Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study—Is There a Relationship?
Abstract
:1. Introduction
2. Methods
2.1. Population of Healthy Adults
2.2. Two-Dimensional Doppler Echocardiography
2.3. Three-Dimensional Speckle-Tracking Echocardiography
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Parameters
3.2. Two-Dimensional Doppler Echocardiographic and 3DSTE Data
3.3. Classification of Subjects
3.4. LV Volumes in AVA Dimension Subgroups
3.5. AVA Dimensions in AVA Dimension Subgroups
3.6. AVA Dimensions in LV Volume Subgroups
3.7. LV Volumes in LV Volume Subgroups
3.8. Intraobserver and Interobserver Agreements
4. Discussion
Limitation Section
- -
- There is a significant difference in quality between images obtained with 2D echocardiography and 3DSTE. Routine 2D echocardiography still provides significantly better image quality and temporal and spatial resolution than that of 3DSTE in a routine ‘average’ subject. The mean frame rate available with 3DSTE is still relatively low (32 ± 2 fps). The size of the 3DSTE-capable transducer is mostly larger and thicker than that used for 2D echocardiography, limiting the optimal positioning of it on the patients’ chest. During digital data acquisitions, for optimal images, one or more (in real-life practice 4–6) subvolume(s) during more than 1 (4–6) cardiac cycle(s) is/are necessary; this increases the probability of the occurrence of potential stitching/motion artifacts during data analysis [2,4,5,6,7]. For optimal images, a stable RR interval on the ECG is also necessary; therefore, in the presence of potential rhythm irregularities or poor image quality, subjects had to be excluded from 3DSTE-derived analysis.
- -
- -
- The use of other echocardiographic techniques to characterize valvular function was not an aim of this study [21].
- -
- All the individuals were healthy, although potential latent diseases could not be ruled out with 100% certainty.
- -
- Some differences between parameters proved to be non-significant or tendentious. These findings must of course be treated in their proper context and interpreted accordingly.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Kuhl, H.P. Second-generation real-time 3D echocardiography: A revolutionary new technology. MedicaMundi 2003, 47, 34–40. [Google Scholar]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef] [PubMed]
- Ammar, K.A.; Paterick, T.E.; Khandheria, B.K.; Jan, M.F.; Kramer, C.; Umland, M.M.; Tercius, A.J.; Baratta, L.; Tajik, A.J. Myocardial mechanics: Understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography 2012, 29, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Urbano-Moral, J.A.; Patel, A.R.; Maron, M.S.; Arias-Godinez, J.A.; Pandian, N.G. Three-dimensional speckle-tracking echocardiography: Methodological aspects and clinical potential. Echocardiography 2012, 29, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lin, Y.; Ji, M.; Wu, W.; Li, H.; Qian, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Utility of Three-Dimensional Speckle-Tracking Echocardiography in Heart Failure. J. Clin. Med. 2022, 11, 6307. