Memory in Psychiatric Disorders: A Review
Abstract
1. Introduction
- (1)
- Which memory domains are most consistently affected across mood, anxiety, obsessive–compulsive, trauma-related, and psychotic disorders?
- (2)
- What neurobiological and network-level mechanisms may account for shared or divergent patterns of impairment?
- (3)
- How do disorder-specific profiles relate to transdiagnostic trends?
- (4)
- What are the clinical implications for treatment, and cognitive intervention?
2. Methods
3. Memory as a Transdiagnostic Dimension: Neurobiology and Disorder-Specific Profiles
3.1. Neurobiology of Memory
3.2. Memory in Mood Disorders
3.2.1. Major Depressive Disorder
3.2.2. Bipolar Disorders
3.3. Memory in Anxiety Disorders
3.3.1. Generalized Anxiety Disorder
3.3.2. Panic Disorder
3.3.3. Social Anxiety Disorder
3.3.4. Other Anxiety Disorders
3.4. Memory in OCD
3.5. Memory in PTSD
3.6. Memory in Psychotic Disorders
3.6.1. Schizophrenia
3.6.2. Other Psychotic Disorders
3.7. Therapeutic Strategies Addressing Memory Deficits in Psychiatric Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Markowitsch, H.J. Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res. Rev. 1995, 21, 117–127. [Google Scholar] [CrossRef]
- Ofen, N.; Tang, L.; Yu, Q.; Johnson, E.L. Memory and the developing brain: From description to explanation with innovation in methods. Dev. Cogn. Neurosci. 2019, 36, 100613. [Google Scholar] [CrossRef] [PubMed]
- Josselyn, S.A.; Tonegawa, S. Memory engrams: Recalling the past and imagining the future. Science 2020, 367, eaaw4325. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.S. The Cognitive Neurosciences; MIT Press: Cambridge, MA, USA, 2009; ISBN 978-0-262-01341-3. [Google Scholar]
- McDermott, K.B.; Roediger, H.L. Memory (encoding, storage, retrieval). General Psychology FA2018. Noba Project: Milwaukie, OR.; DEF Publishers: Champaign, IL, USA, 2018; pp. 117–153. [Google Scholar]
- Paller, K.A.; Wagner, A.D. Observing the transformation of experience into memory. Trends Cogn. Sci. 2002, 6, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Genzel, L.; Wixted, J.T.; Morris, R.G. Memory consolidation. Cold Spring Harb. Perspect. Biol. 2015, 7, a021766. [Google Scholar] [CrossRef]
- Sligte, I.G.; Vandenbroucke, A.R.E.; Scholte, H.S.; Lamme, V. Detailed sensory memory, sloppy working memory. Front. Psychol. 2010, 1, 175. [Google Scholar] [CrossRef]
- Atkinson, R.C.; Shiffrin, R.M. Human memory: A proposed system and its control processes1. In Psychology of Learning and Motivation; Spence, K.W., Spence, J.T., Eds.; Academic Press: Cambridge, MA, USA, 1968; Volume 2, pp. 89–195. [Google Scholar]
- Vallar, G.; Papagno, C. Manuale di Neuropsicologia; Il Mulino: Bologna, Italy, 2011; ISBN 978-88-15-23261-8. [Google Scholar]
- Chein, J.M.; Moore, A.B.; Conway, A.R. Domain-general mechanisms of complex working memory span. Neuroimage 2011, 54, 550–559. [Google Scholar] [CrossRef]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Squire, L.R. The legacy of patient hm for neuroscience. Neuron 2009, 61, 6–9. [Google Scholar] [CrossRef]
- Eichenbaum, H. What hm taught us. J. Cogn. Neurosci. 2013, 25, 14–21. [Google Scholar] [CrossRef]
- Squire, L.R.; Zola, S.M. Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. USA 1996, 93, 13515–13522. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Wixted, J.T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 2011, 34, 259–288. [Google Scholar] [CrossRef]
- Broadbent, D.E. A mechanical model for human attention and immediate memory. Psychol. Rev. 1957, 64, 205–215. [Google Scholar] [CrossRef]
- Craik, F.I.; Watkins, M.J. The role of rehearsal in short-term memory. J. Verbal Learn. Verbal Behav. 1973, 12, 599–607. [Google Scholar] [CrossRef]
- Tulving, E.; Pearlstone, Z. Availability versus accessibility of information in memory for words. J. Verbal Learn. Verbal Behav. 1966, 5, 381–391. [Google Scholar] [CrossRef]
- Cowan, N. An embedded-processes model of working memory. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: Cambridge, UK, 1999; Volume 20, pp. 1013–1019. [Google Scholar]
- Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 1995, 14, 477–485. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G.J. Developments in the concept of working memory. Neuropsychology 1994, 8, 485. [Google Scholar] [CrossRef]
- D’Esposito, M. From cognitive to neural models of working memory. Phil. Trans. R. Soc. B 2007, 362, 761–772. [Google Scholar] [CrossRef]
- Shallice, T. Fractionation of the supervisory system. Princ. Front. Lobe Funct. 2002, 616, 261–277. [Google Scholar]
- Yu, R.; Han, B.; Wu, X.; Wei, G.; Zhang, J.; Ding, M.; Wen, X. Dual-functional network regulation underlies the central executive system in working memory. Neuroscience 2023, 524, 158–180. [Google Scholar] [CrossRef] [PubMed]
- Paulesu, E.; Frith, C.D.; Frackowiak, R.S. The neural correlates of the verbal component of working memory. Nature 1993, 362, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Perrachione, T.K.; Ghosh, S.S.; Ostrovskaya, I.; Gabrieli, J.D.E.; Kovelman, I. Phonological working memory for words and nonwords in cerebral cortex. J. Speech Lang. Hear Res. 2017, 60, 1959–1979. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Rettinger, D.A.; Shah, P.; Hegarty, M. How are visuospatial working memory, executive functioning, and spatial abilities related? a latent-variable analysis. J. Exp. Psychol. Gen. 2001, 130, 621. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Y.; He, H.; Feng, Q.; Bi, T.; Qiu, J. The different brain mechanisms of object and spatial working memory: Voxel-based morphometry and resting-state functional connectivity. Front. Hum. Neurosci. 2019, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.; Allen, R.; Vargha-Khadem, F. Is the hippocampus necessary for visual and verbal binding in working memory? Neuropsychologia 2010, 48, 1089–1095. [Google Scholar] [CrossRef]
