Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Randomization
2.3. Subjects
2.4. Sample Size Determination
2.5. Endpoints
2.6. Clinical Determinations
2.7. Arterial Tonometry
2.8. Statistical Analysis
3. Results
4. Discussion
Effect of SGLT2 Inhibitors on Triglyceride Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACEI | Angiotensin-Converting Enzyme Inhibitors |
ARAII | Angiotensin II Receptor Antagonists |
BMI | Body Mass Index |
BP | Blood Pressure |
cf-PWV | Carotid–Femoral Pulse Wave Velocity |
DBP | Diastolic Blood Pressure |
ECG | Electrocardiogram |
GFR | Glomerular Filtration Rate |
HbA1c | Glycated Hemoglobin |
SGLT2i | Sodium-Glucose Cotransporter-2 Inhibitors |
MAP | Mean Arterial Pressure |
PWV | Pulse Wave Velocity |
SBP | Systolic Blood Pressure |
SGLT2 | Sodium-Glucose Cotransporter-2 |
T1D | Type 1 Diabetes |
T2D | Type 2 Diabetes |
TG | Triglycerides |
TZD | Thiazolidinediones |
UTI | Urinary Tract Infection |
References
- Stone, K.; Veerasingam, D.; Meyer, M.L.; Heffernan, K.S.; Higgins, S.; Maria Bruno, R.; Bueno, C.A.; Döerr, M.; Schmidt-Trucksäss, A.; Terentes-Printzios, D.; et al. Reimagining the Value of Brachial-Ankle Pulse Wave Velocity as a Biomarker of Cardiovascular Disease Risk—A Call to Action on Behalf of VascAgeNet. Hypertension 2023, 80, 1980–1992. [Google Scholar] [CrossRef]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Schettini, I.V.G.; Barreto, S.M.; Brant, L.C.C.; Ribeiro, A.L.P.; Mill, J.G.; Rios, D.R.A.; Figueiredo, R.C. Use of Antihypertensive Drugs and Arterial Stiffness in the Longitudinal Study of Adult Health (ELSA-Brasil). Cardiovasc. Drugs Ther. 2025, 39, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Saz-Lara, A.; Lugones-Sánchez, C.; Pozuelo-Carrascosa, D.P.; Gómez-Sánchez, L.; López-Gil, J.F.; García-Ortiz, L.; Bruno, R.M.; Gómez-Marcos, M.Á. Comparative effect of antihypertensive drugs in improving arterial stiffness in adults with hypertension (RIGIPREV study). A network meta-analysis. Front. Pharmacol. 2023, 14, 1225795. [Google Scholar] [CrossRef]
- Åkerblom, A.; Oldgren, J.; Latva-Rasku, A.; Johansson, L.; Lisovskaja, V.; Karlsson, C.; Oscarsson, J.; Nuutila, P. Effects of DAPAgliflozin on CARDiac substrate uptake, myocardial efficiency, and myocardial contractile work in type 2 diabetes patients—A description of the DAPACARD study. Upsala J. Med. Sci. 2019, 124, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Chaparro, S.; López-Carmona, M.D.; Cobos-Palacios, L.; Sanz-Cánovas, J.; Bernal-López, M.R.; Gómez-Huelgas, R. Statins and Peripheral Arterial Disease: A Narrative Review. Front. Cardiovasc. Med. 2021, 8, 777016. [Google Scholar] [CrossRef]
- Heleniak, Z.; Illersperger, S.; Brakemeier, S.; Bach, P.; Dębska-Ślizień, A.; Budde, K.; Halleck, F. The renin-angiotensin-aldosterone system blockade and arterial stiffness in renal transplant recipients—A cross-sectional prospective observational clinical study. Acta Biochim. Pol. 2020, 67, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc. Diabetol. 2018, 17, 62. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Bastien a Norwood, P.; List, J.F.; T’Joen, C.; Fiedorek, F.T. A Study of Dapagliflozin in Patients with Type 2 Diabetes Receiving High Doses of Insulin Plus Insulin Sensitizers: Applicability of A Novel Insulin-Independent Treatment. Diabetes Care 2009, 32, 1656–1662. [Google Scholar] [CrossRef]
