The Influence of Microorganisms on the Onset and Development of Colorectal Cancer in Humans: A Descriptive Cross-Reference Study
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Escherichia coli
4.2. Enterococcus spp.
4.3. Klebsiella/Enterobacter
4.4. Streptococcus gordonii
4.5. Pseudomonas aeruginosa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today (accessed on 10 October 2023).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef]
- Nikolic, D. Diabetes Mellitus and Obesity as a Result of a Disrupted Homeostatic Microbiome. New Data on Etiopathogenesis of Diabetes Mellitus. Vojnosanit. Pregl. 2018, 75, 1110–1117. [Google Scholar] [CrossRef]
- Nikolic, D.M.; Dimitrijevic-Sreckovic, V.; Ranin, L.T.; Stojanovic, M.M.; Ilic, I.D.; Gostiljac, D.M.; Soldatovic, I.A. Homeostatic Microbiome Disruption as a Cause of Insulin Secretion Disorders. Candida albicans, a New Factor in Pathogenesis of Diabetes: A STROBE Compliant Cross-Sectional Study. Medicine 2022, 101, e31291. [Google Scholar] [CrossRef] [PubMed]
- Rebersek, M. Gut Microbiome and Its Role in Colorectal Cancer. BMC Cancer 2021, 21, 1325. [Google Scholar] [CrossRef]
- Ma, M.; Zheng, Z.; Li, J.; He, Y.; Kang, W.; Ye, X. Association between the Gut Microbiota, Inflammatory Factors, and Colorectal Cancer: Evidence from Mendelian Randomization Analysis. Front. Microbiol. 2024, 15, 1309111. [Google Scholar] [CrossRef]
- Ratnesh, K.; Jha, S.; Arya, A. Clinical and Bacteriological Profile of Abdominal Surgical Site Infections in an Indian Hospital. Bioinformation 2022, 18, 962–967. [Google Scholar] [CrossRef]
- Rasilainen, S.K.; Juhani, M.P.; Kalevi, L.A. Microbial Colonization of Open Abdomen in Critically Ill Surgical Patients. World J. Emerg. Surg. 2015, 10, 25. [Google Scholar] [CrossRef]
- Joob, B.; Wiwanitkit, V. Cancerous Patients and Outbreak of Escherichia coli: An Important Issue in Oncology. Asian Pac. J. Trop. Dis. 2014, 4, 204–206. [Google Scholar] [CrossRef]
- Dougherty, M.W.; Jobin, C. Intestinal bacteria and colorectal cancer: Etiology and treatment. Gut Microbes 2023, 15, 2185028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadeghi, M.; Mestivier, D.; Sobhani, I. Contribution of Pks+ Escherichia coli (E. coli) to Colon Carcinogenesis. Microorganisms 2024, 12, 1111. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Khilkin, M.; Kerjaschki, D.; Schreiber, S.; Ortner, M.; Weber, J.; Lochs, H. Association between Intraepithelial Escherichia coli and Colorectal Cancer. Gastroenterology 1998, 115, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef]
- Humphries, J.D. Integrin Ligands at a Glance. J. Cell Sci. 2006, 119, 3901–3903. [Google Scholar] [CrossRef]
- Rubinstein, M.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Deng, M.; Chen, X.; Jiang, L.; Zhang, J.; Tao, L.; Yu, W.; Qiu, Y. Enterococcus faecalis Promotes the Progression of Colorectal Cancer via Its Metabolite: Biliverdin. J. Transl. Med. 2023, 21, 72. [Google Scholar] [CrossRef]
- Ermolenko, E.; Baryshnikova, N.; Alekhina, G.; Zakharenko, A.; Ten, O.; Kashchenko, V.; Novikova, N.; Gushchina, O.; Ovchinnikov, T.; Morozova, A.; et al. Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms 2024, 12, 980. [Google Scholar] [CrossRef]
- Bagley, S.T. Habitat Association of Klebsiella Species. Infect. Control Hosp. Epidemiol. 1985, 6, 52–58. [Google Scholar] [CrossRef]
- Ristuccia, P.A.; Cunha, B.A. Klebsiella. Infect. Control 1984, 5, 343–348. [Google Scholar] [CrossRef]
- Pope, J.L.; Yang, Y.; Newsome, R.C.; Sun, W.; Sun, X.; Ukhanova, M.; Neu, J.; Issa, J.-P.; Mai, V.; Jobin, C. Microbial Colonization Coordinates the Pathogenesis of a Klebsiella pneumoniae Infant Isolate. Sci. Rep. 2019, 9, 3380. [Google Scholar] [CrossRef]
- Salvà-Serra, F.; Jakobsson, H.E.; Thorell, K.; Gonzales-Siles, L.; Hallbäck, E.T.; Jaén-Luchoro, D.; Boulund, F.; Sikora, P.; Karlsson, R.; Svensson, L.; et al. Draft Genome Sequence of Streptococcus gordonii Type Strain CCUG 33482 T. Genome Announc. 2016, 4. [Google Scholar] [CrossRef]
- Callejo-Goena, A.; Rubio-Etxebarria, I.; Sancho-Gutiérrez, A.; Azkuna-Sagarduy, J.; Lopetegi-Aizpurua, A.; López-Vivanco, G. Infective Endocarditis in a Patient with Metastatic Colorectal Cancer. Rev. Esp. Quimioter. 2018, 31, 75–77. [Google Scholar] [PubMed]