- D’Esposito, M.; Postle, B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015, 66, 115–142. [Google Scholar] [CrossRef]
- Curtis, C.E.; Sprague, T.C. Persistent activity during working memory from front to back. Front. Neural Circuits 2021, 15, 696060. [Google Scholar] [CrossRef]
- Badre, D.; Nee, D.E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 2018, 22, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Rempel, S.; Gholamipourbarogh, N.; Beste, C. A ventral stream-prefrontal cortex processing cascade enables working memory gating dynamics. Commun. Biol. 2022, 5, 1086. [Google Scholar] [CrossRef]
- Eichenbaum, H.; Cohen, N.J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 2014, 83, 764–770. [Google Scholar] [CrossRef]
- Binder, J.R.; Desai, R.H. The neurobiology of semantic memory. Trends Cogn. Sci. 2011, 15, 527–536. [Google Scholar] [CrossRef]
- Davis, C.P.; Paz-Alonso, P.M.; Altmann, G.T.M.; Yee, E. Encoding and inhibition of arbitrary episodic context with abstract concepts. Mem. Cogn. 2022, 50, 546–563. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.B.; Uncapher, M.R.; Wagner, A.D. Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learn. Mem. 2009, 16, 343–356. [Google Scholar] [CrossRef]
- Blumenfeld, R.S.; Ranganath, C. Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 2007, 13, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.E.; Mohan, U.R.; Stein, J.M.; Jacobs, J. Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding. Nat. Hum. Behav. 2023, 7, 754–764. [Google Scholar] [CrossRef]
- Brewer, J.B.; Zhao, Z.; Desmond, J.E.; Glover, G.H.; Gabrieli, J.D.E. Making memories: Brain activity that predicts how well visual experience will be remembered. Science 1998, 281, 1185–1187. [Google Scholar] [CrossRef]
- Burock, M.A.; Buckner, R.L.; Woldorff, M.G.; Rosen, B.R.; Dale, A.M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional mri. NeuroReport 1998, 9, 3735. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Schacter, D.L.; Rotte, M.; Koutstaal, W.; Maril, A.; Dale, A.M.; Rosen, B.R.; Buckner, R.L. Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998, 281, 1188–1191. [Google Scholar] [CrossRef]
- Miller, M.I.; Beg, M.F.; Ceritoglu, C.; Stark, C. Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. Proc. Natl. Acad. Sci. USA 2005, 102, 9685–9690. [Google Scholar] [CrossRef]
- Zeineh, M.M.; Engel, S.A.; Thompson, P.M.; Bookheimer, S.Y. Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 2003, 299, 577–580. [Google Scholar] [CrossRef]
- Gabrieli, J.D.E.; Brewer, J.B.; Desmond, J.E.; Glover, G.H. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 1997, 276, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Davachi, L.; Mitchell, J.P.; Wagner, A.D. Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proc. Natl. Acad. Sci. USA 2003, 100, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Preston, A.R.; Bornstein, A.M.; Hutchinson, J.B.; Gaare, M.E.; Glover, G.H.; Wagner, A.D. High-resolution fmri of content-sensitive subsequent memory responses in human medial temporal lobe. J. Cogn. Neurosci. 2010, 22, 156–173. [Google Scholar] [CrossRef]
- Squire, L.R.; Wixted, J.T.; Clark, R.E. Recognition memory and the medial temporal lobe: A new perspective. Nat. Rev. Neurosci. 2007, 8, 872–883. [Google Scholar] [CrossRef]
- Bakker, A.; Kirwan, C.B.; Miller, M.; Stark, C.E.L. Pattern separation in the human hippocampal ca3 and dentate gyrus. Science 2008, 319, 1640–1642. [Google Scholar] [CrossRef]
- Dusek, J.A.; Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl. Acad. Sci. USA 1997, 94, 7109–7114. [Google Scholar] [CrossRef]
- Kuhnke, P.; Beaupain, M.C.; Cheung, V.K.M.; Weise, K.; Kiefer, M.; Hartwigsen, G. Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. NeuroImage 2020, 219, 117041. [Google Scholar] [CrossRef]
- Wig, G.S.; Buckner, R.L.; Schacter, D.L. Repetition priming influences distinct brain systems: Evidence from task-evoked data and resting-state correlations. J. Neurophysiol. 2009, 101, 2632–2648. [Google Scholar] [CrossRef]
- Davis, K.; Margolis, A.E.; Thomas, L.; Huo, Z.; Marsh, R. Amygdala sub-regional functional connectivity predicts anxiety in children with reading disorder. Dev. Sci. 2018, 21, e12631. [Google Scholar] [CrossRef]
- Camina, E.; Güell, F. The neuroanatomical, neurophysiological and psychological basis of memory: Current models and their origins. Front. Pharmacol. 2017, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.N. The neuroscience of implicit learning. Lang. Learn. 2020, 70, 255–307. [Google Scholar] [CrossRef]
- Reber, P.J. Cognitive neuroscience of declarative and nondeclarative memory. In Advances in Psychology; Benjamin, A.S., De Belle, J.S., Etnyre, B., Polk, T.A., Eds.; Human Learning: North-Holland, The Netherlands, 2008; Volume 139, pp. 113–123. [Google Scholar]
- Wang, J.-H.; Cui, S. Associative memory cells and their working principle in the brain. F1000Research 2018, 7, 108. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Duan, S.; Huang, T.; Wang, H. Pavlov associative memory in a memristive neural network and its circuit implementation. Neurocomputing 2016, 171, 23–29. [Google Scholar] [CrossRef]
- Bermudez-Rattoni, F. Is memory consolidation a multiple-circuit system? Proc. Natl. Acad. Sci. USA 2010, 107, 8051–8052. [Google Scholar] [CrossRef]
- McGaugh, J.L. Memory--a century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef]
- Langille, J.J. Remembering to forget: A dual role for sleep oscillations in memory consolidation and forgetting. Front. Cell. Neurosci. 2019, 13, 71. [Google Scholar] [CrossRef]
- Ivanco, T.L. Long-Term Potentiation and Long-Term Depression; Elsevier: Amsterdam, The Netherlands, 2015; pp. 358–365. [Google Scholar]
- Bailey, C.H.; Kandel, E.R.; Harris, K.M. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 2015, 7, a021758. [Google Scholar] [CrossRef] [PubMed]
