Thrombectomy for Ischemic Stroke Beyond 24 Hours: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Design
2.2. Study Selection
2.3. Outcome Measurements
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Handling of Missing Data
2.7. Statistical Analysis
2.8. Trial Sequential Analysis
2.9. Quality Assessment
2.10. Time to Groin Puncture and Outcome Measures
3. Results
3.1. Search Strategy
3.2. Primary Outcomes
Good Functional Outcomes
3.3. Secondary Outcomes
Successful Reperfusion
3.4. Safety Outcomes
3.4.1. Any ICH
3.4.2. Symptomatic ICH
3.4.3. Mortality at 90 Days
3.5. Publication Bias and Quality Assessment
3.6. Association Between Time to Groin Puncture and Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarraj, A.; Mlynash, M.; Heit, J.; Pujara, D.; Lansberg, M.; Marks, M.; Albers, G.W. Clinical outcomes and identification of patients with persistent penumbral profiles beyond 24 hours from last known well: Analysis from DEFUSE 3. Stroke 2021, 52, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Liebeskind, D.S.; Saber, H.; Xiang, B.; Jadhav, A.P.; Jovin, T.G.; Haussen, D.C.; Budzik, R.F.; Bonafe, A.; Bhuva, P.; Yavagal, D.R.; et al. Collateral circulation in thrombectomy for stroke after 6 to 24 hours in the DAWN trial. Stroke 2022, 53, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Jovin, T.G.; Nogueira, R.G.; Lansberg, M.G.; Demchuk, A.M.; O Martins, S.; Mocco, J.; Ribo, M.; Jadhav, A.P.; Ortega-Gutierrez, S.; Hill, M.D.; et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): A systematic review and individual patient data meta-analysis. Lancet 2022, 399, 249–258. [Google Scholar] [CrossRef]
- Darby, D.G.; Barber, P.A.; Gerraty, R.P.; Desmond, P.M.; Yang, Q.; Parsons, M.; Li, T.; Tress, B.M.; Davis, S.M. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke 1999, 30, 2043–2052. [Google Scholar] [CrossRef]
- Olthuis, S.G.H.; Pirson, F.A.V.; Pinckaers, F.M.E.; Hinsenveld, W.H.; Nieboer, D.; Ceulemans, A.; Knapen, R.R.M.M.; Robbe, M.M.Q.; Berkhemer, O.A.; van Walderveen, M.A.A.; et al. Endovascular treatment versus no endovascular treatment after 6–24 h in patients with ischaemic stroke and collateral flow on CT angiography (MR CLEAN-LATE) in the Netherlands: A multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial. Lancet 2023, 401, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Raz, E.; Dehkharghani, S.; Riina, H.; McTaggart, R.; Jayaraman, M.; Prabhakaran, S.; Liebeskind, D.S.; Khatri, P.; Mac Grory, B.; et al. Penumbra Consumption Rates Based on Time-to-Maximum Delay and Reperfusion Status: A Post Hoc Analysis of the DEFUSE 3 Trial. Stroke 2021, 52, 2690–2693. [Google Scholar] [CrossRef]
- Sarraj, A.; Kleinig, T.J.; Hassan, A.E.; Portela, P.C.; Ortega-Gutierrez, S.; Abraham, M.G.; Manning, N.W.; Siegler, J.E.; Goyal, N.; Maali, L.; et al. Association of Endovascular Thrombectomy vs Medical Management with Functional and Safety Outcomes in Patients Treated Beyond 24 Hours of Last Known Well: The SELECT Late study. JAMA Neurol. 2023, 80, 172–182. [Google Scholar] [CrossRef]
- Brooke, B.S.; Schwartz, T.A.; Pawlik, T.M. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021, 156, 787–788. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.; Chandler, J.; Welch, V.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.; Bowden, J. Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: Should we use unequal tails? BMC Med. Res. Methodol. 2016, 16, 118. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Smith, A.F. Trial sequential analysis: Adding a new dimension to meta-analysis. Anaesthesia 2020, 75, 15–20. [Google Scholar] [CrossRef]
