell alignment and actin stress fibers in human umbilical vein endothelial cells. Cell Mol. Life Sci. 2017, 74, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Z.; Diamond, S.L. Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann. Biomed. Eng. 1999, 27, 419–426. [Google Scholar] [CrossRef]
- Echeverria, F.; Gonzalez-Sanabria, N.; Alvarado-Sanchez, R.; Fernandez, M.; Castillo, K.; Latorre, R. Large conductance voltage-and calcium-activated K(+) (BK) channel in health and disease. Front. Pharmacol. 2024, 15, 1373507. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef]
- Gerhold, K.A.; Schwartz, M.A. Ion Channels in Endothelial Responses to Fluid Shear Stress. Physiology (Bethesda) 2016, 31, 359–369. [Google Scholar] [CrossRef]
- Fisher, A.B.; Chien, S.; Barakat, A.I.; Nerem, R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 281, L529–L533. [Google Scholar] [CrossRef]
- Intengan, H.D.; Schiffrin, E.L. Structure and mechanical properties of resistance arteries in hypertension: Role of adhesion molecules and extracellular matrix determinants. Hypertension 2000, 36, 312–318. [Google Scholar] [CrossRef]
- Shyy, J.Y.; Chien, S. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 2002, 91, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Ashby, J.W.; Mack, J.J. Endothelial Control of Cerebral Blood Flow. Am. J. Pathol. 2021, 191, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, D.; Gopalakrishnan, S.; Harder, D.R. Endogenous events modulating myogenic regulation of cerebrovascular function. Curr. Vasc. Pharmacol. 2014, 12, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.M., Jr.; Marrelli, S.P.; Steenberg, M.L.; Schildmeyer, L.A.; Johnson, T.D. Effects of luminal shear stress on cerebral arteries and arterioles. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H2011–H2022. [Google Scholar] [CrossRef]
- Fujii, K.; Heistad, D.D.; Faraci, F.M. Effect of diabetes mellitus on flow-mediated and endothelium-dependent dilatation of the rat basilar artery. Stroke 1992, 23, 1494–1498. [Google Scholar] [CrossRef]
- Gaw, A.J.; Bevan, J.A. Flow-induced relaxation of the rabbit middle cerebral artery is composed of both endothelium-dependent and -independent components. Stroke 1993, 24, 105–109; discussion 109–110. [Google Scholar] [CrossRef]
- Garcia-Roldan, J.L.; Bevan, J.A. Augmentation of endothelium-independent flow constriction in pial arteries at high intravascular pressures. Hypertension 1991, 17, 870–874. [Google Scholar] [CrossRef]
- Thorin-Trescases, N.; Bevan, J.A. High levels of myogenic tone antagonize the dilator response to flow of small rabbit cerebral arteries. Stroke 1998, 29, 1194–1200; discussion 1198–1200. [Google Scholar] [CrossRef]
- Shimoda, L.A.; Norins, N.A.; Jeutter, D.C.; Madden, J.A. Flow-induced responses in piglet isolated cerebral arteries. Pediatr. Res. 1996, 39, 574–583. [Google Scholar] [CrossRef]
- Pearce, M.J.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A.; Whatley, R.E. Shear stress activates cytosolic phospholipase A2 (cPLA2) and MAP kinase in human endothelial cells. Biochem. Biophys. Res. Commun. 1996, 218, 500–504. [Google Scholar] [CrossRef]
- Drouin, A.; Thorin, E. Flow-induced dilation is mediated by Akt-dependent activation of endothelial nitric oxide synthase-derived hydrogen peroxide in mouse cerebral arteries. Stroke 2009, 40, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.M., Jr.; Steenberg, M.L.; Marrelli, S.P. Role of endothelium in shear stress-induced constrictions in rat middle cerebral artery. Stroke 2001, 32, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.D.; Tarbell, J.M. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 2011, 39, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.; Earley, S.; Li, Y.S.; Chien, S. Vascular mechanotransduction. Physiol. Rev. 2023, 103, 1247–1421. [Google Scholar] [CrossRef]
- Campbell, W.B.; Fleming, I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflügers Arch.-Eur. J. Physiol. 2010, 459, 881–895. [Google Scholar] [CrossRef]
- Koller, A.; Sun, D.; Kaley, G. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ. Res. 1993, 72, 1276–1284. [Google Scholar] [CrossRef]