- Alberini, C.M. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 2009, 89, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell 2014, 157, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.; Højgaard, K.; Privitera, L.; Bayraktar, G.; Takeuchi, T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur. J. Neurosci. 2021, 54, 6826–6849. [Google Scholar] [CrossRef]
- Park, P.; Georgiou, J.; Sanderson, T.M.; Ko, K.-H.; Kang, H.; Kim, J.; Bradley, C.A.; Bortolotto, Z.A.; Zhuo, M.; Kaang, B.-K.; et al. PKA drives an increase in ampa receptor unitary conductance during ltp in the hippocampus. Nat. Commun. 2021, 12, 413. [Google Scholar] [CrossRef]
- Park, P.; Kang, H.; Sanderson, T.M.; Bortolotto, Z.A.; Georgiou, J.; Zhuo, M.; Kaang, B.-K.; Collingridge, G.L. The role of calcium-permeable ampars in long-term potentiation at principal neurons in the rodent hippocampus. Front. Synaptic Neurosci. 2018, 10, 42. [Google Scholar] [CrossRef]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
- Nabavi, S.; Fox, R.; Proulx, C.D.; Lin, J.Y.; Tsien, R.Y.; Malinow, R. Engineering a memory with ltd and ltp. Nature 2014, 511, 348–352. [Google Scholar] [CrossRef]
- Squire, V.A. Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2813–2831. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national disability-adjusted life-years (dalys) for 359 diseases and injuries and healthy life expectancy (hale) for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef]
- Kraepelin, E.; Diefendorf, A.R. Clinical Psychiatry: A Text-Book for Students and Physicians; Macmillan: New York, NY, USA, 1907. [Google Scholar]
- Kraepelin, E. Lectures on Clinical Psychiatry; W. Wood & Company: Prague, Czech Republic, 1917. [Google Scholar]
- McKeough, J.E.; Sharpley, C.F.; Vessey, K.A.; Bitsika, V.; Williams, R.J.; Odierna, G.L.; Evans, I.D. Physical, cognitive, social, and functional health correlates of major depressive disorder subtypes: A systematic review. Brain Sci. 2025, 15, 525. [Google Scholar] [CrossRef]
- Barch, D.M.; Harms, M.P.; Tillman, R.; Hawkey, E.; Luby, J.L. Early childhood depression, emotion regulation, episodic memory, and hippocampal development. J. Abnorm. Psychol. 2019, 128, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Dere, E.; Pause, B.M.; Pietrowsky, R. Emotion and episodic memory in neuropsychiatric disorders. Behav. Brain Res. 2010, 215, 162–171. [Google Scholar] [CrossRef]
- Dietsche, B.; Backes, H.; Stratmann, M.; Konrad, C.; Kircher, T.; Krug, A. Altered neural function during episodic memory encoding and retrieval in major depression. Hum. Brain Mapp. 2014, 35, 4293–4302. [Google Scholar] [CrossRef]
- Fang, J.; Demic, S.; Cheng, S. The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory. PLoS ONE 2018, 13, e0198406. [Google Scholar] [CrossRef] [PubMed]
- James, T.A.; Weiss-Cowie, S.; Hopton, Z.; Verhaeghen, P.; Dotson, V.M.; Duarte, A. Depression and episodic memory across the adult lifespan: A meta-analytic review. Psychol. Bull. 2021, 147, 1184–1214. [Google Scholar] [CrossRef] [PubMed]
- Jayaweera, H.K.; Hickie, I.B.; Duffy, S.L.; Mowszowski, L.; Norrie, L.; Lagopoulos, J.; Naismith, S.L. Episodic memory in depression: The unique contribution of the anterior caudate and hippocampus. Psychol. Med. 2016, 46, 2189–2199. [Google Scholar] [CrossRef]
- Wachowska, K.; Szemraj, J.; Śmigielski, J.; Gałecki, P. Inflammatory markers and episodic memory functioning in depressive disorders. J. Clin. Med. 2022, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.G.; Barnhofer, T.; Crane, C.; Herman, D.; Raes, F.; Watkins, E.; Dalgleish, T. Autobiographical memory specificity and emotional disorder. Psychol. Bull. 2007, 133, 122–148. [Google Scholar] [CrossRef]
- Hallford, D.J.; Rusanov, D.; Yeow, J.J.E.; Barry, T.J. Overgeneral and specific autobiographical memory predict the course of depression: An updated meta-analysis. Psychol. Med. 2021, 51, 909–926. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Srithiran, A.; Benitez, J.; Daskalakis, Z.Z.; Oxley, T.J.; Kulkarni, J.; Egan, G.F. An fmri study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum. Brain Mapp. 2008, 29, 490–501. [Google Scholar] [CrossRef]
- Xu, W.; Yao, X.; Zhao, F.; Zhao, H.; Cheng, Z.; Yang, W.; Cui, R.; Xu, S.; Li, B. Changes in hippocampal plasticity in depression and therapeutic approaches influencing these changes. Neural Plast. 2020, 2020, 8861903. [Google Scholar] [CrossRef]
- Mulders, P.C.; van Eijndhoven, P.F.; Schene, A.H.; Beckmann, C.F.; Tendolkar, I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015, 56, 330–344. [Google Scholar] [CrossRef]
- Airaksinen, E.; Wahlin, A.; Larsson, M.; Forsell, Y. Cognitive and social functioning in recovery from depression: Results from a population-based three-year follow-up. J. Affect. Disord. 2006, 96, 107–110. [Google Scholar] [CrossRef]
- Bierman, E.J.M.; Comijs, H.C.; Jonker, C.; Beekman, A.T.F. Effects of anxiety versus depression on cognition in later life. Am. J. Geriatr. Psychiatry 2005, 13, 686–693. [Google Scholar] [CrossRef]
- Gohier, B.; Ferracci, L.; Surguladze, S.A.; Lawrence, E.; El Hage, W.; Kefi, M.Z.; Allain, P.; Garre, J.-B.; Le Gall, D. Cognitive inhibition and working memory in unipolar depression. J. Affect. Disord. 2009, 116, 100–105. [Google Scholar] [CrossRef]
- Marazziti, D.; Consoli, G.; Picchetti, M.; Carlini, M.; Faravelli, L. Cognitive impairment in major depression. Eur. J. Pharmacol. 2010, 626, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Nikolin, S.; Tan, Y.Y.; Schwaab, A.; Moffa, A.; Loo, C.K.; Martin, D. An investigation of working memory deficits in depression using the n-back task: A systematic review and meta-analysis. J. Affect. Disord. 2021, 284, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Semkovska, M.; Quinlivan, L.; O’Grady, T.; Johnson, R.; Collins, A.; O’Connor, J.; Knittle, H.; Ahern, E.; Gload, T. Cognitive function following a major depressive episode: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 851–861. [Google Scholar] [CrossRef]
