Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Interleukin 8 (CXCL8)
3.2. Allergic Rhinitis and IL-8
3.3. Chronic Rhinosinusitis with Nasal Polyps and IL-8
4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL-8 | Interleukin 8 |
AR | Allergic Rhinitis |
CRS | Chronic Rhinosinusitis |
MHC | Major Histocompatibility Complex |
Bregs | B regulatory cells |
Tfh | T follicular helper cells |
Tfr | Follicular regulatory T cells |
VEGF | Vascular endothelial growth factor |
MMP-9 | Matrix metalloproteinase 9 |
TIMP-1 | Tissue inhibitors of metalloproteinase-1 |
NP | Nasal polyps |
NA | Nonallergic controls |
IT | Immunotherapy |
ADS | Asian dust storms |
HSNECS | Human sinonasal epithelial cells |
HMGB1 | High-Mobility Group Box 1 |
DEP | Diesel exhaust particles |
AP-1 | Activator protein-1 |
MAPK | Mitogen-activated protein kinase |
BECs | Bronchial epithelial cells |
NECs | Nasal epithelial cells |
IL-13 | Interleukin 13 |
SAR | Seasonal allergic rhinitis |
Serpins | Serine protease inhibitors |
EPOS | European Position Paper on Rhinosinusitis and Nasal Polyps |
BK | Bradykinin |
PRRs | Pathogen recognition receptors |
PGE2 | Prostaglandin E2 |
NPDFs | Nasal Polyp-derived fibroblasts |
AI | Artificial Intelligence |
DED | Dry eye disease |
OA | Ocular Allergy |
EIB | Exercise-induced bronchoconstriction |
c-IMT | Carotid intima-media thickness |
GBS | Guillain-Barre syndrome |
CIDP | Chronic inflammatory demyelinating polyneuropathy |
CSF | Cerebrospinal fluid |
AIDP | Acute inflammatory demyelinating polyneuropathy |
References
- Liu, J.; Wang, M.; Tian, X.; Wu, S.; Peng, H.; Zhu, Y.; Liu, Y. New insights into allergic rhinitis treatment: MSC nanovesicles targeting dendritic cells. J. Nanobiotechnol. 2024, 22, 575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huber, P.; Gröger, M.; Stihl, C.; Frankenberger, H.; Bertlich, M.; Haubner, F.; Gellrich, D. Diagnostics of allergic rhinitis under dupilumab therapy. Eur. Arch. Otorhinolaryngol. 2024, 281, 4183–4190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, X.H.; Huang, L.X.; Sun, Q.; Li, C.G.; Xie, Y.C.; Liu, X.Q.; Fu, Q.L. Increased circulating LOX-1+ neutrophils activate T cells and demonstrate a pro-inflammatory role in allergic rhinitis. Heliyon 2024, 10, e36218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.Y.; Qiao, Y.L.; Jiao, W.E.; Tao, Z.Z.; Xu, S.; Chen, S.M. Changes in Circulating CD44+CD62L- Treg Subsets and CD44-CD62L+ Treg Subsets Reflect the Clinical Status of Patients with Allergic Rhinitis. Int. Arch. Allergy Immunol. 2024, 186, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Sio, Y.Y.; Du, K.; Lam, T.Y.W.; Say, Y.H.; Reginald, K.; Chew, F.T. Functional Polymorphisms Regulate FOXO1 Transcript Expression and Contribute to the Risk and Symptom Severity of HDM-Induced Allergic Rhinitis. Int. Arch. Allergy Immunol. 2024, 186, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.F.; Zhou, Y.C.; Hu, T.Y.; Yang, D.H.; Wang, X.J.; Luo, D.D.; Qiu, S.Q.; Cheng, B.H.; Zeng, X.H. Unraveling the role of NLRP3 in-flammasome in allergic inflammation: Implications for novel therapies. Front. Immunol. 2024, 15, 1435892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.; Deshmukh, P.; Jain, S.; Gaurkar, S.; Sharma, A. Unraveling the Molecular Threads: A Comprehensive Review of the Pathogenesis and Therapeutic Insights Into Allergic Rhinitis. Cureus 2024, 16, e64410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, Y.; Huttenlocher, A. Advancing chemokine research: The molecular function of CXCL8. J. Clin. Investig. 