Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Question
2.2. PICO Statement
2.3. Search Strategy
2.4. Study Selection
2.5. Eligibility Criteria
- In vitro studies evaluating the best settings to promote proliferation and differentiation with lasers used in dentistry.
- Studies conducted in vitro exclusively on human fibroblast cells.
- Systematic reviews and metanalyses, or narrative reviews.
- In vitro studies conducted on cells other than fibroblasts.
- In vivo studies.
- Papers in languages other than English.
- Clinical cases or clinical series, reviews, opinion articles, trials conducted on animals, letters from editors, book chapters, appendices, bibliographies, indexes, and articles whose full text is not available.
- Studies that used very high fluence, with a density greater than 500 J/cm2.
- Articles that did not mention power or fluence rate.
2.6. Level of Evidence
3. Results
3.1. Cell Culture
3.2. Laser Wavelength
3.2.1. Diode Lasers
3.2.2. Erbium YAG Laser
3.2.3. CO2 Laser
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
CEBM | Centre for Evidence-Based Medicine |
CO2 | Carbon Dioxide |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
Er:YAG | Erbium: Yttrium-Aluminium-Garnet |
HGF | Human gingival fibroblasts |
HeNe | Helium-Neon |
Hz | Hertz |
J/cm2 | Joule per square centimetre |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
mJ/cm2 | Millijoule per square centimetre |
mW | Milliwatt |
mW/cm2 | Milliwatt per square centimetre |
NO | Nitric oxide |
PICO | Patient, Intervention, Comparison, Outcome |
PDGF | Platelet-derived growth factor |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
ROS | Reactive oxygen species |
TGF-β | Transforming growth factor beta |
TRP | Transient receptor potential |
µm | Micrometre |
References
- Mester, E.; Korényi-Both, A.; Spiry, T.; Scher, A.; Tisza, S. Stimulation of wound healing by means of laser rays. (Clinical and electron microscopical study). Acta Chir. Acad. Sci. Hung. 1973, 14, 347–356. [Google Scholar]
- Del Vecchio, A.; Palaia, G.; Grassotti, B.; Tenore, G.; Ciolfi, C.; Podda, G.; Impellizzeri, A.; Mohsen, A.; Galluccio, G.; Romeo, U. Effects of laser photobiomodulation in the management of oral lichen planus: A literature review. Clin. Ter. 2021, 172, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Nammour, S.; El Mobadder, M.; Brugnera, A.J.; Namour, M.; Houeis, S.; Heysselaer, D.; Vanheusden, A.; Namour, A. Photobiomodulation Therapy vs. Corticosteroid for the Management of Erosive/Ulcerative and Painful Oral Lichen Planus. Assessment of Success Rate during One-Year Follow-Up: A Retrospective Study. Healthcare 2021, 9, 1137. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.R.; Minicucci, E.M.; Betini, M.; Almeida-Lopes, L.; Neto, V.T.; Cataneo, A.J.M. Efficacy of photobiomodulation in the treatment of oral mucositis in patients undergoing antineoplastic therapy: Systematic review and meta-analysis. Support. Care Cancer 2023, 31, 645. [Google Scholar] [CrossRef]
- AlHerafi, E.; Hamadah, O.; Parker, S. Photobiomodulation in recurrent aphthous stomatitis management using three different laser wavelengths. A randomized clinical trial. Lasers Med. Sci. 2024, 39, 285. [Google Scholar] [CrossRef]
- Amadori, F.; Bardellini, E.; Veneri, F.; Majorana, A. Photobiomodulation laser therapy in pemphigus vulgaris oral lesions: A randomized, double-blind, controlled study. Stomatologija 2022, 24, 80–84. [Google Scholar]
- Karu, T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B Biol. 1999, 49, 1–17. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Palma, F.R.; Gantner, B.N.; Sakiyama, M.J.; Kayzuka, C.; Shukla, S.; Lacchini, R.; Cunniff, B.; Bonini, M.G. ROS production by mitochondria: Function or dysfunction? Oncogene 2024, 43, 295–303. [Google Scholar] [CrossRef]