- Ishiko, S.; Koller, A.; Deng, W.; Huang, A.; Sun, D. Liposomal nanocarriers of preassembled glycocalyx restore normal venular permeability and shear stress sensitivity in sepsis: Assessed quantitatively with a novel microchamber system. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H390–H398. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, E.; Staursky, D.; Lucas, K.; Nguyen, B.V.; Li, M.; Liu, Y.; Washington, C.; Coolen, L.M.; Fan, F.; Roman, R.J. 20-HETE Enzymes and Receptors in the Neurovascular Unit: Implications in Cerebrovascular Disease. Front. Neurol. 2020, 11, 983. [Google Scholar] [CrossRef]
- Majed, B.H.; Khalil, R.A. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol. Rev. 2012, 64, 540–582. [Google Scholar] [CrossRef]
- Schink, T.; Kollhorst, B.; Varas Lorenzo, C.; Arfe, A.; Herings, R.; Lucchi, S.; Romio, S.; Schade, R.; Schuemie, M.J.; Straatman, H.; et al. Risk of ischemic stroke and the use of individual non-steroidal anti-inflammatory drugs: A multi-country European database study within the SOS Project. PLoS ONE 2018, 13, e0203362. [Google Scholar] [CrossRef]
- Andersohn, F.; Schade, R.; Suissa, S.; Garbe, E. Cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs and the risk of ischemic stroke: A nested case-control study. Stroke 2006, 37, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Gorlach, C.; Benyo, Z.; Wahl, M. Dilator effect of bradykinin and acetylcholine in cerebral vessels after brain lesion. Kidney Int. Suppl. 1998, 67, S226–S227. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, E.H.; Gerhard, M.D.; Uehata, A.; Selwyn, A.P.; Ganz, P.; Yeung, A.C.; Creager, M.A. Flow-induced vasodilation of the human brachial artery is impaired in patients <40 years of age with coronary artery disease. Am. J. Cardiol. 1996, 78, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.M.; Cobuzzi, A.; Shepherd, C.; Tanikella, T.; Hoffman, A.; Cervoni, P. Endothelium-dependent basilar and aortic vascular responses in normotensive and coarctation hypertensive rats. Life Sci. 1989, 45, 607–614. [Google Scholar] [CrossRef]
- Kanamaru, K.; Waga, S.; Fujimoto, K.; Itoh, H.; Kubo, Y. Endothelium-dependent relaxation of human basilar arteries. Stroke 1989, 20, 1208–1211. [Google Scholar] [CrossRef]
- Alonso-Galicia, M.; Hudetz, A.G.; Shen, H.; Harder, D.R.; Roman, R.J. Contribution of 20-HETE to vasodilator actions of nitric oxide in the cerebral microcirculation. Stroke 1999, 30, 2727–2734; discussion 2734. [Google Scholar] [CrossRef]
- Tyden, E.; Tjalve, H.; Larsson, P. Gene and protein expression and cellular localisation of cytochrome P450 enzymes of the 1A, 2A, 2C, 2D and 2E subfamilies in equine intestine and liver. Acta Vet. Scand. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Smith, O.P.; Battersby, S.; Sales, K.J.; Critchley, H.O.; Jabbour, H.N. Prostacyclin receptor up-regulates the expression of angiogenic genes in human endometrium via cross talk with epidermal growth factor Receptor and the extracellular signaling receptor kinase 1/2 pathway. Endocrinology 2006, 147, 1697–1705. [Google Scholar] [CrossRef]
- Aradhyula, V.; Breidenbach, J.D.; Khatib-Shahidi, B.Z.; Slogar, J.N.; Eyong, S.A.; Faleel, D.; Dube, P.; Gupta, R.; Khouri, S.J.; Haller, S.T.; et al. Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes 2024, 15, 954. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Manduchi, E.; Jimenez, J.M.; Davies, P.F. Endothelial epigenetics in biomechanical stress: Disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arter. Thromb Vasc. Biol. 2015, 35, 1317–1326. [Google Scholar] [CrossRef]
- Russell-Puleri, S.; Dela Paz, N.G.; Adams, D.; Chattopadhyay, M.; Cancel, L.; Ebong, E.; Orr, A.W.; Frangos, J.A.; Tarbell, J.M. Fluid shear stress induces upregulation of COX-2 and PGI(2) release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H485–H500. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.D.; Rezende, B.A.; Cortes, S.F.; Lemos, V.S. Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases. Front. Physiol. 2016, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Czigler, A.; Toth, L.; Szarka, N.; Berta, G.; Amrein, K.; Czeiter, E.; Lendvai-Emmert, D.; Bodo, K.; Tarantini, S.; Koller, A.; et al. Hypertension Exacerbates Cerebrovascular Oxidative Stress Induced by Mild Traumatic Brain Injury: Protective Effects of the Mitochondria-Targeted Antioxidative Peptide SS-31. J. Neurotrauma 2019, 36, 3309–3315. [Google Scholar] [CrossRef] [PubMed]