- Wetterslev, J.; Thorlund, K.; Brok, J.; Gluud, C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med. Res. Methodol. 2009, 9, 86. [Google Scholar] [CrossRef]
- GRADE Working Group. Grading quality of evidence and strength of recommendations. BMJ 2004, 328, 1490. [Google Scholar] [CrossRef]
- Desai, S.M.; Haussen, D.C.; Aghaebrahim, A.; Al-Bayati, A.R.; Santos, R.; Nogueira, R.G.; Jovin, T.G.; Jadhav, A.P. Thrombectomy 24 hours after stroke: Beyond DAWN. J. NeuroInterv. Surg. 2018, 10, 1039–1042. [Google Scholar] [CrossRef]
- Dhillon, P.S.; Butt, W.; Podlasek, A.; Barrett, E.; McConachie, N.; Lenthall, R.; Nair, S.; Malik, L.; James, M.A.; Dineen, R.A.; et al. Endovascular thrombectomy beyond 24 hours from ischemic stroke onset: A propensity score matched cohort study. J. NeuroInterv. Surg. 2023, 15, 233–237. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Tran, M.H.; Phung, H.N.; Nguyen, K.V.; Tran, H.T.M.; Walter, S.; Hoang, D.C.B.; Pham, B.N.; Truong, A.L.T.; Tran, V.T.; et al. Endovascular treatment for acute ischemic stroke beyond the 24-h time window: Selection by target mismatch profile. Int. J. Stroke 2024, 19, 305–313. [Google Scholar] [CrossRef]
- Purrucker, J.C.; Ringleb, P.A.; Seker, F.; Potreck, A.; Nagel, S.; Schönenberger, S.; Berberich, A.; Neuberger, U.; Möhlenbruch, M.; Weyland, C. Leaving the day behind: Endovascular therapy beyond 24 h in acute stroke of the anterior and posterior circulation. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221101083. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.H.; Ryu, J.-C.; Bae, J.-H.; Koo, S.; Kwon, B.; Lee, D.H.; Chang, J.Y.; Kang, D.-W.; Kwon, S.U.; Kim, J.-S.; et al. Early Response to Endovascular Thrombectomy after Stroke: Early, Late, and Very Late Time Windows. Cerebrovasc. Dis. 2023, 52, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Shaban, A.; Al Kasab, S.; Chalhoub, R.M.; Bass, E.; Maier, I.; Psychogios, M.-N.; Alawieh, A.; Wolfe, S.Q.; Arthur, A.S.; Dumont, T.M.; et al. Mechanical thrombectomy for large vessel occlusion strokes beyond 24 hours. J. NeuroInterv. Surg. 2023, 15, e331–e336. [Google Scholar] [CrossRef]
- Wen, A.; Cao, W.-F.; Zhao, C.; Wu, L.-F.; Zhou, Y.-L.; Xiang, Z.-B.; Rao, W.; Liu, S.-M. Endovascular therapy beyond 24 hours for anterior circulation large vessel occlusion or stenosis in acute ischemic stroke: A retrospective study. Front. Neurol. 2023, 14, 1237661. [Google Scholar] [CrossRef]
- Granholm, A.; Alhazzani, W.; Møller, M.H. Use of the GRADE approach in systematic reviews and guidelines. Br. J. Anaesth. 2019, 123, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.; Mlynash, M.; Kemp, S.; Yennu, A.; Heit, J.J.; Marks, M.P.; Lansberg, M.G.; Albers, G.W. Persistent Target Mismatch Profile >24 Hours After Stroke Onset in DEFUSE 3. Stroke 2019, 50, 754–757. [Google Scholar] [CrossRef]
- Rocha, M.; Jovin, T.G. Fast Versus Slow Progressors of Infarct Growth in Large Vessel Occlusion Stroke: Clinical and research implications. Stroke 2017, 48, 2621–2627. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Nogueira, R.G.; Essibayi, M.A.; Aboul-Nour, H.; Mohammaden, M.; Haussen, D.C.; Ruiz, A.M.; Gross, B.A.; Kuybu, O.; Salem, M.M.; et al. Tissue Clock Beyond Time Clock: Endovascular Thrombectomy for Patients with Large Vessel Occlusion Stroke Beyond 24 Hours. J. Stroke 2023, 25, 282–290. [Google Scholar] [CrossRef]