2024, 134, e180984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsushima, K.; Shichino, S.; Ueha, S. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2023, 99, 213–226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cambier, S.; Gouwy, M.; Proost, P. The chemokines CXCL8 and CXCL12: Molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell. Mol. Immunol. 2023, 20, 217–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kramer, M.F.; Jordan, T.R.; Klemens, C.; Hilgert, E.; Hempel, J.M.; Pfrogner, E.; Rasp, G. Factors contributing to nasal allergic late phase eosinophilia. Am. J. Otolaryngol. 2006, 27, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Ural, A.; Tezer, M.S.; Yücel, A.; Atilla, H.; Ileri, F. Interleukin-4, interleukin-8 and E-selectin levels in intranasal polyposis patients with and without allergy: A comparative study. J. Int. Med. Res. 2006, 34, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Bing, L.; Jin, H.; Jingping, F. Gene expression profiles of nasal polyps associated with allergic rhinitis. Am. J. Otolaryngol. 2009, 30, 24–32. [Google Scholar] [CrossRef] [PubMed]
- El-Shazly, A.E.; Lefebvre, P.P. Modulation of NK cell autocrine-induced eosinophil chemotaxis by interleukin-15 and vitamin D(3): A possible NK-eosinophil crosstalk via IL-8 in the pathophysiology of allergic rhinitis. Mediat. Inflamm. 2011, 2011, 373589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lavinskiene, S.; Jeroch, J.; Malakauskas, K.; Bajoriuniene, I.; Jackute, J.; Sakalauskas, R. Peripheral blood neutrophil activity during Dermatophagoides pteronyssinus-induced late-phase airway inflammation in patients with allergic rhinitis and asthma. Inflammation 2012, 35, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.F.; Song, P.P.; Hwang, G.Y.; Lin, S.J.; Chen, Y.H. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann. Allergy Asthma Immunol. 2012, 108, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Ventura, I.; Vega, A.; Chamorro, C.; Aroca, R.; Gómez, E.; Pineda, F.; Palacios, R.; Blanca, M.; Monteseirín, J. Allergen immunotherapy decreases LPS-induced NF-κB activation in neutrophils from allergic patients. Pediatr. Allergy Immunol. 2014, 25, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Lavinskiene, S.; Bajoriuniene, I.; Malakauskas, K.; Jeroch, J.; Sakalauskas, R. Sputum neutrophil count after bronchial allergen challenge is related to peripheral blood neutrophil chemotaxis in asthma patients. Inflamm. Res. 2014, 63, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Kurai, J.; Tomita, K.; Sano, H.; Abe, S.; Saito, R.; Minato, S.; Igishi, T.; Burioka, N.; Sako, T.; et al. Effects on asthma and induction of interleukin-8 caused by Asian dust particles collected in western Japan. J. Asthma 2014, 51, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, L.A.; Mulligan, J.K.; Roach, C.; Pasquini, W.N.; Soler, Z.M.; Banglawala, S.M.; Karnezis, T.T.; Gudis, D.A.; Schlosser, R.J. Su-peroxide dismutase reduces the inflammatory response to Aspergillus and Alternaria in human sinonasal epithelial cells derived from patients with chronic rhinosinusitis. Am. J. Rhinol. Allergy 2015, 29, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Kouzaki, H.; Kato, T.; Tojima, I.; Shimizu, T. