Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Reagents
2.2. Cells Culture
2.3. FRMV Stimulation
2.4. Cell Proliferation Assay
2.5. Osteoblast Differentiation Induced by FRMV
2.6. Alkaline Phosphatase (ALP) Enzyme Activity Assay
2.7. Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Effects of FRMV on Cell Proliferation Under Normal Growth Conditions
3.2. Effect of FRMV on ALP Enzyme Activity
3.3. Time-Course Evaluation of FRMV-Dependent ALP Enzyme Activity Changes
3.4. Comparison of the Effects of the Two FRMV Programs on the ALP Enzyme Activity
3.5. Inhibition of FRMV-Dependent Upregulation of ALP Enzyme Activity by LDN193189
3.6. Induction of ALP Gene Expression by FRMV
3.6.1. BMP2-Dependent Upregulation of ALP Gene Expression in MC3T3-E1 Cells and Its Inhibition by LDN193189
3.6.2. FRMV-Dependent Upregulation of ALP Gene Expression in MC3T3-E1 Cells and Its Inhibition by LDN193189
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carey, J.J.; Chih-Hsing Wu, P.; Bergin, D. Risk Assessment Tools for Osteoporosis and Fractures in 2022. Best Pract. Res. Clin. Rheumatol. 2022, 36, 101775. [Google Scholar] [CrossRef]
- Lane, N.E. Epidemiology, Etiology, and Diagnosis of Osteoporosis. Am. J. Obstet. Gynecol. 2006, 194, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C. IOF Working Group on Epidemiology and Quality of Life A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide. Osteoporos. Int. 2012, 23, 2239–2256. [Google Scholar] [CrossRef] [PubMed]
- Shoji, A.; Gao, Z.; Arai, K.; Yoshimura, N. 30-Year Trends of Hip and Vertebral Fracture Incidence in Japan: A Systematic Review and Meta-Analysis. J. Bone Miner. Metab. 2022, 40, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, C.-Y. Osteoporosis and Periodontal Diseases—An Update on Their Association and Mechanistic Links. Periodontology 2000 2022, 89, 99–113. [Google Scholar] [CrossRef]
- Guasti, L.; Cianferotti, L.; Pampaloni, B.; Tonelli, F.; Martelli, F.; Iantomasi, T.; Brandi, M.L. Evaluation of Food and Nutrient Intake in a Population of Subjects Affected by Periodontal Disease with Different Levels of Bone Mineral Density. Front. Endocrinol. 2023, 14, 1098366. [Google Scholar] [CrossRef]
- Fink, H.A.; MacDonald, R.; Forte, M.L.; Rosebush, C.E.; Ensrud, K.E.; Schousboe, J.T.; Nelson, V.A.; Ullman, K.; Butler, M.; Olson, C.M.; et al. Long-Term Drug Therapy and Drug Discontinuations and Holidays for Osteoporosis Fracture Prevention: A Systematic Review. Ann. Intern. Med. 2019, 171, 37–50. [Google Scholar] [CrossRef]
- Gehrke, B.; Alves Coelho, M.C.; Brasil d’Alva, C.; Madeira, M. Long-Term Consequences of Osteoporosis Therapy with Bisphosphonates. Arch. Endocrinol. Metab. 2023, 68, e220334. [Google Scholar] [CrossRef]
- Rittweger, J. Vibration as an Exercise Modality: How It May Work, and What Its Potential Might Be. Eur. J. Appl. Physiol. 2010, 108, 877–904. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, C.; Xiong, W.; Song, Y.; Wang, Q.; Zhang, H.; Guo, S.; Yang, S.; Liu, H. Advances in Electroactive Biomaterials: Through the Lens of Electrical Stimulation Promoting Bone Regeneration Strategy. J. Orthop. Transl. 2024, 47, 191–206. [Google Scholar] [CrossRef]