- Yu, W.M.; Abdul-Rahim, A.H.; Cameron, A.C.; Kõrv, J.; Sevcik, P.; Toni, D.; Lees, K.R.; Wahlgren, N.; Ahmed, N.; Caso, V.; et al. The Incidence and Associated Factors of Early Neurological Deterioration After Thrombolysis: Results from SITS registry. Stroke 2020, 51, 2705–2714. [Google Scholar] [CrossRef]
- Seners, P.; Ben Hassen, W.; Lapergue, B.; Arquizan, C.; Heldner, M.R.; Henon, H.; Perrin, C.; Strambo, D.; Cottier, J.-P.; Sablot, D.; et al. Prediction of Early Neurological Deterioration in Individuals with Minor Stroke and Large Vessel Occlusion Intended for Intravenous Thrombolysis Alone. JAMA Neurol. 2021, 78, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Mazya, M.V.; Cooray, C.; Lees, K.R.; Toni, D.; Ford, G.A.; Bar, M.; Frol, S.; Moreira, T.; Sekaran, L.; Švigelj, V.; et al. Minor stroke due to large artery occlusion. When is intravenous thrombolysis not enough? Results from the SITS International Stroke Thrombolysis Register. Eur. Stroke J. 2018, 3, 29–38. [Google Scholar] [CrossRef]
- Sarraj, A.; Albers, G.W.; Blasco, J.; Arenillas, J.F.; Ribo, M.; Hassan, A.E.; de la Ossa, N.P.; Wu, T.Y.; Portela, P.C.; Abraham, M.G.; et al. Thrombectomy versus Medical Management in Mild Strokes due to Large Vessel Occlusion: Exploratory Analysis from the EXTEND-IA Trials and a Pooled International Cohort. Ann. Neurol. 2022, 92, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Calienes, A.; Galecio-Castillo, M.; Vivanco-Suarez, J.; Mohamed, G.A.; Toth, G.; Sarraj, A.; Pujara, D.; Chowdhury, A.A.; Farooqui, M.; Ghannam, M.; et al. Endovascular thrombectomy beyond 24 hours from last known well: A systematic review with meta-analysis. J. NeuroInterv. Surg. 2024, 16, 670–676. [Google Scholar] [CrossRef]
- Kobeissi, H.; Ghozy, S.; Adusumilli, G.; Kadirvel, R.; Brinjikji, W.; Rabinstein, A.A.; Kallmes, D.F. Endovascular Therapy for Stroke Presenting Beyond 24 Hours: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2311768. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Irshad, H.A.; Lodhi, B.A.; Ali, Z.; Zubair, F.; Mahar, M.U.; Banani, I.; Wajahat, A.; Khan, I.; Siddiq, F.; et al. Endovascular thrombectomy after 24 hours for patients with acute ischemic stroke due to large vessel occlusion: A systematic review and meta-analysis of outcomes. Clin. Neurol. Neurosurg. 2024, 247, 108610. [Google Scholar] [CrossRef]
- Jhou, H.-J.; Yang, L.-Y.; Chen, P.-H.; Lee, C.-H. Thrombectomy for patients with a large infarct core: A study-level meta-analysis with trial sequential analysis. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241285552. [Google Scholar] [CrossRef]
Author, Year | Study Design | Country | No. of Patients | Age (year) | Male (%) | NIHSS | ASPECTS | HTN (%) | DM (%) | AF (%) | Previous Stroke (%) | tPA (%) | Occlusion Site, ICA (%) | Occlusion Site, MCA (%) | Occlusion Site, Other (%) | TLKW to Groin Puncture Hour (Median) | Overall RoB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Desai 2018 [19] | cohort | U.S.A | >24: 21 | 65.2 ± 11.1 | 38.1 | 18.2 ± 5.9 | - | 81 | 33 | 9.5 | - | - | 52.0 | 48.0 | 0- | 48 (30–72) | Int. |
6–24: 107 | 69.4 ± 14.1 | 39.2 | 17.4 ± 5.1 | - | 78 | 24 | 40 | - | - | 21.0 | 78.0- | 0- | 12.8 (10.6–16.7) | ||||
Dhillon 2023 [20] | cohort | U.K. | >24: 104 | - | 57.7 | 12.7 ± 7.4 | - | 48.0 | 10.5 | 17.3 | 9.6 | 19.2 | - | - | - | 33.5 ± 7.4 | Int. |
6–24: 1046 | - | 53.0 | 15.2 ± 7.7 | - | 46.7 | 13.3 | 19.3 | 13.9 | 31.5 | - | - | - | 10.5 ± 4.2 | ||||