- Zamani, A.R.N.; Saberianpour, S.; Geranmayeh, M.H.; Bani, F.; Haghighi, L.; Rahbarghazi, R. Modulatory effect of photobiomodulation on stem cell epigenetic memory: A highlight on differentiation capacity. Lasers Med. Sci. 2020, 35, 299–306. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Whaley, P.; Blain, R.B.; Draper, D.; Rooney, A.A.; Walker, V.R.; Wattam, S.; Wright, R.; Hooijmans, C.R. Identifying assessment criteria for in vitro studies: A method and item bank. Toxicol. Sci. 2024, 201, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, N.; Sidiroglou, F.; Fraser, S.; Husaric, M.; Kiatos, D.; Apostolopoulos, V.; Feehan, J. The effects of polarized photobiomodulation on cellular viability, proliferation, mitochondrial membrane potential and apoptosis in human fibroblasts: Potential applications to wound healing. J. Photochem. Photobiol. B Biol. 2022, 236, 112574. [Google Scholar] [CrossRef]
- Khalaj, S.; Iranpour, B.; Hodjat, M.; Azizi, A.; Kharazifard, M.J.; Hakimiha, N. Photobiomodulation effects of pulsed and continuous wave near-infrared laser on the proliferation and migration of human gingival fibroblasts: An in vitro study. Photochem. Photobiol. 2024, 100, 225–232. [Google Scholar] [CrossRef]
- Ladiz, M.A.R.; Mirzaei, A.; Hendi, S.S.; Najafi-Vosough, R.; Hooshyarfard, A.; Gholami, L. Effect of photobiomodulation with 810 and 940 nm diode lasers on human gingival fibroblasts. Dent. Med. Probl. 2020, 57, 369–376. [Google Scholar] [CrossRef]
- Karoussis, I.K.; Kyriakidou, K.; Psarros, C.; Afouxenides, P.; Vrotsos, I.A. Dosage Effects of an 810 nm Diode Laser on the Proliferation and Growth Factor Expression of Human Gingival Fibroblasts. J. Lasers Med. Sci. 2021, 12, e25. [Google Scholar] [CrossRef]
- Etemadi, A.; Namin, S.T.; Hodjat, M.; Kosarieh, E.; Hakimiha, N. Assessment of the Photobiomodulation Effect of a Blue Diode Laser on the Proliferation and Migration of Cultured Human Gingival Fibroblast Cells: A Preliminary In Vitro Study. J. Lasers Med. Sci. 2020, 11, 491–496. [Google Scholar] [CrossRef]
- Etemadi, A.; Sadatmansouri, S.; Sodeif, F.; Jalalishirazi, F.; Chiniforush, N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Gingival Fibroblast Cells. Photochem. Photobiol. 2021, 97, 1123–1128. [Google Scholar] [CrossRef]
- Ogita, M.; Tsuchida, S.; Aoki, A.; Satoh, M.; Kado, S.; Sawabe, M.; Nanbara, H.; Kobayashi, H.; Takeuchi, Y.; Mizutani, K.; et al. Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: Proteomic analysis. Lasers Med. Sci. 2015, 30, 1855–1866. [Google Scholar] [CrossRef]
- Motlagh, K.H.; Azizi, A.; Ghadim, N.M. In Vitro Effect of 445 nm Blue Laser and 660 nm Low-Level Laser on the Quantity and Quality of Human Gingival Fibroblasts. Photochem. Photobiol. 2023, 99, 920–928. [Google Scholar] [CrossRef]
- Shingyochi, Y.; Kanazawa, S.; Tajima, S.; Tanaka, R.; Mizuno, H.; Tobita, M. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK. PLoS ONE 2017, 12, e0168937. [Google Scholar] [CrossRef] [PubMed]
- Saygun, I.; Karacay, S.; Serdar, M.; Ural, A.U.; Sencimen, M.; Kurtis, B. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med. Sci. 2008, 23, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Sadatmansouri, S.; Agahikesheh, B.; Karimi, M.; Etemadi, A.; Saberi, S. Effect of Different Energy Densities of 915 nm Low Power Laser on the Biological Behavior of Human Gingival Fibroblast Cells In Vitro. Photochem. Photobiol. 2022, 98, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Pourzarandian, A.; Watanabe, H.; Ruwanpura, S.M.P.M.; Aoki, A.; Ishikawa, I. Effect of Low-Level Er:YAG Laser Irradiation on Cultured Human Gingival Fibroblasts. J. Periodontol. 2005, 76, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Skopin, M.D.; Molitor, S.C. Effects of near-infrared laser exposure in a cellular model of wound healing. Photodermatol. Photoimmunol. Photomed. 2009, 25, 75–80. [Google Scholar] [CrossRef]
- Illescas-Montes, R.; Melguizo-Rodríguez, L.; García-Martínez, O.; de Luna-Bertos, E.; Manzano-Moreno, F.J.; Ruiz, C.; Ramos-Torrecillas, J. Human Fibroblast Gene Expression Modulation Using 940 NM Diode Laser. Sci. Rep. 2019, 9, 12037. [Google Scholar] [CrossRef]