- Jiang, X.; Savchenko, O.; Li, Y.; Qi, S.; Yang, T.; Zhang, W.; Chen, J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans. Biomed. Eng. 2019, 66, 2704–2718. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Q.; Guo, H.; Liang, J.; Zhang, Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front. Cell Dev. Biol. 2022, 10, 837430. [Google Scholar] [CrossRef] [PubMed]
- Macione, J.; Long, D.; Nesbitt, S.; Wentzell, S.; Yokota, H.; Pandit, V.; Kotha, S. Stimulation of Osteoblast Differentiation with Guided Ultrasound Waves. J. Ther. Ultrasound 2015, 3, 12. [Google Scholar] [CrossRef]
- Matsumoto, K.; Shimo, T.; Kurio, N.; Okui, T.; Ibaragi, S.; Kunisada, Y.; Obata, K.; Masui, M.; Pai, P.; Horikiri, Y.; et al. Low-Intensity Pulsed Ultrasound Stimulation Promotes Osteoblast Differentiation through Hedgehog Signaling. J. Cell Biochem. 2018, 119, 4352–4360. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, T.; Teruya, K.; Katakura, Y. Exposing Differentiated Osteoblast-Like MC3T3-E1 Cells to Extremely Low-Frequency Electric Fields Has Calcification-Promoting Effects. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 642–648. [Google Scholar] [CrossRef]
- Kar, N.S.; Ferguson, D.; Zhang, N.; Waldorff, E.I.; Ryaby, J.T.; DiDonato, J.A. Pulsed-Electromagnetic-Field Induced Osteoblast Differentiation Requires Activation of Genes Downstream of Adenosine Receptors A2A and A3. PLoS ONE 2021, 16, e0247659. [Google Scholar] [CrossRef]
- Sayed, S.; Faruq, O.; Hossain, M.; Im, S.-B.; Kim, Y.-S.; Lee, B.-T. Thermal Cycling Effect on Osteogenic Differentiation of MC3T3-E1 Cells Loaded on 3D-Porous Biphasic Calcium Phosphate (BCP) Scaffolds for Early Osteogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110027. [Google Scholar] [CrossRef]
- Mack, P.B.; Vogt, F.B. Roentgenographic Bone Density Changes in Astronauts during Representative Apollo Space Flight. Am. J. Roentgenol. 1971, 113, 621–633. [Google Scholar] [CrossRef]
- Greenway, K.G.; Walkley, J.W.; Rich, P.A. Impact Exercise and Bone Density in Premenopausal Women with below Average Bone Density for Age. Eur. J. Appl. Physiol. 2015, 115, 2457–2469. [Google Scholar] [CrossRef]
- Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V. Effects of Microgravity on Osteoblast Growth. Gravit. Space Biol. Bull. 1998, 11, 51–60. [Google Scholar]
- Yang, X.; Wang, Y.; Han, X.; Shu, R.; Chen, T.; Zeng, H.; Xu, X.; Huang, L.; Ren, A.; Song, J.; et al. Effects of TGF-Β1 on OPG/RANKL Expression of Cementoblasts and Osteoblasts Are Similar without Stress but Different with Mechanical Compressive Stress. Sci. World J. 2015, 2015, 718180. [Google Scholar] [CrossRef]
- Yao, W.; Gong, Y.; Zhao, B.; Li, R. Combined Effects of Cyclic Stretch and TNF-α on the Osteogenic Differentiation in MC3T3-E1 Cells. Arch. Oral. Biol. 2021, 130, 105222. [Google Scholar] [CrossRef]