Nguyen2023 [21] | cohort | Vietnam | >24: 20 | 60.0 (54.0–68.0) | 85.0 | 12(10–18) | 8 | 85.0 | 20.0 | 10.0 | - | 0.0 | 55.0 | 30.0 | 15.0 | 27.2 (25.7–30.9) | High |
6–24: 146 | 63.5 (56.2–70.0) | 69.2 | 15(11–18) | 8 | 86.3 | 17.8 | 18.5 | - | 6.45 | 32.2 | 60.3 | 7.5 | 14.3 (11.9–18.9) | ||||
Purrucker 2022 [22] | cohort | German | >24: 43 | 75.5 ± 10.1 | 46.5 | 13(8–21) | 9 | 74.4 | 27.9 | 30.2 | 11.6 | 7.0 | 4.7 | 37.2 | 58.1 | - | Int. |
6–24: 2304 | 73.9 ± 12.7 | 48.2 | 15(9–21) | 9 | 76.0 | 23.4 | 46.7 | 21.6 | 49.0 | 4.9 | 58.2 | 36.9 | - | ||||
Ha 2022 [23] | cohort | South Korea | >24: 61 | 65.0 ± 14.0 | 70.5 | 10.0 ± 6.0 | - | 78.7 | 24.6 | 16.4 | 28.1 | 4.1 | - | - | - | 80.8 (43.8–194.2) | Int. |
6–24: 104 | 71.0 ± 12.0 | 60.6 | 13.0 ± 7.0 | - | 52.9 | 26.9 | 49.0 | 16.9 | 23.7 | - | - | - | 10 (8.0–14.9) | ||||
Shaban 2022 [24] | cohort | U.S.A | >24: 91 | 67.0 ± 13.3 | 55.4 | 14.0 ± 9.0 | 8 | 78.5 | 35.5 | 17.6 | 28.1 | 4.1 | - | - | - | - | High |
6–24: 214 | 68.1 ± 15.0 | 49.2 | 15.0 ± 7.0 | 8 | 73.6 | 29.1 | 32.7 | 16.9 | 23.7 | - | - | - | - | ||||
Wen 2023 [25] | cohort | China | >24: 25 | 62.8 ± 2.0 | 88 | 12.8 ± 0.6 | 7 | 52.0 | 24.0 | 16.0 | - | 20 | 16.0 | 52.0 | 32.0 | - | Int. |
6–24: 214 | 67.8 ± 0.8 | 58.9 | 17.2 ± 0.4 | 7 | 56.1 | 11.7 | 47.7 | - | 46.3 | 9.8 | 64.5 | 25.7 | - |
Author, Year | Rodriguez-Calienes, 2024 [34] | Kobeissi, 2023 [35] | Shakir, 2024 [36] | Our Meta-Analysis, 2025 |
---|---|---|---|---|
No. of studies | 12 | 7 | 4 | 7 |
No. of individuals | 517 | 569 | 312 | 6137 |
Search strategy until | April 2023 | December 2022 | 2024 | Feb 2024 |
Study design | Single-arm | Single-arm | double-arm | double-arm |
The good function outcome at 3 months; OR; 95% CI | 40 (31 to 49) * | 32.0 (24.7–40.2) * | 0.85 (0.34–2.09) | 1.06 (0.51–2.09) |
Successful reperfusion; OR; 95% CI | 83 (80 to 85) * | 81.9 (78.5–84.9) * | Not reported | 1.03 (0.72–1.48) |
Any ICH; OR; 95% CI | 25 (18 to 35) * | Not reported | 0.98 (0.76–1.26) | 0.88 (0.64–1.21) |
sICH; OR; 95% CI | 7 (5 to 9) * | 6.80 (4.3–10.7) * | 0.85 (0.44–1.64) | 0.76 (0.41–1.40) |
Mortality at 3 months; OR; 95% CI | 28 (24 to 33) * | 27.2 (22.9–31.9) * | 1.08 (0.73–1.61) | 1.32 (0.55–3.19) |
Trial sequential analysis | Not applied | Not applied | Not applied | Applied |
Evidence of effect | Not applied | Not applied | Not applied | Inconclusive |
GRADE | Low: favorable functional outcome, successful reperfusion, sICH, 90-day mortality Very low: ICH | Not applied | Not applied | Very low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, H.-T.; Chen, P.-H.; Lin, Y.-Y.; Yang, L.-Y.; Lee, C.-H.; Guan, C.-Y.; Jhou, H.-J. Thrombectomy for Ischemic Stroke Beyond 24 Hours: A Meta-Analysis. Life 2025, 15, 556. https://doi.org/10.3390/life15040556
Chiu H-T, Chen P-H, Lin Y-Y, Yang L-Y, Lee C-H, Guan C-Y, Jhou H-J. Thrombectomy for Ischemic Stroke Beyond 24 Hours: A Meta-Analysis. Life. 2025; 15(4):556. https://doi.org/10.3390/life15040556
Chicago/Turabian StyleChiu, Hao-Tse, Po-Huang Chen, Yen-Yue Lin, Li-Yu Yang, Cho-Hao Lee, Che-Yu Guan, and Hong-Jie Jhou. 2025. "Thrombectomy for Ischemic Stroke Beyond 24 Hours: A Meta-Analysis" Life 15, no. 4: 556. https://doi.org/10.3390/life15040556
APA StyleChiu, H.-T., Chen, P.-H., Lin, Y.-Y., Yang, L.-Y., Lee, C.-H., Guan, C.-Y., & Jhou, H.-J. (2025). Thrombectomy for Ischemic Stroke Beyond 24 Hours: A Meta-Analysis. Life, 15(4), 556. https://doi.org/10.3390/life15040556