- Karimi, M.R.; Abdollahi, S.; Etemadi, A.; Hakimiha, N. Investigating the Effect of Photobiomodulation Therapy with Different Wavelengths of Diode Lasers on the Proliferation and Adhesion of Human Gingival Fibroblast Cells to a Collagen Membrane: An In Vitro Study. J. Lasers Med. Sci. 2024, 15, e53. [Google Scholar] [CrossRef]
- Oyebode, O.A.; Houreld, N.N. Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2885–2900. [Google Scholar] [CrossRef]
- Hawkins, D.H.; Abrahamse, H. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg. Med. 2006, 38, 74–83. [Google Scholar] [CrossRef]
- Wiegand, C.; Dirksen, A.; Tittelbach, J. Treatment with a red-laser-based wound therapy device exerts positive effects in models of delayed keratinocyte and fibroblast wound healing. Photodermatol. Photoimmunol. Photomed. 2024, 40, e12926. [Google Scholar] [CrossRef]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef] [PubMed]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021, 35, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef] [PubMed]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- Xue, M.; Jackson, C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care (New Rochelle) 2015, 4, 119–136. [Google Scholar] [CrossRef]
- Kohale, B.R.; Agrawal, A.A.; Sope, A.B.; Pardeshi, K.V.; Raut, C.P. Low-level Laser Therapy: A Literature Review. Int. J. Laser Dent. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Jere, S.W.; Houreld, N.N.; Abrahamse, H. Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. J. Photochem. Photobiol. B Biol. 2020, 204, 111791. [Google Scholar] [CrossRef]
- Martu, M.-A.; Luchian, I.; Mares, M.; Solomon, S.; Ciurcanu, O.; Danila, V.; Rezus, E.; Foia, L. The Effectiveness of Laser Applications and Photodynamic Therapy on Relevant Periodontal Pathogens (Aggregatibacter actinomycetemcomitans) Associated with Immunomodulating Anti-rheumatic Drugs. Bioengineering 2023, 10, 61. [Google Scholar] [CrossRef]
Nicholas Tripodi et al. 2022 [13] | Saina Khalaj et al. 2023 [14] | Mohammd Ayoub Rigi Ladiz, et al. 2020 [15] | Ioannis K. Karoussis et al. 2021 [16] | Ardavan Etemadi et al. 2020 [17] | Ardavan Etemadi et al. 2021 [18] | Mayumi Ogita et al. 2014 [19] | Kimia Hafezi Motlagh et al. 2023 [20] | Yoshiaki Shingyochi et al. 2017 [21] | Isil Saygun et al. 2007 [22] | Saeed Sadatmansouri and et al. 2022 [23] | Amir Pourzarandian et al. 2005 [24] | Mark D. Skopin and Scott C. Molitor 2008 [25] | Rebeca illescas-Montes et al. 2019 [26] | Karimi et al. 2024 [27] | Oyebode et al. 2022 [28] | Hawkins and Abrahamse 2006 [29] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tools Published as Stand-Alone Manuscripts (n = 17) | |||||||||||||||||
1 Objective | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
1.1 Hypothesis | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
1.1.1 Mode of research | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
1.1.2 Theoretical basis | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
1.2 Justification | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
1.2.1 Importance | |||||||||||||||||
1.2.2 Context | |||||||||||||||||
2 Test or Experimental System | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1 Theory by which experiment is test of hypothesis | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.1 PECO characteristics | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.1.1 Population | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.1.2 Exposure or intervention | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.1.3 Comparator or controls | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.1.4 Outcome | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.2 Fit between methods and hypothesis | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.1.2.1 External validity | |||||||||||||||||
2.1.2.2 Construct validity | |||||||||||||||||
2.1.3 General methodological information | |||||||||||||||||