- Heise, T.; Jordan, J.; Wanner, C.; Heer, M.; Macha, S.; Mattheus, M.; Lund, S.S.; Woerle, H.J.; Broedl, U.C. Acute Pharmacodynamic Effects of Empagliflozin with and Without Diuretic Agents in Patients with Type 2 Diabetes Mellitus. Clin. Ther. 2016, 38, 2248–2264. [Google Scholar] [CrossRef]
- Aroor, A.R.; Das, N.A.; Carpenter, A.J.; Habibi, J.; Jia, G.; Ramirez-Perez, F.I.; Martinez-Lemus, L.; Manrique-Acevedo, C.M.; Hayden, M.R.; Duta, C.; et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc. Diabetol. 2018, 17, 108. [Google Scholar] [CrossRef]
- Spronck, B.; Terentes-Printzios, D.; Avolio, A.P.; Boutouyrie, P.; Guala, A.; Jerončić, A.; Laurent, S.; Barbosa, E.C.D.; Baulmann, J.; Chen, C.H.; et al. 2024 Recommendations for Validation of Noninvasive Arterial Pulse Wave Velocity Measurement Devices. Hypertension 2024, 81, 183–192. [Google Scholar] [CrossRef]
- Pierre Boutouyrie. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sawada, T.; Uzu, K.; Hashimoto, N.; Onishi, T.; Takaya, T.; Shimane, A.; Taniguchi, Y.; Yasaka, Y.; Ohara, T.; Kawai, H. Empagliflozin’s Ameliorating Effect on Plasma Triglycerides: Association with Endothelial Function Recovery in Diabetic Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2020, 27, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Canet, F.; Iannantuoni, F.; Marañon, A.M.d.; Díaz-Pozo, P.; López-Domènech, S.; Vezza, T.; Navarro, B.; Solá, E.; Falcón, R.; Bañuls, C.; et al. Does Empagliflozin Modulate Leukocyte–Endothelium Interactions, Oxidative Stress, and Inflammation in Type 2 Diabetes? Antioxidants 2021, 10, 1228. [Google Scholar] [CrossRef] [PubMed]
- Chilton, R.; Tikkanen, I.; Cannon, C.P.; Crowe, S.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes. Metab. 2015, 17, 1180–1193. [Google Scholar] [CrossRef]
- El-Daly, M.; Pulakazhi Venu, V.K.; Saifeddine, M.; Mihara, K.; Kang, S.; Fedak, P.W.M.; Alston, L.A.; Hirota, S.A.; Ding, H.; Triggle, C.R.; et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vasc. Pharmacol. 2018, 109, 56–71. [Google Scholar] [CrossRef]
- Patoulias, D.; Papadopoulos, C.; Kassimis, G.; Fragakis, N.; Vassilikos, V.; Karagiannis, A.; Doumas, M. Effect of sodium-glucose co-transporter-2 inhibitors on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials. Vasc. Med. 2022, 27, 433–439. [Google Scholar] [CrossRef]
- Sridharan, K.; Sivaramakrishnan, G. Sodium Glucose Cotransporter-2 Inhibitors Improve Endothelial Function and Arterial Stiffness in Diabetic Individuals: A Systematic Review and Network Meta-Analysis. Curr. Vasc. Pharmacol. 2025, in press. [CrossRef]
- Stachteas, P.; Karakasis, P.; Patoulias, D.; Clemenza, F.; Fragakis, N.; Rizzo, M. The effect of sodium-glucose co-transporter-2 inhibitors on markers of subclinical atherosclerosis. Ann. Med. 2023, 55, 2304667. [Google Scholar] [CrossRef]