- Zeng, Z.; Yin, X.; Zhang, X.; Jing, D.; Feng, X. Cyclic Stretch Enhances Bone Morphogenetic Protein-2-Induced Osteoblastic Differentiation through the Inhibition of Hey1. Int. J. Mol. Med. 2015, 36, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Mo, Y.; Li, W.; Hu, H.; Chen, L.; Zhu, R.; Zhang, D.; Ouyang, P.; Wang, W.; Li, G.; et al. Piezoelectric PDMS/AlN Film for Osteogenesis in Vitro. ACS Biomater. Sci. Eng. 2023, 9, 4187–4196. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.S.; Lee, S.-J.; Lee, H.; Moon, W.; Cho, D.-W. Effects of Combined Mechanical Stimulation on the Proliferation and Differentiation of Pre-Osteoblasts. Exp. Mol. Med. 2011, 43, 367. [Google Scholar] [CrossRef]
- Rubin, C.; Turner, A.S.; Bain, S.; Mallinckrodt, C.; McLeod, K. Anabolism. Low Mechanical Signals Strengthen Long Bones. Nature 2001, 412, 603–604. [Google Scholar] [CrossRef]
- Rubin, C.; Turner, A.S.; Mallinckrodt, C.; Jerome, C.; Mcleod, K.; Bain, S. Mechanical Strain, Induced Noninvasively in the High-Frequency Domain, Is Anabolic to Cancellous Bone, but Not Cortical Bone. Bone 2002, 30, 445–452. [Google Scholar] [CrossRef]
- Ogawa, T.; Vandamme, K.; Zhang, X.; Naert, I.; Possemiers, T.; Chaudhari, A.; Sasaki, K.; Duyck, J. Stimulation of Titanium Implant Osseointegration through High-Frequency Vibration Loading Is Enhanced When Applied at High Acceleration. Calcif. Tissue Int. 2014, 95, 467–475. [Google Scholar] [CrossRef]
- Wehrle, E.; Wehner, T.; Heilmann, A.; Bindl, R.; Claes, L.; Jakob, F.; Amling, M.; Ignatius, A. Distinct Frequency Dependent Effects of Whole-Body Vibration on Non-Fractured Bone and Fracture Healing in Mice. J. Orthop. Res. 2014, 32, 1006–1013. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Liu, T.; Wang, X.; Yu, M.; Yang, G.; Wang, H. Whole Body Vibration Improves Osseointegration by Up-Regulating Osteoblastic Activity but down-Regulating Osteoblast-Mediated Osteoclastogenesis via ERK1/2 Pathway. Bone 2015, 71, 17–24. [Google Scholar] [CrossRef]
- Shobara, K.; Ogawa, T.; Shibamoto, A.; Miyashita, M.; Ito, A.; Sitalaksmi, R.M. Osteogenic Effect of Low-Intensity Pulsed Ultrasound and Whole-Body Vibration on Peri-Implant Bone. An Experimental In Vivo Study. Clin. Oral. Implant. Res. 2021, 32, 641–650. [Google Scholar] [CrossRef]
- Shikata, T.; Shiraishi, T.; Morishita, S.; Takeuchi, R.; Saito, T. Effects of Amplitude and Frequency of Mechanical Vibration Stimulation on Cultured Osteoblasts. J. Syst. Des. Dyn. 2008, 2, 382–388. [Google Scholar] [CrossRef]
- Haffner-Luntzer, M.; Lackner, I.; Liedert, A.; Fischer, V.; Ignatius, A. Effects of Low-Magnitude High-Frequency Vibration on Osteoblasts Are Dependent on Estrogen Receptor α Signaling and Cytoskeletal Remodeling. Biochem. Biophys. Res. Commun. 2018, 503, 2678–2684. [Google Scholar] [CrossRef] [PubMed]
- Pongkitwitoon, S.; Uzer, G.; Rubin, J.; Judex, S. Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness. Sci. Rep. 2016, 6, 34791. [Google Scholar] [CrossRef]
- Shiraishi, T.; Sato, K. Real-Time Imaging of Intracellular Deformation Dynamics in Vibrated Adherent Cell Cultures. Biotechnol. Bioeng. 2024, 121, 3034–3046. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Chiba, M.; Hayashi, H. Vibrational Stimulation Induces Osteoblast Differentiation and the Upregulation of Osteogenic Gene Expression in Vitro. Cytotechnology 2016, 68, 2287–2299. [Google Scholar] [CrossRef]