- Songco, A.; Patel, S.D.; Dawes, K.; Rodrigues, E.; O’Leary, C.; Hitchcock, C.; Dalgleish, T.; Schweizer, S. Affective working memory in depression. Emotion 2023, 23, 1802–1807. [Google Scholar] [CrossRef]
- Ajilchi, B.; Nejati, V. Executive functions in students with depression, anxiety, and stress symptoms. Basic Clin. Neurosci. 2017, 8, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Basak, C.; Verhaeghen, P. Aging and switching the focus of attention in working memory: Age differences in item availability but not in item accessibility. J. Gerontol. B Psychol. Sci. Soc. Sci. 2011, 66, 519–526. [Google Scholar] [CrossRef]
- Harvey, P.-O.; Fossati, P.; Pochon, J.-B.; Levy, R.; Lebastard, G.; Lehéricy, S.; Allilaire, J.-F.; Dubois, B. Cognitive control and brain resources in major depression: An fmri study using the n-back task. Neuroimage 2005, 26, 860–869. [Google Scholar] [CrossRef]
- Walter, H.; Wolf, R.C.; Spitzer, M.; Vasic, N. Increased left prefrontal activation in patients with unipolar depression: An event-related, parametric, performance-controlled fmri study. J. Affect. Disord. 2007, 101, 175–185. [Google Scholar] [CrossRef]
- Degl’Innocenti, A.; Agren, H.; Bäckman, L. Executive deficits in major depression. Acta Psychiatr. Scand. 1998, 97, 182–188. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Z.; Du, J.; Zhang, L.; Liu, C.; Zhao, L. Multi-head attention-based long short-term memory for depression detection from speech. Front. Neurorobot. 2021, 15, 684037. [Google Scholar] [CrossRef]
- Williams, R.A.; Hagerty, B.M.; Cimprich, B.; Therrien, B.; Bay, E.; Oe, H. Changes in directed attention and short-term memory in depression. J. Psychiatr. Res. 2000, 34, 227–238. [Google Scholar] [CrossRef]
- Akiyama, T.; Koeda, M.; Okubo, Y.; Kimura, M. Hypofunction of left dorsolateral prefrontal cortex in depression during verbal fluency task: A multi-channel near-infrared spectroscopy study. J. Affect. Disord. 2018, 231, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Koenigs, M.; Grafman, J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 2009, 201, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, M.; Rothwell, J.C. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160198. [Google Scholar] [CrossRef]
- Drevets, W.C.; Price, J.L.; Furey, M.L. Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Struct. Funct. 2008, 213, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Maletic, V. Neurobiologic aspects of late-life mood disorders. In Mood Disorders in Later Life; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; DSM-5-TR; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 978-0-89042-575-6. [Google Scholar]
- Duan, J. New Perspectives of Persistent Depressive Disorder; Atlantis Press: Dordrecht, The Netherlands, 2022; pp. 650–657. [Google Scholar]
- Melrose, S. Persistent Depressive Disorder or Dysthymia: An Overview of Assessment and Treatment Approaches; Sherri Melrose Publications: Athabasca, AB, Canada, 2019. [Google Scholar]
- Patel, R.K.; Aslam, S.P.; Rose, G.M. Persistent depressive disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Vilgis, V.; Chen, J.; Silk, T.J.; Cunnington, R.; Vance, A. Frontoparietal function in young people with dysthymic disorder (dsm-5: Persistent depressive disorder) during spatial working memory. J. Affect. Disord. 2014, 160, 34–42. [Google Scholar] [CrossRef]
- Loschiavo-Alvares, F.Q.; Sediyama, C.Y.N.; Vasconcelos, A.G.; Neves, F.; Correa, H.; Malloy-Diniz, L.F.; Bateman, A. Clinical application of dex-r for patients with bipolar disorder type i and ii. Clin. Neuropsychiatry 2013, 10, 86–95. [Google Scholar]
- Neves, M.d.C.; Albuquerque, M.R.; Neves, F.S.; Lage, G.M.; Malloy-Diniz, L.; Nicolato, R.; Corrêa, H. Sensorimotor performance in euthymic bipolar disorder: The mpraxis (penncnp) analysis. Braz. J. Psychiatry 2014, 36, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Soraggi-Frez, C.; Santos, F.H.; Albuquerque, P.B.; Malloy-Diniz, L.F. Disentangling working memory functioning in mood states of bipolar disorder: A systematic review. Front. Psychol. 2017, 8, 574. [Google Scholar] [CrossRef]
- Barrett, S.L.; Kelly, C.; Bell, R.; King, D.J. Gender influences the detection of spatial working memory deficits in bipolar disorder. Bipolar. Disord. 2008, 10, 647–654. [Google Scholar] [CrossRef]
- Drapier, D.; Surguladze, S.; Marshall, N.; Schulze, K.; Fern, A.; Hall, M.-H.; Walshe, M.; Murray, R.M.; McDonald, C. Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biol. Psychiatry 2008, 64, 513–520. [Google Scholar] [CrossRef]
- Latalova, K.; Prasko, J.; Diveky, T.; Velartova, H. Cognitive impairment in bipolar disorder. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc 2011, 155, 19–26. [Google Scholar] [CrossRef]
- Bora, E.; Yucel, M.; Pantelis, C. Cognitive endophenotypes of bipolar disorder: A meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J. Affect. Disord. 2009, 113, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.S.C.; Hermens, D.F.; Scott, J.; Redoblado-Hodge, M.A.; Naismith, S.L.; Lagopoulos, J.; Griffiths, K.R.; Porter, M.A.; Hickie, I.B. A meta-analysis of neuropsychological functioning in first-episode bipolar disorders. J. Psychiatr. Res. 2014, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bertocci, M.A.; Bebko, G.M.; Mullin, B.C.; Langenecker, S.A.; Ladouceur, C.D.; Almeida, J.R.C.; Phillips, M.L. Abnormal anterior cingulate cortical activity during emotional n-back task performance distinguishes bipolar from unipolar depressed females. Psychol. Med. 2012, 42, 1417–1428. [Google Scholar] [CrossRef]
- Mullin, B.C.; Perlman, S.B.; Versace, A.; de Almeida, J.R.C.; Labarbara, E.J.; Klein, C.; Ladouceur, C.D.; Phillips, M.L. An fmri study of attentional control in the context of emotional distracters in euthymic adults with bipolar disorder. Psychiatry Res. 2012, 201, 196–205. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Calvo, M.G. Anxiety and performance: The processing efficiency theory. Cogn. Emot. 1992, 6, 409–434. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef]