- Szarka, N.; Toth, L.; Czigler, A.; Kellermayer, Z.; Ungvari, Z.; Amrein, K.; Czeiter, E.; Bali, Z.K.; Tadepalli, S.A.; Wahr, M.; et al. Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. Int. J. Mol. Sci. 2019, 20, 3223. [Google Scholar] [CrossRef]
- Nemeth, Z.; Granger, J.P.; Ryan, M.J.; Drummond, H.A. Is there a role of proinflammatory cytokines on degenerin-mediated cerebrovascular function in preeclampsia? Physiol. Rep. 2022, 10, e15376. [Google Scholar] [CrossRef]
- Li, S.; Tian, X.; Feng, X.; Ip, B.; Ip, H.L.; Abrigo, J.; Zheng, L.; Liu, Y.; Liu, Y.; Li, Z.; et al. Stroke Mechanisms in Intracranial Atherosclerotic Disease: A Modified Classification System and Clinical Implications. Transl. Stroke Res. 2025. [Google Scholar] [CrossRef]
- Shima, T.; Ishikawa, S.; Sasaki, U.; Miyazaki, M.; Hibino, H. Quantitative measurement of the basilar arterial flow in the dog-electromagnetic flow-meter study of the extra-and intracranial arterial occlusion (author’s transl). No Shinkei Geka Neurol. Surg. 1976, 4, 451–457. [Google Scholar]
- Magyar-Stang, R.; Istvan, L.; Pal, H.; Csanyi, B.; Gaal, A.; Mihaly, Z.; Czinege, Z.; Sotonyi, P.; Tamas, H.; Koller, A.; et al. Impaired cerebrovascular reactivity correlates with reduced retinal vessel density in patients with carotid artery stenosis: Cross-sectional, single center study. PLoS ONE 2023, 18, e0291521. [Google Scholar] [CrossRef]
- Magyar-Stang, R.; Pal, H.; Csanyi, B.; Gaal, A.; Mihaly, Z.; Czinege, Z.; Csipo, T.; Ungvari, Z.; Sotonyi, P.; Varga, A.; et al. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. Geroscience 2023, 45, 3333–3357. [Google Scholar] [CrossRef]
Canonical Pathways Involved in WSS-Induced Vasoconstriction | No. of Up/Downregulated Genes in CAACC (D CAPCC) | References |
---|---|---|
G alpha (q) signaling events | 8/2 | [24,25] |
Gαi Signaling | 5/7 | [25,26] |
G alpha (12/13) signaling events | 5/2 | [24,25] |
Endothelin-1 Signaling | 3/8 | [27,28] |
Signaling by Rho Family GTPases | 5/9 | [29,30,31] |
Canonical Pathways Involved in Vasodilation | ||
Estrogen Receptor Signaling | 7/13 | [32] |
Gαs Signaling | 7/6 | [25,26] |
Acetylcholine Receptor Signaling Pathway | 2/12 | [33] |
Gαβ Signaling | 4/7 | [25,34] |
Potassium Channels | 3/6 | [35] |
Protein Kinase A Signaling | 7/11 | [36] |
Nitric Oxide Signaling in the Cardiovascular System | 3/5 | [37] |
cAMP-mediated signaling | 5/7 | [38,39] |
Canonical Pathways Involved in Vasoconstriction and Vasodilation | ||
Eicosanoid Signaling | 7/10 | [4] |
Dopamine Receptor Signaling | 3/5 | [40,41] |
Sphingosine-1-phosphate Signaling | 1/2 | [25] |
Gene | Up (+) or Downregulated (−) in CAACC (D CAPCC) | Flow/WSS-Induced Vasomotor Response | Reference |
---|---|---|---|
Egfr | − | Vasoconstriction | [42] |
P2rx1 | + | Vasodilation | [43,44] |
Npr3 | + | Vasodilation | [45,46] |
Kcnma1 | − | Vasodilation | [47] |
Mmp28 | − | Vasodilation | [48] |
Abcc9 | − | Vasodilation | [49] |
Vegfa | + | Vasodilation | [49,50] |
Itga1 | − | Vasodilation | [51,52] |
Itga9 | − | Vasodilation | [51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemeth, Z.; Eros, K.; Munkacsy, G.; Koller, A. Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries. Life 2025, 15, 856. https://doi.org/10.3390/life15060856
Nemeth Z, Eros K, Munkacsy G, Koller A. Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries. Life. 2025; 15(6):856. https://doi.org/10.3390/life15060856
Chicago/Turabian StyleNemeth, Zoltan, Krisztian Eros, Gyongyi Munkacsy, and Akos Koller. 2025. "Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries" Life 15, no. 6: 856. https://doi.org/10.3390/life15060856
APA StyleNemeth, Z., Eros, K., Munkacsy, G., & Koller, A. (2025). Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries. Life, 15(6), 856. https://doi.org/10.3390/life15060856