- Hou, W.W.; Zhu, Z.L.; Zhou, Y.; Zhang, C.X.; Yu, H.Y. Involvement of Wnt Activation in the Micromechanical Vibration-Enhanced Osteogenic Response of Osteoblasts. J. Orthop. Sci. 2011, 16, 598–605. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ishizuya, T.; Kintou, N.; Wada, Y.; Katagiri, T.; Wozney, J.M.; Rosen, V.; Yoshiki, S. Effects of BMP-2, BMP-4, and BMP-6 on Osteoblastic Differentiation of Bone Marrow-Derived Stromal Cell Lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys. Res. Commun. 1996, 220, 366–371. [Google Scholar] [CrossRef]
- Ohta, S.; Hiraki, Y.; Shigeno, C.; Suzuki, F.; Kasai, R.; Ikeda, T.; Kohno, H.; Lee, K.; Kikuchi, H.; Konishi, J. Bone Morphogenetic Proteins (BMP-2 and BMP-3) Induce the Late Phase Expression of the Proto-Oncogene c-Fos in Murine Osteoblastic MC3T3-E1 Cells. FEBS Lett. 1992, 314, 356–360. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Watanabe, T.; Tamura, Y.; Hashizume, Y.; Miyazono, K.; Ehata, S. Autocrine BMP-4 Signaling Is a Therapeutic Target in Colorectal Cancer. Cancer Res. 2017, 77, 4026–4038. [Google Scholar] [CrossRef] [PubMed]
- Mohedas, A.H.; Wang, Y.; Sanvitale, C.E.; Canning, P.; Choi, S.; Xing, X.; Bullock, A.N.; Cuny, G.D.; Yu, P.B. Structure-Activity Relationship of 3,5-Diaryl-2-Aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants. J. Med. Chem. 2014, 57, 7900–7915. [Google Scholar] [CrossRef]
- Tominami, K.; Kanetaka, H.; Sasaki, S.; Mokudai, T.; Kaneko, T.; Niwano, Y. Cold Atmospheric Plasma Enhances Osteoblast Differentiation. PLoS ONE 2017, 12, e0180507. [Google Scholar] [CrossRef]
- Kodama, H.; Amagai, Y.; Sudo, H.; Kasai, S.; Yamamoto, S. Establishment of a Clonal Osteogenic Cell Line from Newborn Mouse Calvaria. Jpn. J. Oral. Biol. 1981, 23, 899–901. [Google Scholar] [CrossRef]
- Sudo, H.; Kodama, H.A.; Amagai, Y.; Yamamoto, S.; Kasai, S. In Vitro Differentiation and Calcification in a New Clonal Osteogenic Cell Line Derived from Newborn Mouse Calvaria. J. Cell Biol. 1983, 96, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.R.; Lorenzo, J.A.; Kawaguchi, H.; Raisz, L.G.; Pilbeam, C. Stimulation of Prostaglandin E2 Production by Interleukin-1 Alpha and Transforming Growth Factor Alpha in Osteoblastic MC3T3-E1 Cells. J. Bone Miner. Res. 1994, 9, 817–823. [Google Scholar] [CrossRef]
- He, J.; King, Y.; Jiang, J.; Safavi, K.E.; Spångberg, L.S.W.; Zhu, Q. Enamel Matrix Derivative Inhibits TNF-Alpha-Induced Apoptosis in Osteoblastic MC3T3-E1 Cells. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2005, 99, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Narvaez-Flores, J.J.; Vilar-Pineda, G.; Acosta-Torres, L.S.; Garcia-Contreras, R. Cytotoxic and Anti-Inflammatory Effects of Chitosan and Hemostatic Gelatin in Oral Cell Culture. Acta Odontol. Latinoam. 2021, 34, 98–103. [Google Scholar] [CrossRef]
- Lee, A.Z.; Jiang, J.; He, J.; Safavi, K.E.; Spangberg, L.S.W.; Zhu, Q. Stimulation of Cytokines in Osteoblasts Cultured on Enamel Matrix Derivative. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2008, 106, 133–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Ma, Y.; Niu, X.; Liu, J.; Gao, L.; Zhai, X.; Chu, K.; Han, B.; Yang, L.; et al. Preparation and Biocompatibility of Demineralized Bone Matrix/Sodium Alginate Putty. Cell Tissue Bank. 2017, 18, 205–216. [Google Scholar] [CrossRef]