- Derakshan, N.; Smyth, S.; Eysenck, M.W. Effects of state anxiety on performance using a task-switching paradigm: An investigation of attentional control theory. Psychon. Bull. Rev. 2009, 16, 1112–1117. [Google Scholar] [CrossRef]
- Liu, J.-X.; Chen, Y.-S.; Hsieh, J.-C.; Su, T.-P.; Yeh, T.-C.; Chen, L.-F. Differences in white matter abnormalities between bipolar i and ii disorders. J. Affect. Disord. 2010, 127, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Jamison, K.R. Suicide and bipolar disorder. J. Clin. Psychiatry 2000, 61, 47–51. [Google Scholar] [PubMed]
- Rihmer, Z.; Kiss, K. Bipolar disorders and suicidal behaviour. Bipolar. Disord. 2002, 4, 21–25. [Google Scholar] [CrossRef]
- Levy, B.; Medina, A.M.; Manove, E.; Weiss, R.D. The characteristics of a discrete mood episode, neuro-cognitive impairment and re-hospitalization in bipolar disorder. J. Psychiatr. Res. 2011, 45, 1048–1054. [Google Scholar] [CrossRef]
- Deckersbach, T.; Rauch, S.L.; Buhlmann, U.; Ostacher, M.J.; Beucke, J.-C.; Nierenberg, A.A.; Sachs, G.; Dougherty, D.D. An fmri investigation of working memory and sadness in females with bipolar disorder: A brief report. Bipolar. Disord. 2008, 10, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Deckersbach, T.; Savage, C.R.; Reilly-Harrington, N.; Clark, L.; Sachs, G.; Rauch, S.L. Episodic memory impairment in bipolar disorder and obsessive-compulsive disorder: The role of memory strategies. Bipolar. Disord. 2004, 6, 233–244. [Google Scholar] [CrossRef]
- King, M.J.; MacDougall, A.G.; Ferris, S.; Herdman, K.A.; Bielak, T.; Smith, J.R.V.; Abid, M.A.; McKinnon, M.C. Impaired episodic memory for events encoded during mania in patients with bipolar disorder. Psychiatry Res. 2013, 205, 213–219. [Google Scholar] [CrossRef]
- Mann-Wrobel, M.C.; Carreno, J.T.; Dickinson, D. Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: An update and investigation of moderator variables. Bipolar. Disord. 2011, 13, 334–342. [Google Scholar] [CrossRef]
- Malhi, G.S.; Ivanovski, B.; Hadzi-Pavlovic, D.; Mitchell, P.B.; Vieta, E.; Sachdev, P. Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. Bipolar. Disord. 2007, 9, 114–125. [Google Scholar] [CrossRef]
- da Silva, R.d.A.; Tancini, M.B.; Lage, R.; Nascimento, R.L.; Santana, C.M.T.; Landeira-Fernandez, J.; Nardi, A.E.; Cheniaux, E.; Mograbi, D.C. Autobiographical memory and episodic specificity across different affective states in bipolar disorder. Front. Psychiatry 2021, 12, 641221. [Google Scholar] [CrossRef]
- Scott, J.; Stanton, B.; Garland, A.; Ferrier, I.N. Cognitive vulnerability in patients with bipolar disorder. Psychol. Med. 2000, 30, 467–472. [Google Scholar] [CrossRef]
- Tzemou, E.; Birchwood, M. A prospective study of dysfunctional thinking and the regulation of negative intrusive memories in bipolar 1 disorder: Implications for affect regulation theory. Psychol. Med. 2007, 37, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Bourne, C.; Aydemir, Ö.; Balanzá-Martínez, V.; Bora, E.; Brissos, S.; Cavanagh, J.T.O.; Clark, L.; Cubukcuoglu, Z.; Dias, V.V.; Dittmann, S.; et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatr. Scand. 2013, 128, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Bozikas, V.P.; Nazlidou, E.I.; Parlapani, E.; Alexiadou, A.; Skemperi, E.; Dandi, E.; Bargiota, S.I.; Floros, G.; Garyfallos, G. Autobiographical memory deficits in remitted patients with bipolar disorder i: The effect of impaired memory retrieval. Psychiatry Res. 2019, 278, 281–288. [Google Scholar] [CrossRef]
- Kim, W.J.; Ha, R.Y.; Sun, J.Y.; Ryu, V.; Lee, S.J.; Ha, K.; Cho, H.-S. Autobiographical memory and its association with neuropsychological function in bipolar disorder. Compr. Psychiatry 2014, 55, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Glahn, D.C.; Almasy, L.; Barguil, M.; Hare, E.; Peralta, J.M.; Kent, J.W.; Dassori, A.; Contreras, J.; Pacheco, A.; Lanzagorta, N.; et al. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Arch.Gen. Psychiatry 2010, 67, 168–177. [Google Scholar] [CrossRef]
- Craske, M.G.; Rauch, S.L.; Ursano, R.; Prenoveau, J.; Pine, D.S.; Zinbarg, R.E. What is an anxiety disorder? Focus 2011, 9, 369–388. [Google Scholar] [CrossRef]
- Nutt, D.J.; Ballenger, J.C. Anxiety Disorders; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-0-470-98683-7. [Google Scholar]
- Gkintoni, E.; Ortiz, P.S. Neuropsychology of generalized anxiety disorder in clinical setting: A systematic evaluation. Healthcare 2023, 11, 2446. [Google Scholar] [CrossRef]
- LeDoux, J.; Daw, N.D. Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 2018, 19, 269–282. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1974; Volume 8, pp. 47–89. ISBN 978-0-12-543308-2. [Google Scholar]
- Eysenck, M.W.; Derakshan, N. New perspectives in attentional control theory. Personal. Individ. Differ. 2011, 50, 955–960. [Google Scholar] [CrossRef]
- Pietrzak, R.H.; Maruff, P.; Woodward, M.; Fredrickson, J.; Fredrickson, A.; Krystal, J.H.; Southwick, S.M.; Darby, D. Mild worry symptoms predict decline in learning and memory in healthy older adults: A 2-year prospective cohort study. Am. J. Geriatr. Psychiatry 2012, 20, 266–275. [Google Scholar] [CrossRef]
- Hadwin, J.A.; Brogan, J.; Stevenson, J. State anxiety and working memory in children: A test of processing efficiency theory. Educ. Psychol. 2005, 25, 379–393. [Google Scholar] [CrossRef]
- Visu-Petra, L.; Cheie, L.; Benga, O.; Packiam Alloway, T. Effects of anxiety on memory storage and updating in young children. Int. J. Behav. Dev. 2011, 35, 38–47. [Google Scholar] [CrossRef]
- Nyberg, J.; Henriksson, M.; Wall, A.; Vestberg, T.; Westerlund, M.; Walser, M.; Eggertsen, R.; Danielsson, L.; Kuhn, H.G.; Åberg, N.D.; et al. Anxiety severity and cognitive function in primary care patients with anxiety disorder: A cross-sectional study. BMC Psychiatry 2021, 21, 617. [Google Scholar] [CrossRef]