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Am. J. Rhinol. Allergy 2016, 30, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Gilles-Stein, S.; Beck, I.; Chaker, A.; Bas, M.; McIntyre, M.; Cifuentes, L.; Petersen, A.; Gutermuth, J.; Schmidt-Weber, C.; Behrendt, H.; et al. Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo. Clin. Exp. Allergy 2016, 46, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.B.; Bayraktar, R.; Gogebakan, B.; Mumbuc, S.; Bayram, H. Comparison of inflammatory cytokine release from nasal epithelial cells of non-atopic non-rhinitic, allergic rhinitic and polyp subjects and effects of diesel exhaust particles in vitro. Allergol. Immunopathol. 2017, 45, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, E.; Bulut, S.; Yilmaz, M.; Örün, H.; Karadağ, F.; Ömürlü, İ.K.; Kirdar, S.; Karul, A. The Levels of Serum Biomarkers in Stable Asthma Patients with Comorbidities. Iran. J. Allergy Asthma Immunol. 2019, 18, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.; de Matos, M.R.; Cortes, L.; Nunes-Correia, I.; Todo-Bom, A.; Pires, E.; Veríssimo, P. Pollen Proteases Play Multiple Roles in Allergic Disorders. Int. J. Mol. Sci. 2020, 21, 3578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gökkaya, M.; Damialis, A.; Nussbaumer, T.; Beck, I.; Bounas-Pyrros, N.; Bezold, S.; Amisi, M.M.; Kolek, F.; Todorova, A.; Chaker, A.; et al. Defining biomarkers to predict symptoms in subjects with and without allergy under natural pollen exposure. J. Allergy Clin. Immunol. 2020, 146, 583–594.e6. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Wang, M.; Yuan, J.; Song, J.; Luan, G.; Yu, J.; Wang, Y.; Li, Y.; Wang, C.; Zhang, L. SerpinB3/B4 Abates Epithelial Cell-Derived CXCL8/IL-8 Expression in Chronic Rhinosinusitis with Nasal Polyps. J. Immunol. Res. 2024, 2024, 8553447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abuduruk, S.H.; Sabb Gul, B.K.; AlMasoudi, S.M.; Alfattani, E.H.; Mohammad, M.A.; Alshehri, H.M.; Alosaimi, A.D.; Almnjwami, R.F.; Alnafie, J.A.; Jabbari, A.N.; et al. Factors Contributing to the Recurrence of Chronic Rhinosinusitis With Nasal Polyps After Endoscopic Sinus Surgery: A Systematic Review. Cureus 2024, 16, e67910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kostamo, K.; Sorsa, T.; Leino, M.; Tervahartiala, T.; Alenius, H.; Richardson, M.; Toskala, E. In vivo relationship between collagenase-2 and interleukin-8 but not tumour necrosis factor-alpha in chronic rhinosinusitis with nasal polyposis. Allergy 2005, 60, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.J.; Hao, S.P.; Chen, C.L.; Lin, B.J.; Wu, W.B. Involvement of B2 receptor in bradykinin-induced proliferation and proinflammatory effects in human nasal mucosa-derived fibroblasts isolated from chronic rhinosinusitis patients. PLoS ONE 2015, 10, e0126853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsai, Y.J.; Hao, S.P.; Chen, C.L.; Wu, W.B. Thromboxane A2 Regulates CXCL1 and CXCL8 Chemokine Expression in the Nasal Mu-cosa-Derived Fibroblasts of Chronic Rhinosinusitis Patients. PLoS ONE 2016, 11, e0158438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, S.H.; Ye, M.K.; Kim, Y.H.; Kim, J.K. Role of TLRs in the production of chemical mediators in nasal polyp fibroblasts by fungi. Auris Nasus Larynx 2016, 43, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Han, I.H.; Lee, H.R.; Lee, H.M. Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts. Allergy Asthma Immunol. Res. 2014, 6, 449–457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huriyati, E.; Darwin, E.; Yanwirasti, Y.; Wahid, I. Association of Inflammation Mediator in Mucosal and Tissue of Chronic Rhi-nosinusitis with Recurrent Nasal Polyp. Open Access Maced. J. Med. Sci. 2019, 7, 1635–1640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Jiao, J.; Wang, M.; Gao, Y.; Li, Y.; Wang, Y.; Zhang, Y.; Wang, X.; Zhang, L. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019, 144, 993–1003.e12. [Google Scholar] [CrossRef] [PubMed]