- Agarwal, S.; Labour, M.N.; Hoey, D.; Duffy, B.; Curtin, J.; Jaiswal, S. Enhanced Corrosion Resistance and Cytocompatibility of Biomimetic Hyaluronic Acid Functionalised Silane Coating on AZ31 Mg Alloy for Orthopaedic Applications. J. Mater. Sci. Mater. Med. 2018, 29, 144. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.H.; Wang, J.; Cui, L.Y.; Zeng, R.C.; Wang, Q.Z.; Han, Q.X.; Qiu, J.; Chen, X.B.; Chen, D.C.; Guan, S.K.; et al. Corrosion Resistance and Antibacterial Activity of Zinc-Loaded Montmorillonite Coatings on Biodegradable Magnesium Alloy AZ31. Acta Biomater. 2019, 98, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.A.; Kanetaka, H.; Mizuno, K.; Ryu, Y.; Miyamoto, Y.; Nunome, S.; Zhang, Y.; Kano, M.; Shimizu, Y.; Hayashi, H. Dorsomorphin Stimulates Neurite Outgrowth in PC12 Cells via Activation of a Protein Kinase A-Dependent MEK-ERK1/2 Signaling Pathway. Genes. Cells 2011, 16, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Otsuka, K.; Ebina, M.; Igarashi, K.; Takehara, A.; Matsumoto, M.; Kanai, A.; Igarashi, K.; Soga, T.; Matsui, Y. Distinct Requirements for Energy Metabolism in Mouse Primordial Germ Cells and Their Reprogramming to Embryonic Germ Cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8289–8294. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.R.; Kudo, T.A.; Tominami, K.; Izumi, S.; Tanaka, T.; Hayashi, Y.; Noguchi, T.; Matsuzawa, A.; Nakai, J.; Hong, G.; et al. SP600125 Enhances Temperature-Controlled Repeated Thermal Stimulation-Induced Neurite Outgrowth in PC12-P1F1 Cells. Int. J. Mol. Sci. 2022, 23, 15602. [Google Scholar] [CrossRef]
- Kotani, H.; Ueno, S.; Tanaka, S.; Kawaguchi, H.; Nakamura, K. Changes in Osteoblastic Cells Due to Repetitive Pulsed Magnetic Stimulation. J. Magn. Soc. Jpn 1999, 23, 1525–1528. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Han, X.-G.; Yang, Y.; Qiao, H.; Dai, K.-R.; Fan, Q.-M.; Tang, T.-T. Functional Differences between AMPK A1 and A2 Subunits in Osteogenesis, Osteoblast-Associated Induction of Osteoclastogenesis, and Adipogenesis. Sci. Rep. 2016, 6, 32771. [Google Scholar] [CrossRef]
- Fernandez, P.; Pasqualini, M.; Locrelle, H.; Normand, M.; Bonneau, C.; Lafage Proust, M.-H.; Marotte, H.; Thomas, T.; Vico, L. The Effects of Combined Amplitude and High-Frequency Vibration on Physically Inactive Osteopenic Postmenopausal Women. Front. Physiol. 2022, 13, 952140. [Google Scholar] [CrossRef]
- Stephens, A.S.; Stephens, S.R.; Morrison, N.A. Internal Control Genes for Quantitative RT-PCR Expression Analysis in Mouse Osteoblasts, Osteoclasts and Macrophages. BMC Res. Notes 2011, 4, 410. [Google Scholar] [CrossRef]
- Takemoto, F.; Uchida-Fukuhara, Y.; Kamioka, H.; Okamura, H.; Ikegame, M. Mechanical Stretching Determines the Orientation of Osteoblast Migration and Cell Division. Anat. Sci. Int. 2023, 98, 521–528. [Google Scholar] [CrossRef]