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Ambrus, N.; Lengyel, C. Does left ventricular rotational mechanics depend on aortic valve annular dimensions in healthy adults?—A three-dimensional speckle-tracking echocardiography-derived analysis from the MAGYAR-Healthy Study. Biomedicines 2025, 13, 817. [Google Scholar] [CrossRef]
- Nesser, H.J.; Mor-Avi, V.; Gorissen, W.; Weinert, L.; Steringer-Mascherbauer, R.; Niel, J.; Sugeng, L.; Lang, R.M. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: Comparison with MRI. Eur. Heart J. 2009, 30, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, S.A.; Brouwer, W.P.; Aly, M.F.A.; Russel, I.K.; de Roest, G.J.; Beek, A.M.; van Rossum, A.C.; Kamp, O. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, S.A.; Aly, M.F.A.; Terwee, C.B.; van Rossum, A.C.; Kamp, O. Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kormanyos, A.; Kalapos, A.; Domsik, P.; Gyenes, N.; Lengyel, C.; Nemes, A. Normal reference values of left ventricular volumetric parameters in healthy adults-real-life single-center experience from the three-dimensional speckle-tracking echocardiographic MAGYAR-Healthy Study. Quant. Imaging Med. Surg. 2021, 11, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Tamborini, G.; Fusini, L.; Muratori, M.; Cefalù, C.; Gripari, P.; Ali, S.G.; Pontone, G.; Andreini, D.; Bartorelli, A.L.; Alamanni, F.; et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.C.; Pedley, T.J.; Schroter, R.C.; Seed, W.A. The Mechanics of Circulation; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Berman, M.N.; Tupper, C.; Bhardwaj, A. Physiology, Left Ventricular Function. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Anderson, R.H. Clinical anatomy of the aortic root. Heart 2000, 84, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sha, J.; Yin, Q.; Gu, Y.; He, X. Global burden of hypertensive heart disease and attributable risk factors, 1990–2021: Insights from the global burden of disease study 2021. Sci. Rep. 2025, 15, 14594. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Kormányos, Á.; Rácz, G.; Ruzsa, Z.; Achim, A.; Ambrus, N.; Lengyel, C. Tricuspid annular and right atrial volume changes are associated in healthy adults-insights from the three-dimensional speckle-tracking echocardiographic MAGYAR-Healthy Study. Front. Cardiovasc. Med. 2023, 10, 1140599. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Kormányos, Á.; Ambrus, N.; Lengyel, C. Associations between Mitral Annular and Left Atrial Volume Changes in Healthy Adults-Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. Rev. Cardiovasc. Med. 2022, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Kitano, T.; Nabeshima, Y.; Nagata, Y.; Takeuchi, M. Prognostic value of the right ventricular ejection fraction using three-dimensional echocardiography: Systematic review and meta-analysis. PLoS ONE 2023, 18, e0287924. [Google Scholar] [CrossRef]