- Aravindraja, C.; Jeepipalli, S.; Duncan, W.D.; Vekariya, K.M.; Rahaman, S.O.; Chan, E.K.L.; Kesavalu, L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust MiRNA Expression Kinetics. Int. J. Mol. Sci. 2024, 25, 6217. [Google Scholar] [CrossRef]
- Yamada, T.; Goto, M.; Punj, V.; Zaborina, O.; Kimbara, K.; Das Gupta, T.K.; Chakrabarty, A.M. The Bacterial Redox Protein Azurin Induces Apoptosis in J774 Macrophages through Complex Formation and Stabilization of the Tumor Suppressor Protein P53. Infect. Immun. 2002, 70, 7054–7062. [Google Scholar] [CrossRef]
- Punj, V.; Bhattacharyya, S.; Saint-Dic, D.; Vasu, C.; Cunningham, E.A.; Graves, J.; Yamada, T.; Constantinou, A.I.; Christov, K.; White, B.; et al. Bacterial Cupredoxin Azurin as an Inducer of Apoptosis and Regression in Human Breast Cancer. Oncogene 2004, 23, 2367–2378. [Google Scholar] [CrossRef]
- Choi, J.K.; Naffouje, S.A.; Goto, M.; Wang, J.; Christov, K.; Rademacher, D.J.; Green, A.; Stecenko, A.A.; Chakrabarty, A.M.; Das Gupta, T.K.; et al. Cross-Talk between Cancer and Pseudomonas aeruginosa Mediates Tumor Suppression. Commun. Biol. 2023, 6, 16. [Google Scholar] [CrossRef]
- Nikolic, D.; Latincic, S.; Stojanovic, M.; Grubor, N.; Ranin, L.; Nation, B. Routes and Types of Microbial Infection in the Pathology of Pancreatic Adenocarcinoma. Srp. Arh. Za Celok. Lek. 2021, 149, 638–641. [Google Scholar] [CrossRef]
- Nikolić, D.M. Effects of Bacterial Infection on Insulin Secretory Capacity of Human Adult Pancreatic Islets. Br. J. Biomed. Sci. 2011, 68, 181–184. [Google Scholar] [CrossRef]
- Fan, X.; Jin, Y.; Chen, G.; Ma, X.; Zhang, L. Gut microbiota dysbiosis drives colorectal cancer development. Digestion 2021, 102, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Nikolic Dragan, M. Homeostatic Microbiome (Microbiota)—Formation, Maintenance and Influence on Human Health. J. Gastroenterol. Hepatol. Res. 2018, 7, 2729–2733. [Google Scholar]
Group | ||||||
---|---|---|---|---|---|---|
Healthy Mucosa | Tumor Surface | Tumor Depth | ||||
N | % | N | % | N | % | |
Pseudomonas aeruginosa | 6 | 13.6% | 9 | 20.5% | 8 | 18.2% |
Escherichia coli | 31 | 70.5% | 32 | 72.7% | 34 | 77.3% |
Candida | 0 | 0.0% | 0 | 0.0% | 0 | 0.0% |
Salmonella | 0 | 0.0% | 0 | 0.0% | 0 | 0.0% |
Shigella | 0 | 0.0% | 0 | 0.0% | 0 | 0.0% |
Enterococcus spp. | 21 | 47.7% | 18 | 40.9% | 21 | 47.7% |
Streptococcus alfa haemolyticus | 0 | 0.0% | 1 | 2.3% | 1 | 2.3% |
Staphylococcus aureus | 0 | 0.0% | 1 | 2.3% | 1 | 2.3% |
Klebsiella/Enterobacter | 9 | 20.5% | 11 | 25.0% | 12 | 27.3% |
Morganela morgani | 2 | 4.5% | 2 | 4.5% | 2 | 4.5% |
Proteus mirabilis | 3 | 6.8% | 5 | 11.4% | 3 | 6.8% |
Citrobacter spp. | 1 | 2.3% | 4 | 9.1% | 3 | 6.8% |
Streptococcus gordonii | 5 | 11.4% | 4 | 9.1% | 4 | 9.1% |
Kocuria kristinae | 1 | 2.3% | 1 | 2.3% | 0 | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolic, D.M.; Latincic, S.; Jevtovic, J.; Gostiljac, D.; Stojiljkovic, V.; Jovanovic, S.; Soldatovic, I. The Influence of Microorganisms on the Onset and Development of Colorectal Cancer in Humans: A Descriptive Cross-Reference Study. Life 2025, 15, 468. https://doi.org/10.3390/life15030468
Nikolic DM, Latincic S, Jevtovic J, Gostiljac D, Stojiljkovic V, Jovanovic S, Soldatovic I. The Influence of Microorganisms on the Onset and Development of Colorectal Cancer in Humans: A Descriptive Cross-Reference Study. Life. 2025; 15(3):468. https://doi.org/10.3390/life15030468
Chicago/Turabian StyleNikolic, Dragan M., Stojan Latincic, Jelena Jevtovic, Drasko Gostiljac, Vesna Stojiljkovic, Snezana Jovanovic, and Ivan Soldatovic. 2025. "The Influence of Microorganisms on the Onset and Development of Colorectal Cancer in Humans: A Descriptive Cross-Reference Study" Life 15, no. 3: 468. https://doi.org/10.3390/life15030468
APA StyleNikolic, D. M., Latincic, S., Jevtovic, J., Gostiljac, D., Stojiljkovic, V., Jovanovic, S., & Soldatovic, I. (2025). The Influence of Microorganisms on the Onset and Development of Colorectal Cancer in Humans: A Descriptive Cross-Reference Study. Life, 15(3), 468. https://doi.org/10.3390/life15030468