- Rosati, D.; Rosato, C.; Pagliuca, G.; Cerbelli, B.; Della Rocca, C.; Di Cristofano, C.; Martellucci, S.; Gallo, A. Predictive markers of long-term recurrence in chronic rhinosinusitis with nasal polyps. Am. J. Otolaryngol. 2020, 41, 102286. [Google Scholar] [CrossRef] [PubMed]
- do Amaral, J.B.; David, A.G.; Mello, L.; Bachi, A.L.L.; Voegels, R.L.; Thamboo, A.; Pezato, R. Impact of Chronic Rhinosinusitis with Nasal Polyposis on IL-12 and IL-8. Iran. J. Otorhinolaryngol. 2023, 35, 21–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berghi, O.N.; Vrinceanu, D.; Cergan, R.; Dumitru, M.; Costache, A. Solanum melongena allergy (A comprehensive review). Exp. Ther. Med. 2021, 22, 1061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berghi, O.; Dumitru, M.; Cergan, R.; Musat, G.; Serboiu, C.; Vrinceanu, D. Local Allergic Rhinitis—A Challenge for Allergology and Otorhinolaryngology Cooperation (Scoping Review). Life 2024, 14, 965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, X.; Yin, J.; Yang, Y.; Liu, H.; Yu, J.; Luo, X.; Zhang, Y.; Song, X. Advances in co-pathogenesis of the united airway diseases. Respir. Med. 2024, 225, 107580. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Luong, A.U.; Gevaert, P.; Mullol, J.; Smith, S.G.; Silver, J.; Sousa, A.R.; Howarth, P.H.; Benson, V.S.; Mayer, B.; et al. The Unified Airway Hypothesis: Evidence From Specific Intervention With Anti-IL-5 Biologic Therapy. J. Allergy Clin. Immunol. Pract. 2023, 11, 2630–2641. [Google Scholar] [CrossRef] [PubMed]
- MacMath, D.; Chen, M.; Khoury, P. Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology. Curr. Allergy Asthma Rep. 2023, 23, 351–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eschenbacher, W.; Straesser, M.; Knoeddler, A.; Li, R.C.; Borish, L. Biologics for the Treatment of Allergic Rhinitis, Chronic Rhinosi-nusitis, and Nasal Polyposis. Immunol. Allergy Clin. North Am. 2020, 40, 539–547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zemba, M.; Ionescu, M.A.; Pîrvulescu, R.A.; Dumitrescu, O.M.; Daniel-Constantin, B.; Radu, M.; Stamate, A.C.; Istrate, S. Biomarkers of ocular allergy and dry eye disease. Rom. J. Ophthalmol. 2023, 67, 250–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katongole, P.; Sande, O.J.; Nabweyambo, S.; Joloba, M.; Kajumbula, H.; Kalungi, S.; Reynolds, S.J.; Ssebambulidde, K.; Atuheirwe, M.; Orem, J.; et al. IL-6 and IL-8 cytokines are associated with elevated prostate-specific antigen levels among patients with adeno-carcinoma of the prostate at the Uganda Cancer Institute. Future Oncol. 2022, 18, 661–667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos, J.M.B.D.; Bachi, A.L.L.; Luna Junior, L.A.; Foster, R.; Sierra, A.P.R.; Benetti, M.; Araújo, J.R.; Ghorayeb, N.; Kiss, M.A.P.D.; Vieira, R.P.; et al. The Relationship of IL-8 and IL-10 Myokines and Performance in Male Marathon Runners Presenting Exercise-Induced Bronchoconstriction. Int. J. Environ. Res. Public Health 2020, 17, 2622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, A.; Zhang, L.; Ye, X.; Chen, J.; Yu, J.; Zhuang, L.; Weng, C.; Petersen, F.; Wang, Z.; Yu, X. High Levels of Circulating IL-8 and Soluble IL-2R Are Associated With Prolonged Illness in Patients With Severe COVID-19. Front. Immunol. 