- Shackman, A.J.; Sarinopoulos, I.; Maxwell, J.S.; Pizzagalli, D.A.; Lavric, A.; Davidson, R.J. Anxiety selectively disrupts visuospatial working memory. Emotion 2006, 6, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Moriya, J.; Sugiura, Y. Socially anxious individuals with low working memory capacity could not inhibit the goal-irrelevant information. Front. Hum. Neurosci. 2013, 7, 840. [Google Scholar] [CrossRef] [PubMed]
- Balderston, N.L.; Vytal, K.E.; O’Connell, K.; Torrisi, S.; Letkiewicz, A.; Ernst, M.; Grillon, C. Anxiety patients show reduced working memory related dlpfc activation during safety and threat: Research article: Anxiety patients show reduced dlpfc activity. Depress. Anxiety 2017, 34, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.L.; Abend, R.; Britton, J.C.; Behrens, B.; Farber, M.; Ronkin, E.; Chen, G.; Leibenluft, E.; Pine, D.S. Age differences in the neural correlates of anxiety disorders: An fmri study of response to learned threat. Am. J. Psychiatry 2020, 177, 454–463. [Google Scholar] [CrossRef]
- Harris, L.M.; Cumming, S.R. An examination of the relationship between anxiety and performance on prospective and retrospective memory tasks. Aust. J. Psychol. 2003, 55, 51–55. [Google Scholar] [CrossRef]
- Sbicigo, J.B.; Toazza, R.; Becker, N.; Ecker, K.; Manfro, G.G.; Salles, J.F.D. Memory and language impairments are associated with anxiety disorder severity in childhood. Trends Psychiatry Psychother. 2020, 42, 161–170. [Google Scholar] [CrossRef]
- Jarros, R.B.; Salum, G.A.; Silva, C.T.B.D.; Toazza, R.; Becker, N.; Agranonik, M.; Salles, J.F.D.; Manfro, G.G. Attention, memory, visuoconstructive, and executive task performance in adolescents with anxiety disorders: A case-control community study. Trends Psychiatry Psychother. 2017, 39, 5–11. [Google Scholar] [CrossRef]
- Vytal, K.E.; Cornwell, B.R.; Letkiewicz, A.M.; Arkin, N.E.; Grillon, C. The complex interaction between anxiety and cognition: Insight from spatial and verbal working memory. Front. Hum. Neurosci. 2013, 7, 93. [Google Scholar] [CrossRef]
- Bredemeier, K.; Berenbaum, H. Cross-sectional and longitudinal relations between working memory performance and worry. J. Exp. Psychopathol. 2013, 4, 420–434. [Google Scholar] [CrossRef]
- Moon, C.-M.; Jeong, G.-W. Functional and morphological alterations associated with working memory dysfunction in patients with generalized anxiety disorder. Acta Radiol. 2017, 58, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Madonna, D.; Delvecchio, G.; Soares, J.C.; Brambilla, P. Structural and functional neuroimaging studies in generalized anxiety disorder: A systematic review. Braz. J. Psychiatry 2019, 41, 336–362. [Google Scholar] [CrossRef]
- Airaksinen, E.; Larsson, M.; Forsell, Y. Neuropsychological functions in anxiety disorders in population-based samples: Evidence of episodic memory dysfunction. J. Psychiatr. Res. 2005, 39, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Leonard, K.; Abramovitch, A. Cognitive functions in young adults with generalized anxiety disorder. Eur. Psychiatr. 2019, 56, 1–7. [Google Scholar] [CrossRef]
- Zalewski, C.; Thompson, W.; Gottesman, I. Comparison of neuropsychological test performance in ptsd, generalized anxiety disorder, and control vietnam veterans. Assessment 1994, 1, 133–142. [Google Scholar] [CrossRef]
- Castaneda, A.E.; Suvisaari, J.; Marttunen, M.; Perälä, J.; Saarni, S.I.; Aalto-Setälä, T.; Lönnqvist, J.; Tuulio-Henriksson, A. Cognitive functioning in a population-based sample of young adults with anxiety disorders. Eur. Psychiatr. 2011, 26, 346–353. [Google Scholar] [CrossRef]
- Tempesta, D.; Mazza, M.; Serroni, N.; Moschetta, F.S.; Di Giannantonio, M.; Ferrara, M.; De Berardis, D. Neuropsychological functioning in young subjects with generalized anxiety disorder with and without pharmacotherapy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Holtkamp, K.; Jolles, J.; Herpertz-Dahlmann, B.; Konrad, K. The influence of sertraline on attention and verbal memory in children and adolescents with anxiety disorders. J. Child Adolesc. Psychopharmacol. 2005, 15, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Langley, C.; Armand, S.; Luo, Q.; Savulich, G.; Segerberg, T.; Søndergaard, A.; Pedersen, E.B.; Svart, N.; Overgaard-Hansen, O.; Johansen, A.; et al. Chronic escitalopram in healthy volunteers has specific effects on reinforcement sensitivity: A double-blind, placebo-controlled semi-randomised study. Neuropsychopharmacology 2023, 48, 664–670. [Google Scholar] [CrossRef]
- Schulkens, J.E.; Deckers, K.; Jenniskens, M.; Blokland, A.; Verhey, F.R.; Sobczak, S. The effects of selective serotonin reuptake inhibitors on memory functioning in older adults: A systematic literature review. J Psychopharmacol. 2022, 36, 578–593. [Google Scholar] [CrossRef]
- Butters, M.A.; Bhalla, R.K.; Andreescu, C.; Wetherell, J.L.; Mantella, R.; Begley, A.E.; Lenze, E.J. Changes in neuropsychological functioning following treatment for late-life generalised anxiety disorder. Br. J. Psychiatry 2011, 199, 211–218. [Google Scholar] [CrossRef]
- Nelson, J.C.; Gandelman, J.A.; Mackin, R.S. A systematic review of antidepressants and psychotherapy commonly used in the treatment of late life depression for their effects on cognition. Am. J. Geriatr. Psychiatry 2025, 33, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Silver, H.; Mandiuk, N.; Einoch, R.; Susser, E.; Danovich, L.; Bilker, W.; Youdim, M.; Weinreb, O. Improvement in verbal memory following ssri augmentation of antipsychotic treatment is associated with changes in the expression of mrna encoding for the gaba-a receptor and bdnf in pmc of schizophrenic patients. Int. Clin. Psychopharmacol. 2015, 30, 158–166. [Google Scholar] [CrossRef]