- Naguib, K.I.; Attia, M.A.; Bashandy, M.S.; Reihan, M.S.; Dabash, T.A.; El-Salam, A.B.A.; Helal, H.H.; Bahbah, E.I. The role of trans-thoracic echocardiography in the assessment of aortic annular diameter. Medicine 2021, 100, e24682. [Google Scholar] [CrossRef]
ED-AVA-A ≤ 2.3 cm2 (n = 18) | 2.3 cm2 < ED- AVA-A < 4 cm2 (n = 70) | ED-AVA-A ≥ 4 cm2 (n = 19) | ES-AVA-A ≤ 2.52 cm2 (n = 16) | 2.52 cm2 < ES- AVA-A < 4.22 cm2 (n = 73) | ES-AVA-A ≥ 4.22 cm2 (n = 18) | |
---|---|---|---|---|---|---|
LV volumes | ||||||
ED-LV volume (mL) | 76.3 ± 13.2 | 87.0 ± 22.3 | 90.2 ± 22.4 | 76.1 ± 19.6 | 85.4 ± 21.1 | 91.7 ± 23.1 |
ES-LV volume (mL) | 33.5 ± 6.9 | 37.0 ± 10.5 | 38.8 ± 11.3 | 31.6 ± 8.1 | 36.3 ± 9.8 | 41.1 ± 12.4 ** |
LV-EF (%) | 56.0 ± 5.6 | 58.2 ± 5.5 | 57.2 ± 5.3 | 58.2 ± 5.5 | 58.1 ± 5.7 | 55.7 ± 4.9 |
LV mass (g) | 157.8± 31.2 | 165.8 ± 31.2 | 167.4 ± 32.3 | 153.4 ± 33.1 | 165.3 ± 29.7 | 168.3 ± 35.8 |
Aortic valve annular dimensions | ||||||
ED-AVA-Dmax (cm) | 1.6± 0.2 | 2.0 ± 0.2 * | 2.4 ± 0.2 */† | 1.7 ± 0.2 | 2.0 ± 0.2 ** | 2.4 ± 0.3 **/†† |
ED-AVA-Dmin (cm) | 1.4 ± 0.1 | 1.8 ± 0.2 * | 2.2 ± 0.2 */† | 1.5 ± 0.2 | 1.8 ± 0.2 ** | 2.2 ± 0.2 **/†† |
ED-AVA-A (cm2) | 1.9 ±0.3 ‡ | 3.1 ± 0.4 */‡ | 4.5 ± 0.5 */† | 2.2 ± 0.5 | 3.1 ± 0.6 **/‡ | 4.2 ± 0.8 **/††/‡ |
ED-AVA-P (cm) | 5.0± 0.5 ‡ | 6.3 ± 0.4 */‡ | 7.6 ± 0.4 */† | 5.2 ± 0.6 | 6.3 ± 0.7 **/‡ | 7.3 ± 0.7 **/††/‡ |
ES-AVA-Dmax (cm) | 1.7 ± 0.2 | 2.1± 0.2 * | 2.4 ± 0.3 */† | 1.7 ± 0.2 | 2.0 ± 0.2 ** | 2.5 ± 0.2 **/†† |
ES-AVA-Dmin (cm) | 1.5 ± 0.2 | 1.9± 0.2 * | 2.2± 0.2 */† | 1.5 ± 0.2 | 1.8 ± 0.2 ** | 2.2 ± 0.2 **/†† |
ES-AVA-A (cm2) | 2.4 ± 0.4 | 3.3 ± 0.6 * | 4.4 ± 0.8 */† | 2.1 ± 0.4 | 3.3 ± 0.4 ** | 4.8 ± 0.5 **/†† |
ES-AVA-P (cm) | 5.5 ± 0.5 | 6.5 ± 0.6 * | 7.5 ± 0.7 */† | 5.2 ± 0.5 | 6.5 ± 0.5 ** | 7.8 ± 0.5 **/†† |
ED-LV Volume ≤ 64.3 mL (n = 13) | 64.3 mL < ED-LV Volume < 107.3 mL (n = 83) | ED-LV Volume ≥ 107.3 mL (n = 11) | ES-LV Volume ≤ 26.4 mL (n = 15) | 26.4 mL < ES-LV Volume < 47 mL (n = 77) | ES-LV Volume ≥ 47 mL (n = 15) | |
---|---|---|---|---|---|---|
LV volumes | ||||||
ED-LV volume (mL) | 52.7 ± 14.0 | 84.9 ± 11.8 * | 125.3 ± 16.1 */† | 64.4 ± 12.5 | 83.5 ± 15.2 ** | 121.9 ± 18.4 **/†† |
ES-LV volume (mL) | 24.5 ± 5.0 | 35.7 ± 7.1 * | 55.2 ± 8.8 */† | 22.5 ± 2.7 | 36.3 ± 5.9 ** | 55.1 ± 8.0 **/†† |
LV-EF (%) | 57.8 ± 6.1 | 58.0 ± 5.7 | 56.0 ± 4.1 | 64.4 ± 5.3 | 56.7 ± 4.7 ** | 54.6 ± 4.0 **/†† |
LV mass (g) | 131.8 ± 24.5 | 163.4 ± 27.1 * | 203.9 ± 28.3 */† | 138.8 ± 28.6 | 163.3 ± 26.8 ** | 202.6 ± 26.2 **/†† |
Aortic valve annulus | ||||||