2021, 12, 626235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velásquez, I.M.; Malarstig, A.; Baldassarre, D.; Borne, Y.; de Faire, U.; Engström, G.; Eriksson, P.; Giral, P.; Humphries, S.E.; Kurl, S.; et al. Causal analysis of plasma IL-8 on carotid intima media thickness, a measure of subclinical atherosclerosis. Curr. Res. Transl. Med. 2023, 71, 103374. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.J.; Thompson, H.M.; Walz, C.R.; Ayinala, S.; Skinner, D.; Zhang, S.; Grayson, J.W.; Cho, D.Y.; Woodworth, B.A. Azithromycin and ciprofloxacin inhibit interleukin-8 secretion without disrupting human sinonasal epithelial integrity in vitro. Int. Forum Allergy Rhinol. 2021, 11, 136–143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.; Han, X.; Jin, Y.; Chen, X.; Gong, C.; Peng, J.; Wang, Y.; Luo, X.; Yang, Z.; Zhang, Y.; et al. Pathogenic Gene Spectrum and Clinical Implication in Chinese Patients with Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2023, 18, 869–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breville, G.; Lascano, A.M.; Roux-Lombard, P.; Vuilleumier, N.; Lalive, P.H. Interleukin 8, a Biomarker to Differentiate Guillain-Barré Syndrome From CIDP. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, R.S.; Chen, I.C.; Chen, Y.M.; Hsiao, T.H.; Chen, Y.C. Risk Prediction of Chronic Rhinosinusitis with or without Nasal Polyps in Taiwanese Population Using Polygenic Risk Score for Nasal Polyps. Biomedicines 2023, 11, 2729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sivrice, M.E.; Akın, V.; Yasan, H.; Hekimler Öztürk, K.; Kumbul, Y.Ç. Angiotensin-Converting Enzyme Insertion/Deletion Gene Polymorphism in Chronic Rhinosinusitis with Nasal Polyps. Turk. Arch. Otorhinolaryngol. 2025, 62, 95–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camargo, L.A.; Reis, A.A.D.S.; Rodrigues, S.O.; Santos, R.D.S.; Avelino, M.A.G. The Effects of VEGF-A and GSTM1/GSTT1 Variants in the Susceptibility to the Chronic Rhinosinusitis with Nasal Polyposis: A Pilot Genetic Study. Biomedicines 2024, 12, 2383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cergan, R.; Berghi, O.; Dumitru, M.; Vrinceanu, D.; Manole, F.; Musat, G.C.; Oancea, A.L.A.; Serboiu, C. Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review. Life 2025, 15, 469. https://doi.org/10.3390/life15030469
Cergan R, Berghi O, Dumitru M, Vrinceanu D, Manole F, Musat GC, Oancea ALA, Serboiu C. Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review. Life. 2025; 15(3):469. https://doi.org/10.3390/life15030469
Chicago/Turabian StyleCergan, Romica, Ovidiu Berghi, Mihai Dumitru, Daniela Vrinceanu, Felicia Manole, Gabriela Cornelia Musat, Alina Lavinia Antoaneta Oancea, and Crenguta Serboiu. 2025. "Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review" Life 15, no. 3: 469. https://doi.org/10.3390/life15030469
APA StyleCergan, R., Berghi, O., Dumitru, M., Vrinceanu, D., Manole, F., Musat, G. C., Oancea, A. L. A., & Serboiu, C. (2025). Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review. Life, 15(3), 469. https://doi.org/10.3390/life15030469