- Schildberg, T.; Rauh, J.; Bretschneider, H.; Stiehler, M. Identification of Suitable Reference Genes in Bone Marrow Stromal Cells from Osteoarthritic Donors. Stem Cell Res. 2013, 11, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Yurube, T.; Takada, T.; Hirata, H.; Kakutani, K.; Maeno, K.; Zhang, Z.; Yamamoto, J.; Doita, M.; Kurosaka, M.; Nishida, K. Modified House-Keeping Gene Expression in a Rat Tail Compression Loading-Induced Disc Degeneration Model. J. Orthop. Res. 2011, 29, 1284–1290. [Google Scholar] [CrossRef]
- Vazquez, M.; Evans, B.A.J.; Riccardi, D.; Evans, S.L.; Ralphs, J.R.; Dillingham, C.M.; Mason, D.J. A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts. Front. Endocrinol. 2014, 5, 208. [Google Scholar] [CrossRef] [PubMed]
- Mizobe, Y.; Yoshida, M.; Miyoshi, K. Enhancement of Cytoplasmic Maturation of In Vitro-Matured Pig Oocytes by Mechanical Vibration. J. Reprod. Dev. 2010, 56, 285–290. [Google Scholar] [CrossRef]
- Juneau, C.R.; Tiegs, A.W.; Franasiak, J.M.; Goodman, L.R.; Whitehead, C.; Patounakis, G.; Scott, R.T. Embryo’s Natural Motion (EnMotion): A Paired Randomized Controlled Trial Evaluating a Dynamic Embryo Culture System. Fertil. Steril. 2020, 113, 578–586.e1. [Google Scholar] [CrossRef]
- Hur, Y.S.; Park, J.H.; Ryu, E.K.; Park, S.J.; Lee, J.H.; Lee, S.H.; Yoon, J.; Yoon, S.H.; Hur, C.Y.; Lee, W.D.; et al. Effect of Micro-Vibration Culture System on Embryo Development. J. Assist. Reprod. Genet. 2013, 30, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, T.; Wang, Z.; Chen, X.; Qu, S.; Weng, J.; Zhi, W.; Wang, J. Joint Construction of Micro-Vibration Stimulation and BCP Scaffolds for Enhanced Bioactivity and Self-Adaptability Tissue Engineered Bone Grafts. J. Mater. Chem. B 2020, 8, 4278–4288. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, R.; Li, Y.; Zhu, X.; Chen, X.; Weng, J.; Zhi, W.; Wang, J.; Xie, Z.; Zhang, X. Reinforcing the Function of Bone Graft via the Ca-P Ceramics Dynamic Behavior-Enhanced Osteogenic Microenvironment for Optimal Bone Regeneration and Reconstruction. Appl. Mater. Today 2022, 27, 101465. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Huang, X.; Zhu, X.; Zhi, W.; Wang, J.; Sun, D.; Chen, X.; Zhu, X.; Zhang, X. Accelerated Osteogenesis of Bone Graft by Optimizing the Bone Microenvironment Formed by Electrical Signals Dependent on Driving Micro Vibration Stimulation. Mater. Today Bio 2023, 23, 100891. [Google Scholar] [CrossRef]
- Zhang, L.; Gan, X.; Zhu, Z.; Yang, Y.; He, Y.; Yu, H. Reactive Oxygen Species Regulatory Mechanisms Associated with Rapid Response of MC3T3-E1 Cells for Vibration Stress. Biochem. Biophys. Res. Commun. 2016, 470, 510–515. [Google Scholar] [CrossRef]
- Leung, K.S.; Shi, H.F.; Cheung, W.H.; Qin, L.; Ng, W.K.; Tam, K.F.; Tang, N. Low-magnitude High-frequency Vibration Accelerates Callus Formation, Mineralization, and Fracture Healing in Rats. J. Orthop. Res. 2009, 27, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.M.Y.; Chow, S.K.H.; Tang, N.; Chung, Y.L.; Griffith, J.; Liu, W.H.; Ng, R.W.K.; Tso, C.Y.; Cheung, W.H. Vibration Therapy as an Intervention for Enhancing Trochanteric Hip Fracture Healing in Elderly Patients: A Randomized Double-Blinded, Placebo-Controlled Clinical Trial. Trials 2021, 22, 878. [Google Scholar] [CrossRef]