- Gulpers, B.J.A.; Verhey, F.R.J.; Eussen, S.J.P.M.; Schram, M.T.; de Galan, B.E.; van Boxtel, M.P.J.; Stehouwer, C.D.A.; Köhler, S. Anxiety and cognitive functioning in the maastricht study: A cross-sectional population study. J. Affect. Disord. 2022, 319, 570–579. [Google Scholar] [CrossRef]
- Asmundson, G.J.G.; Stein, M.B.; Larsen, D.K.; Walker, J.R. Neurocognitive function in panic disorder and social phobia patients. Anxiety 1994, 1, 201–207. [Google Scholar] [CrossRef]
- Boldrini, M.; Del Pace, L.; Placidi, G.P.A.; Keilp, J.; Ellis, S.P.; Signori, S.; Placidi, G.F.; Cappa, S.F. Selective cognitive deficits in obsessive-compulsive disorder compared to panic disorder with agoraphobia. Acta Psychiatr. Scand. 2005, 111, 150–158. [Google Scholar] [CrossRef]
- Deckersbach, T.; Moshier, S.J.; Tuschen-Caffier, B.; Otto, M.W. Memory dysfunction in panic disorder: An investigation of the role of chronic benzodiazepine use. Depress. Anxiety 2011, 28, 999–1007. [Google Scholar] [CrossRef]
- Dratcu, L.; Bond, A. Panic patients in the non-panic state: Physiological and cognitive dysfunction. Eur. Psychiatr. 1998, 13, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.A.; Telch, M.J.; Bigler, E.D. Memory functioning in panic disorder: A neuropsychological perspective. J. Anxiety Disord. 1991, 5, 1–20. [Google Scholar] [CrossRef]
- Gladsjo, J.A.; Rapaport, M.H.; McKinney, R.; Lucas, J.A.; Rabin, A.; Oliver, T.; Davis, J.; Auerbach, M.; Judd, L.L. A neuropsychological study of panic disorder: Negative findings. J. Affect. Disord. 1998, 49, 123–131. [Google Scholar] [CrossRef]
- Kaplan, J.S.; Erickson, K.; Luckenbaugh, D.A.; Weiland-Fiedler, P.; Geraci, M.; Sahakian, B.J.; Charney, D.; Drevets, W.C.; Neumeister, A. Differential performance on tasks of affective processing and decision-making in patients with panic disorder and panic disorder with comorbid major depressive disorder. J. Affect. Disord. 2006, 95, 165–171. [Google Scholar] [CrossRef]
- O’Sullivan, K.; Newman, E.F. Neuropsychological impairments in panic disorder: A systematic review. J. Affect. Disord. 2014, 167, 268–284. [Google Scholar] [CrossRef] [PubMed]
- Gordeev, S.A. Cognitive functions and the state of nonspecific brain systems in panic disorders. Neurosci. Behav. Physiol. 2008, 38, 707–714. [Google Scholar] [CrossRef]
- MacNamara, A.; Jackson, T.B.; Fitzgerald, J.M.; Hajcak, G.; Phan, K.L. Working memory load and negative picture processing: Neural and behavioral associations with panic, social anxiety, and positive affect. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 151–159. [Google Scholar] [CrossRef]
- Beracochea, D. Anterograde and retrograde effects of benzodiazepines on memory. Sci. World J. 2006, 6, 1460–1465. [Google Scholar] [CrossRef]
- Crowe, S.F.; Stranks, E.K. The residual medium and long-term cognitive effects of benzodiazepine use: An updated meta-analysis. Arch. Clin. Neuropsychol. 2018, 33, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, L.; Jian, P.; Zhou, Y.; Zhou, J.; Wu, F.; Tang, Y. The effects of benzodiazepine use and abuse on cognition in the elders: A systematic review and meta-analysis of comparative studies. Front. Psychiatry 2020, 11, 00755. [Google Scholar] [CrossRef]
- Savić, M.M.; Obradović, D.I.; Ugrešić, N.D.; Bokonjić, D.R. Memory effects of benzodiazepines: Memory stages and types versus binding-site subtypes. Neural Plast. 2005, 12, 289–298. [Google Scholar] [CrossRef]
- Zucchelli, M.M.; Piccardi, L.; Nori, R. The fear to move in a crowded environment. poor spatial memory related to agoraphobic disorder. Brain Sci. 2021, 11, 796. [Google Scholar] [CrossRef]
- Fujii, Y.; Kitagawa, N.; Shimizu, Y.; Mitsui, N.; Toyomaki, A.; Hashimoto, N.; Kako, Y.; Tanaka, T.; Asakura, S.; Koyama, T.; et al. Severity of generalized social anxiety disorder correlates with low executive functioning. Neurosci. Lett. 2013, 543, 42–46. [Google Scholar] [CrossRef]
- Sutterby, S.R.; Bedwell, J.S. Lack of neuropsychological deficits in generalized social phobia. PLoS ONE 2012, 7, e42675. [Google Scholar] [CrossRef]
- Moscovitch, D.A.; Vidovic, V.; Lenton-Brym, A.P.; Dupasquier, J.R.; Barber, K.C.; Hudd, T.; Zabara, N.; Romano, M. Autobiographical memory retrieval and appraisal in social anxiety disorder. Behav. Res. Ther. 2018, 107, 106–116. [Google Scholar] [CrossRef]
- Abushalbaq, O.M.; Khdour, H.Y.; Abo Hamza, E.G.; Moustafa, A.A.; Herzallah, M.M. Investigating principal working memory features in generalized, panic, and social anxiety spectrum disorders. Front. Psychiatry 2021, 12, 701412. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.; Stevenson, J.; Hadwin, J.A.; Norgate, R. When does anxiety help or hinder cognitive test performance? The role of working memory capacity. Br. J. Psychol. 2014, 105, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Vasa, R.A.; Roberson-Nay, R.; Klein, R.G.; Mannuzza, S.; Moulton, J.L.; Guardino, M.; Merikangas, A.; Carlino, A.R.; Pine, D.S. Memory deficits in children with and at risk for anxiety disorders. Depress. Anxiety 2007, 24, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Amir, N.; Bomyea, J. Working memory capacity in generalized social phobia. J. Abnorm. Psychol. 2011, 120, 504–509. [Google Scholar] [CrossRef]
- Waechter, S.; Moscovitch, D.A.; Vidovic, V.; Bielak, T.; Rowa, K.; McCabe, R.E. Working memory capacity in social anxiety disorder: Revisiting prior conclusions. J. Abnorm. Psychol. 2018, 127, 276–281. [Google Scholar] [CrossRef]
- Toren, P.; Sadeh, M.; Wolmer, L.; Eldar, S.; Koren, S.; Weizman, R.; Laor, N. Neurocognitive correlates of anxiety disorders in children. J. Anxiety Disord. 2000, 14, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Alba, L.A.; Flannery, J.; Shapiro, M.; Tottenham, N. Working memory moderates the association between early institutional care and separation anxiety symptoms in late childhood and adolescence. Dev. Psychopathol. 2019, 31, 989–997. [Google Scholar] [CrossRef]