2.1.3.1 Materials | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2 Verification of experimental components | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2.1 Authenticity of population, e.g., cell culture | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2.2 Exposure | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2.3 Outcome occurrence and magnitude | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2.4 General validation | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
2.2.5 Other materials | |||||||||||||||||
2.3 Good experimental practices | |||||||||||||||||
2.3.1 Controlling for systematic errors | |||||||||||||||||
2.3.1.1 Blinding | |||||||||||||||||
2.3.1.2 Randomisation | |||||||||||||||||
2.3.1.3 Effect modifiers | |||||||||||||||||
2.3.1.4 Allocation concealment | |||||||||||||||||
2.3.1.5 Attrition | |||||||||||||||||
2.3.1.6 Selection | |||||||||||||||||
2.3.1.7 Confounding | |||||||||||||||||
2.3.1.8 Detection | |||||||||||||||||
2.3.2 Controlling for random errors | |||||||||||||||||
2.3.2.1 Replicates | |||||||||||||||||
2.3.2.2 Sample size, e.g., power analysis | |||||||||||||||||
2.3.3 Nonspecific error control | |||||||||||||||||
2.3.3.1 Investigator roles | |||||||||||||||||
2.3.3.2 Adherence to standardised practices | |||||||||||||||||
2.3.4 Conduct according to protocol | |||||||||||||||||
3 Analysis and derivation of findings | |||||||||||||||||
3.1 Generation of results | |||||||||||||||||
3.1.1 Data normalisation and cleansing | |||||||||||||||||
3.1.2 Statistical methods | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
3.1.3 Image analysis | x | x | |||||||||||||||
3.1.4 Visualisation methods | |||||||||||||||||
3.1.5 Complete reporting | |||||||||||||||||
3.1.6 Software | |||||||||||||||||
3.1.7 Raw data, code, etc. | |||||||||||||||||
3.2 Interpretation of results | |||||||||||||||||
3.2.1 Significance | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |
3.2.2 Limitations of experimental approach | x | ||||||||||||||||
4 Other | |||||||||||||||||
4.1 Interests | |||||||||||||||||
4.2 Summary sections | |||||||||||||||||
4.2.1 Abstract | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
4.2.2 Resources | |||||||||||||||||
4.2.3 Captions | |||||||||||||||||
4.3 Ethics | |||||||||||||||||
4.4 Prospects for replication | x | ||||||||||||||||
Not classifiable under any domain |
Author | Year | Type of Paper | Cellular Line | Laser | Wavelength | Output Power/Output Energy | Energy Density (J/cm2) | Frequency (Hz) | Irradiation Time (s) | Irradiation Area (cm2) | Type of Irradiation | Effect |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nicholas Tripodi et al. [13] | 2022 | Article | Human caucasian foetal foreskin fibroblasts (HFFF2) | Diode | 670 nm | 1 J/cm2 | - | Polarized | Enhanced proliferative and cytoprotective effect. | |||
Saina Khalaj et al. [14] | 2023 | Research article | Human gingival fibroblasts | Diode | 980 nm | 5.2 J/cm2 | - | Continuous irradiation mode | Higher proliferation rate. | |||
5 J/cm2 | 50 Hz | Pulsed irradiation mode | Positive effect on cell proliferation. | |||||||||
Mohammd Ayoub Rigi Ladiz et al. [15] | 2020 | Original paper | Human gingival fibroblasts | Diode | 810 nm | 0.5 J/cm2 | - | Continuous irradiation mode | Positive effect on cell viability, NO PROLIFERATION. | |||
810 nm + 940 nm | 1.5 J/cm2 and 2.5 J/cm2 | - | Continuous irradiation mode | Higher proliferation rate. | ||||||||
Ioannis K. Karoussis et al. [16] | 2021 | Original paper | Human gingival fibroblasts (hGFs) | Diode | 810 nm | 500 mW | 12 J/cm2 | - | 0.16 cm2 | Continuous irradiation mode | Increase in cell proliferation rate. | |
Ardavan Etemadi et al. [17] | 2020 | Original paper | Human gingival fibroblasts | Diode | 445 nm | 200 and 400 mW | 4 to 8 J/cm2 | - | 10 s | 0.5 cm2 | Continuous irradiation mode | Enhanced effect on proliferation and migration. |
Ardavan Etemadi et al. [18] | 2021 | Research article | Human gingival fibroblasts (HGF1-PI 1) | Diode | 635 nm | 220 mW | 4 J/cm2 | - | 12 s | 0.5 cm2 | Continuous irradiation mode | Most desirable laser radiation settings to obtain higher proliferation rates. |