- Leung, K.S.; Li, C.Y.; Tse, Y.K.; Choy, T.K.; Leung, P.C.; Hung, V.W.Y.; Chan, S.Y.; Leung, A.H.C.; Cheung, W.H. Effects of 18-Month Low-Magnitude High-Frequency Vibration on Fall Rate and Fracture Risks in 710 Community Elderly--a Cluster-Randomized Controlled Trial. Osteoporos. Int. 2014, 25, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wan, Y.; Tam, K.-F.; Ling, S.; Bai, Y.; Deng, Y.; Liu, Y.; Zhang, H.; Cheung, W.-H.; Qin, L.; et al. Resistive Vibration Exercise Retards Bone Loss in Weight-Bearing Skeletons during 60 Days Bed Rest. Osteoporos. Int. 2012, 23, 2169–2178. [Google Scholar] [CrossRef]
- Zhang, N.; Chim, Y.N.; Wang, J.; Wong, R.M.Y.; Chow, S.K.H.; Cheung, W.-H. Impaired Fracture Healing in Sarco-Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. J. Orthop. Res. 2020, 38, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Huang, X.; Zhou, P.; Wu, B.; Cheng, L.; Wang, X.; Zhu, D. Protective Effects of Low-Magnitude High-Frequency Vibration on High Glucose-Induced Osteoblast Dysfunction and Bone Loss in Diabetic Rats. J. Orthop. Surg. Res. 2021, 16, 650. [Google Scholar] [CrossRef]
- Li, Y.-H.; Zhu, D.; Cao, Z.; Liu, Y.; Sun, J.; Tan, L. Primary Cilia Respond to Intermittent Low-Magnitude, High-Frequency Vibration and Mediate Vibration-Induced Effects in Osteoblasts. Am. J. Physiol. Cell Physiol. 2020, 318, C73–C82. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, W.; Liu, Y.; Long, H.; Zhang, L.; Zhu, Z.; Yu, H. Microvibration Stimulates β-Catenin Expression and Promotes Osteogenic Differentiation in Osteoblasts. Arch. Oral. Biol. 2016, 70, 47–54. [Google Scholar] [CrossRef]
GenBank Accession Number | Gene Name | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|---|
NM_007431.3 | ALP | AATTGAATCGGAACAACCTGACTG | CCTCATGATGTCCGTGGTCAA |
NM_007393.5 | β-actin | CATCCGTAAAGACCTCTATGCCAAC | ATGGAGCCACCGATCCACA |
NM_001411840.1 | GAPDH | AGAGCAACAGGGTGGTGGAC | TGGGATAGGGCCTCTCTTGCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsushita, A.; Kudo, T.-a.; Tominami, K.; Hayashi, Y.; Noguchi, T.; Tanaka, T.; Izumi, S.; Gengyo-Ando, K.; Matsuzawa, A.; Hong, G.; et al. Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells. Life 2025, 15, 588. https://doi.org/10.3390/life15040588
Matsushita A, Kudo T-a, Tominami K, Hayashi Y, Noguchi T, Tanaka T, Izumi S, Gengyo-Ando K, Matsuzawa A, Hong G, et al. Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells. Life. 2025; 15(4):588. https://doi.org/10.3390/life15040588
Chicago/Turabian StyleMatsushita, Ayumu, Tada-aki Kudo, Kanako Tominami, Yohei Hayashi, Takuya Noguchi, Takakuni Tanaka, Satoshi Izumi, Keiko Gengyo-Ando, Atsushi Matsuzawa, Guang Hong, and et al. 2025. "Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells" Life 15, no. 4: 588. https://doi.org/10.3390/life15040588
APA StyleMatsushita, A., Kudo, T.-a., Tominami, K., Hayashi, Y., Noguchi, T., Tanaka, T., Izumi, S., Gengyo-Ando, K., Matsuzawa, A., Hong, G., & Nakai, J. (2025). Frequency-Regulated Repeated Micro-Vibration Promotes Osteoblast Differentiation Through BMP Signaling in MC3T3-E1 Cells. Life, 15(4), 588. https://doi.org/10.3390/life15040588