ED-AVA-Dmax (cm) | 2.1 ± 0.3 | 2.0 ± 0.3 | 2.1 ± 0.3 | 2.0 ± 0.2 | 2.0 ± 0.3 | 2.1 ± 0.3 |
ED-AVA-Dmin (cm) | 1.8 ± 0.3 | 1.8 ± 0.3 ‡ | 1.9 ± 0.2 | 1.8 ± 0.3 | 1.8 ± 0.3 | 1.9 ± 0.3 |
ED-AVA-A (cm2) | 3.1 ± 0.8 | 3.1 ± 0.9 ‡ | 3.4 ± 0.7 | 3.1 ± 0.6 | 3.2 ± 0.8 ‡ | 3.5 ± 0.7 ‡ |
ED-AVA-P (cm) | 6.3 ± 0.8 | 6.3 ± 0.9 ‡ | 6.6 ± 0.6 | 6.3 ± 0.7 | 6.3 ± 0.9 ‡ | 6.7 ± 0.7 ‡ |
ES-AVA-Dmax (cm) | 2.0 ± 0.3 | 2.1 ± 0.3 | 2.1 ± 0.3 | 2.0 ± 0.3 | 2.1 ± 0.3 | 2.1 ± 0.3 |
ES-AVA-Dmin (cm) | 1.8 ± 0.3 | 1.9 ± 0.3 | 1.9 ± 0.2 | 1.8 ± 0.3 | 1.9 ± 0.3 | 2.0 ± 0.2 |
ES-AVA-A (cm2) | 3.2 ± 0.8 | 3.4 ± 0.9 | 3.7 ± 0.7 | 3.2 ± 0.8 | 3.3 ± 0.9 | 3.8 ± 0.7 ** |
ES-AVA-P (cm) | 6.3 ± 0.8 | 6.5 ± 0.9 | 6.8 ± 0.7 | 6.3 ± 0.8 | 6.5 ± 0.8 | 7.0 ± 0.6 ** |
Intraobserver Agreement | Interobserver Agreement | |||
---|---|---|---|---|
Mean ± 2SD Difference in Values Obtained by 2 Measurements of the Same Observer | ICC Between 2 Measurements of the Same Observer | Mean ± 2SD Difference in Values Obtained by 2 Observers | ICC Between Independent Measurements of 2 Observers | |
ED-LV volume (mL) | 1.7 ± 6.3 | 0.90 (p < 0.01) | 1.7 ± 4.2 | 0.90 (p < 0.01) |
ES-LV volume (mL) | 0.8 ± 4.9 | 0.90 (p < 0.01) | 1.0 ± 4.3 | 0.90 (p < 0.01) |
ED-AVA-Dmax (cm) | −0.05 ± 0.18 | 0.86 (p < 0.01) | −0.04 ± 0.18 | 0.88 (p < 0.01) |
ED-AVA-Dmin (cm) | −0.02 ± 0.22 | 0.90 (p < 0.01) | −0.04 ± 0.18 | 0.93 (p < 0.01) |
ED-AVA-A (cm2) | −0.15 ± 0.59 | 0.93 (p < 0.01) | −0.11 ± 0.55 | 0.95 (p < 0.01) |
ED-AVA-P (cm) | −0.04 ± 0.65 | 0.92 (p < 0.01) | −0.13 ± 0.62 | 0.92 (p < 0.01) |
ES-AVA-Dmax (cm) | 0.01 ± 0.27 | 0.93 (p < 0.01) | 0.04 ± 0.30 | 0.94 (p < 0.01) |
ES-AVA-Dmin (cm) | 0.04 ± 0.32 | 0.83 (p < 0.01) | 0.05 ± 0.30 | 0.83 (p < 0.01) |
ES-AVA-A (cm2) | 0.16 ± 0.71 | 0.92 (p < 0.01) | 0.11 ± 0.71 | 0.93 (p < 0.01) |
ES-AVA-P (cm) | −0.02 ± 0.52 | 0.91 (p < 0.01) | 0.02 ± 0.55 | 0.93 (p < 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemes, A.; Bordács, B.; Ambrus, N.; Lengyel, C. Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study—Is There a Relationship? Life 2025, 15, 742. https://doi.org/10.3390/life15050742
Nemes A, Bordács B, Ambrus N, Lengyel C. Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study—Is There a Relationship? Life. 2025; 15(5):742. https://doi.org/10.3390/life15050742
Chicago/Turabian StyleNemes, Attila, Barbara Bordács, Nóra Ambrus, and Csaba Lengyel. 2025. "Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study—Is There a Relationship?" Life 15, no. 5: 742. https://doi.org/10.3390/life15050742
APA StyleNemes, A., Bordács, B., Ambrus, N., & Lengyel, C. (2025). Simultaneous Assessment of Left Ventricular Volumes and Aortic Valve Annular Dimensions by Three-Dimensional Speckle-Tracking Echocardiography in Healthy Adults from the MAGYAR-Healthy Study—Is There a Relationship? Life, 15(5), 742. https://doi.org/10.3390/life15050742