980 nm | 100 mW | 1, 1.5, 4 J/cm2 | - | 2.5, 4, and 10 s | 0.5 cm2 | Continuous irradiation mode | ||||||
Mayumi Ogita et al. [19] | 2014 | Original paper | Human gingival fibroblasts | Erbium YAG | 2940 nm | 1.84, 2.35, and 2.90 mJ/pulse | 2.11 and/or 2.61 J/cm2 | - | 30 s | Continuous irradiation mode | Significant enhancement of cell proliferation rate. | |
Kimia Hafezi Motlagh et al. [20] | 2023 | Method article | Human gingival fibroblasts (HuGu) | Diode | 660 nm | 50 mW | 4 J/cm2 | - | 64 s | 1 cm2 | Continuous irradiation mode | Positive effect on quantity and quality of human gingival fibroblasts. |
Yoshiaki Shingyochi et al. [21] | 2017 | Research article | Human dermal fibroblasts (HDFs) | CO2 | 10.6 µm | 52.08 mW/cm 2 | 1 J/cm2 | - | 20 s | 35 mm | Continuous irradiation mode | Most effective parameter to obtain best effect on proliferation. |
Isil Saygun et al. [22] | 2007 | Original paper | Human gingival fibroblasts | Diode | 685 nm | 25 mW | 2 J/cm2 | - | 140 s | 1 cm2 | Continuous irradiation mode | Positive effect on cell proliferation rate with single and double irradiation. |
Saeed Sadatmansouri et al. [23] | 2022 | Research article | Human gingival fibroblasts (C-10459 hugu-PI1) | Diode | 915 nm | 2, 3 and 4 J/cm2 | - | Continuous irradiation mode | Parameters seem to enhance viability of human gingival fibroblast cells for extended periods. | |||
Amir Pourzarandian et al. [24] | 2005 | Paper | Human gingival fibroblasts (hGF) | Erbium YAG | 2940 nm | 30 to 350 mJ/pulse | 3.37 J/cm2 | 20 Hz | 35 mm | Pulsed irradiation mode | Findings showed stimulatory effect of Er:YAG laser on hGF proliferation in laser dose-dependent manner. | |
Mark D. Skopin and Scott C. Molitor [25] | 2008 | Original paper | Foetal human skin fibroblast cells (ATCC CCD1070SK) | Diode | 980 nm | 1.5 to 7.5 W 26–120 mW/cm2 | 3.1 to 14.4 J/cm2 | 120 s | Continuous irradiation mode | Increased cell proliferation was obtained with energy density from 8.8 to 21.9 J/cm2, while negative effects were observed after long exposure to laser irradiation (65.7 J/cm2). | ||
Rebeca Illescas-Montes et al. [26] | 2019 | Scientific report | Human epithelial fibroblast CCD-1064Sk | Diode | 940 nm | 0.5 W | 4 J/cm2 | Continuous irradiation mode | Both treatments with 940 nm diode laser (single dose or two doses) significantly increased FGF expression, although effect was lower with two doses. | |||
Karimi et al. [27] | 2024 | Original paper | Human gingival fibroblasts (hGF) | Diode | 660 nm | 2 and 4 J/cm2 | Continuous irradiation mode | Highest proliferation rate compared to other groups was observed in 915 nm wavelength with energy density of 4 J/cm2. | ||||
808 nm | ||||||||||||
915 nm | ||||||||||||
Oyebode et al. [28] | 2022 | Original research | Human skin fibroblast cell line | Diode | 830 nm | 5 J/cm2 | Continuous irradiation mode | Laser irradiation stimulated cells to enter and initiate S and G2/M phases from G0/G1 phase. | ||||
Hawkins and Abrahamse [29] | 2006 | Original paper | Human skin fibroblast (ATCC CRL1502 WS1) | Diode | 632.8 nm | 0.5, 2.5, 5, 10, 16 J/cm2 | Continuous irradiation mode | Proliferation and complete absence of adverse effects on cells’ structure can be reached with energy density of 5 J/cm2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iaria, R.; Vescovi, P.; De Francesco, P.; Giovannacci, I. Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review. Life 2025, 15, 853. https://doi.org/10.3390/life15060853
Iaria R, Vescovi P, De Francesco P, Giovannacci I. Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review. Life. 2025; 15(6):853. https://doi.org/10.3390/life15060853
Chicago/Turabian StyleIaria, Roberta, Paolo Vescovi, Pierpaolo De Francesco, and Ilaria Giovannacci. 2025. "Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review" Life 15, no. 6: 853. https://doi.org/10.3390/life15060853
APA StyleIaria, R., Vescovi, P., De Francesco, P., & Giovannacci, I. (2025). Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review. Life, 15(6), 853. https://doi.org/10.3390/life15060853