- Hidalgo Santiago, J.C.; Maraver Delgado, J.; Cayón Blanco, M.; López Saez, J.B.; Gómez-Fernández, P. Effect of dapagliflozin on arterial stiffness in patients with type 2 diabetes mellitus. Med. Clínica 2020, 154, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int. J. Mol. Sci. 2021, 22, 8786. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Lavalle, C.; Palombi, M.; Pierucci, N.; Trivigno, S.; D’Amato, A.; Filomena, D.; Cipollone, P.; Laviola, D.; Piro, A.; et al. SGLT2i reduce arrhythmic events in heart failure patients with cardiac implantable electronic devices. ESC Heart Fail. 2025, 12, 2125–2133. [Google Scholar] [CrossRef]
- Bosch, A.; Ott, C.; Jung, S.; Striepe, K.; Karg, M.V.; Kannenkeril, D.; Dienemann, T.; Schmieder, R.E. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc. Diabetol. 2019, 18, 44. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Liu, T.; Cai, L.; Yang, X.; Mou, C. The effects of Sodium-glucose cotransporter 2 inhibitors on adipose tissue in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Front. Endocrinol. 2023, 14, 1115321. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Simental-Mendía, M.; Millán-Alanís, J.M.; Simental-Mendía, L.E. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol. Res. Commun. 2020, 160, 105068. [Google Scholar] [CrossRef] [PubMed]
- van Bommel, E.J.M.; Muskiet, M.H.A.; Tonneijck, L.; Kramer, M.H.H.; Nieuwdorp, M.; van Raalte, D.H. SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome. Clin. J. Am. Soc. Nephrol. 2017, 12, 700–710. [Google Scholar] [CrossRef]
- Bechmann, L.E.; Emanuelsson, F.; Nordestgaard, B.G.; Benn, M. SGLT2-inhibition increases total, LDL, and HDL cholesterol and lowers triglycerides: Meta-analyses of 60 randomized trials, overall and by dose, ethnicity, and drug type. Atherosclerosis 2024, 394, 117236. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Hilliard, M.E.; Isaacs, D.; et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46 (Suppl. S1), s49–s267. [Google Scholar] [CrossRef]
- Katsimardou, A.; Theofilis, P.; Vordoni, A.; Doumas, M.; Kalaitzidis, R.G. The Effects of SGLT2 Inhibitors on Blood Pressure and Other Cardiometabolic Risk Factors. Int. J. Mol. Sci. 2024, 25, 12384. [Google Scholar] [CrossRef]
Intervention Groups | ||||
---|---|---|---|---|
Baseline Characteristics | Dapagliflozin N = 10 1 | Empagliflozin N = 10 1 | Placebo N = 10 1 | p 2 |
Age (years) | 51.50 [48.00, 56.00] | 47.50 [45.00, 50.00] | 51.00 [45.00, 52.00] | 0.267 |
Sex | ||||
Woman | 5 (50%) | 6 (60%) | 7 (70%) | |
Man | 5 (50%) | 4 (40%) | 3 (30%) | |
Height (cm) | 1.62 [1.52, 1.68] | 1.64 [1.59, 1.70] | 1.58 [1.53, 1.63] | 0.452 |
Weight (kg) | 73.80 [72.00, 75.50] | 77.45 [73.00, 94.50] | 75.85 [73.00, 79.90] | 0.527 |
BMI (kg/m2) | 27.78 [27.10, 28.42] | 29.15 [27.48, 35.57] | 28.72 [27.48, 30.07] | 0.527 |
SPB (mmHg) | 125.50 [118.00, 134.00] | 124.50 [110.00, 134.00] | 122.50 [114.00, 128.00] | 0.587 |
DBP (mmHg) | 82.50 [76.00, 89.00] | 84.00 [75.00, 90.00] | 80.50 [73.00, 83.00] | 0.490 |
MAP (mmHg) | 95.34 [90.67, 101.33] | 97.84 [88.33, 105.33] | 93.67 [88.00, 96.67] | 0.475 |
HbA1c (%) | 7.95 [7.60, 9.00] | 8.95 [8.20, 9.70] | 8.85 [8.10, 9.50] | 0.101 |
Glucose (mg/dL) | 162.01 [145.00, 180.88] | 202.37 [182.00, 304.70] | 160.98 [136.30, 180.80] | 0.018 |
Triglycerides (mg/dL) | 128.05 [116.10, 155.40] | 120.05 [115.10, 126.00] | 131.50 [113.10, 145.00] | 0.754 |
cf-PWV (m/s) | 8.05 [7.10, 8.80] | 9.15 [8.50, 9.70] | 8.10 [7.15, 9.00] | 0.080 |
Intervention Groups | ||||
---|---|---|---|---|
Final Characteristics | Dapagliflozin N = 10 1 | Empagliflozin N = 10 1 | Placebo N = 10 1 | p 2 |
Age (years) | 51.50 [48.00, 56.00] | 47.50 [45.00, 50.00] | 51.00 [45.00, 52.00] | 0.267 |
Sex | ||||
Woman | 5 (50%) | 6 (60%) | 7 (70%) | |
Man | 5 (50%) | 4 (40%) | 3 (30%) | |
Height (cm) | 1.62 [1.52, 1.68] | 1.64 [1.59, 1.70] | 1.58 [1.53, 1.63] | 0.452 |
Weight (kg) | 72.60 [71.30, 75.10] | 72.70 [69.60, 91.00] | 76.25 [73.00, 80.60] | 0.362 |
BMI (kg/m2) | 27.33 [26.84, 28.27] | 27.36 [26.20, 34.25] | 28.70 [27.48, 30.34] | 0.362 |
SPB (mmHg) | 113.93 [109.00, 117.00] | 110.50 [101.00, 128.00] | 113.50 [111.00, 123.00] | 0.741 |
DBP (mmHg) | 73.82 [70.00, 74.63] | 72.50 [65.00, 83.00] | 78.00 [73.00, 82.00] | 0.436 |
MAP (mmHg) | 87.70 [82.33, 87.73] | 84.17 [77.00, 98.00] | 89.50 [86.67, 92.33] | 0.326 |
Glucose (mg/dL) | 130.30 [123.00, 152.00] | 155.10 [141.60, 186.00] | 161.35 [136.00, 185.00] | 0.058 |
Triglycerides (mg/dL) | 133.00 [105.00, 148.20] | 105.70 [101.20, 114.00] | 135.00 [114.00, 187.00] | 0.033 |
cf-PWV (m/s) | 7.65 [7.30, 8.50] | 8.25 [7.40, 8.40] | 8.06 [7.36, 8.50] | 0.787 |
Comparison | Z | p Unadjusted | p Adjusted | r |
---|---|---|---|---|
Dapagliflozin—Empagliflozin | 2.909274 | 0.004 | 0.005 † | 0.650 |
Dapagliflozin—Placebo | −1.804004 | 0.071 | 0.071 | 0.403 |
Empagliflozin—Placebo | −4.713278 | <0.001 | <0.001 ¥ | 1.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Campos, E.; Grover Páez, F.; Ramos Becerra, C.G.; Balleza Alejandri, L.R.; Suárez Rico, D.O.; Cardona Muñoz, E.G.; Pascoe González, S.; Ramos Zavala, M.G.; Beltrán Ramírez, A.; García Galindo, J.J.; et al. Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical. Life 2025, 15, 802. https://doi.org/10.3390/life15050802
González Campos E, Grover Páez F, Ramos Becerra CG, Balleza Alejandri LR, Suárez Rico DO, Cardona Muñoz EG, Pascoe González S, Ramos Zavala MG, Beltrán Ramírez A, García Galindo JJ, et al. Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical. Life. 2025; 15(5):802. https://doi.org/10.3390/life15050802
Chicago/Turabian StyleGonzález Campos, Erick, Fernando Grover Páez, Carlos Gerardo Ramos Becerra, Luis Ricardo Balleza Alejandri, Daniel Osmar Suárez Rico, Ernesto Germán Cardona Muñoz, Sara Pascoe González, María Guadalupe Ramos Zavala, Alberto Beltrán Ramírez, Jesús Jonathan García Galindo, and et al. 2025. "Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical" Life 15, no. 5: 802. https://doi.org/10.3390/life15050802
APA StyleGonzález Campos, E., Grover Páez, F., Ramos Becerra, C. G., Balleza Alejandri, L. R., Suárez Rico, D. O., Cardona Muñoz, E. G., Pascoe González, S., Ramos Zavala, M. G., Beltrán Ramírez, A., García Galindo, J. J., & Cardona Müller, D. (2025). Empagliflozin Leads to Faster Improvement in Arterial Stiffness Compared to Dapagliflozin: A Double-Blind Clinical. Life, 15(5), 802. https://doi.org/10.3390/life15050802