- Gurrieri, R.; Gambini, M.; Pescini, E.; Mastrogiacomo, D.; Russomanno, G.; Marazziti, D. Memory functions in obsessive–compulsive disorder. Brain Sci. 2025, 15, 492. [Google Scholar] [CrossRef]
- Demeter, G.; Racsmány, M.; Csigó, K.; Harsányi, A.; Németh, A.; Doeme, L. Eredeti közlemény intact short-term memory and impaired executive functions in obsessive compulsive disorder. Ideggyogy Sz 2013, 66, 35–41. [Google Scholar]
- Sawamura, K.; Nakashima, Y.; Inoue, M.; Kurita, H. Short-term verbal memory deficits in patients with obsessive-compulsive disorder. Psychiatry Clin. Neurosci. 2005, 59, 527–532. [Google Scholar] [CrossRef]
- Shin, M.S.; Park, S.J.; Kim, M.S.; Lee, Y.H.; Ha, T.H.; Kwon, J.S. Deficits of organizational strategy and visual memory in obsessive-compulsive disorder. Neuropsychology 2004, 18, 665. [Google Scholar] [CrossRef]
- Roth, R.M.; Baribeau, J.; Milovan, D.L.; O’Connor, K. Speed and accuracy on tests of executive function in obsessive–compulsive disorder. Brain Cogn. 2004, 54, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.Y.; Lee, T.Y.; Kim, E.; Kwon, J.S. Cognitive functioning in obsessive-compulsive disorder: A meta-analysis. Psychol. Med. 2014, 44, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Abramovitch, A.; Abramowitz, J.S.; Mittelman, A. The neuropsychology of adult obsessive–compulsive disorder: A meta-analysis. Clin. Psychol. Rev. 2013, 33, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.; Maruff, P.; Kyrios, M.; Pantelis, C. Cognitive deficits in obsessive–compulsive disorder on tests of frontal–striatal function. Biol. Psychiatry 1998, 43, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.; Maruff, P.; Kyrios, M.; Pantelis, C. Neuropsychological deficits in obsessive-compulsive disorder: A comparison with unipolar depression, panic disorder, and normal controls. Arch. Gen. Psychiatry 1998, 55, 415. [Google Scholar] [CrossRef]
- Vanderwee, N.; Ramsey, N.; Jansma, J.; Denys, D.; Vanmegen, H.; Westenberg, H.; Kahn, R. Spatial working memory deficits in obsessive compulsive disorder are associated with excessive engagement of the medial frontal cortex. NeuroImage 2003, 20, 2271–2280. [Google Scholar] [CrossRef]
- Yue, J.; Zhong, S.; Luo, A.; Lai, S.; He, T.; Luo, Y.; Wang, Y.; Zhang, Y.; Shen, S.; Huang, H.; et al. Correlations between working memory impairment and neurometabolites of the prefrontal cortex in drug-naive obsessive-compulsive disorder. Neuropsychiatr. Dis. Treat. 2021, 17, 2647–2657. [Google Scholar] [CrossRef]
- Deckersbach, T.; Otto, M.W.; Savage, C.R.; Baer, L.; Jenike, M.A. The relationship between semantic organization and memory in obsessive-compulsive disorder. Psychother. Psychosom. 2000, 69, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Alcázar, Á.; Parada-Navas, J.L.; García-Hernández, M.D.; Martínez-Murillo, S.; Olivares-Olivares, P.J.; Rosa-Alcázar, A.I. Coping strategies, anxiety and depression in ocd and schizophrenia: Changes during covid-19. Brain Sci. 2021, 11, 926. [Google Scholar] [CrossRef]
- Nakao, T.; Nakagawa, A.; Nakatani, E.; Nabeyama, M.; Sanematsu, H.; Yoshiura, T.; Togao, O.; Tomita, M.; Masuda, Y.; Yoshioka, K.; et al. Working memory dysfunction in obsessive–compulsive disorder: A neuropsychological and functional mri study. J. Psychiatr. Res. 2009, 43, 784–791. [Google Scholar] [CrossRef]
- Heinzel, S.; Kaufmann, C.; Grützmann, R.; Klawohn, J.; Riesel, A.; Bey, K.; Heilmann-Heimbach, S.; Weinhold, L.; Ramirez, A.; Wagner, M.; et al. Polygenic risk for obsessive-compulsive disorder (ocd) predicts brain response during working memory task in ocd, unaffected relatives, and healthy controls. Sci. Rep. 2021, 11, 18914. [Google Scholar] [CrossRef]
- Olley, A.; Malhi, G.; Sachdev, P. Memory and executive functioning in obsessive–compulsive disorder: A selective review. J. Affect. Disord. 2007, 104, 15–23. [Google Scholar] [CrossRef]
- Exner, C.; Kohl, A.; Zaudig, M.; Langs, G.; Lincoln, T.M.; Rief, W. Metacognition and episodic memory in obsessive-compulsive disorder. J. Anxiety Disord. 2009, 23, 624–631. [Google Scholar] [CrossRef]
- Segalàs, C.; Alonso, P.; Labad, J.; Real, E.; Pertusa, A.; Jaurrieta, N.; Jiménez-Murcia, S.; Menchón, J.M.; Vallejo, J. A case-control study of sex differences in strategic processing and episodic memory in obsessive-compulsive disorder. Compr. Psychiatry 2010, 51, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Batistuzzo, M.C.; Balardin, J.B.; Martin, M.D.G.M.; Hoexter, M.Q.; Bernardes, E.T.; Borcato, S.; Souza, M.D.M.E.; Querido, C.N.; Morais, R.M.; De Alvarenga, P.G.; et al. Reduced prefrontal activation in pediatric patients with obsessive-compulsive disorder during verbal episodic memory encoding. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 849–858. [Google Scholar] [CrossRef]
- Bhat, N.A.; Sharma, V.; Kumar, D. Prospective memory in obsessive compulsive disorder. Psychiatry Res. 2018, 261, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.L.; Brewer, G.A.; Jameson, J.P.; Cook, G.I.; Amir, N.; Hicks, J.L. Threat-related processing supports prospective memory retrieval for people with obsessive tendencies. Memory 2009, 17, 679–686. [Google Scholar] [CrossRef]
- Palit, A.; Roy, P.K.; Saha, P.K. Role of prospective memory in obsessive compulsive disorder. Indian J. Psychol. Med. 2022, 44, 586–591. [Google Scholar] [CrossRef]
- Racsmány, M.; Demeter, G.; Csigó, K.; Harsányi, A.; Németh, A. An experimental study of prospective memory in obsessive-compulsive disorder. J. Clin. Exp. Neuropsychol. 2011, 33, 85–91. [Google Scholar] [CrossRef]
- Yang, T.; Peng, Z.; Wang, Y.; Geng, F.; Miao, G.; Shum, D.H.K.; Cheung, E.F.C.; Chan, R.C.K. The nature of prospective memory deficit in patients with obsessive–compulsive disorder. Psychiatry Res. 2015, 230, 479–486. [Google Scholar] [CrossRef]
- Burgess, P.W.; Quayle, A.; Frith, C.D. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 2001, 39, 545–555. [Google Scholar] [CrossRef]
- Gloster, A.T.; Richard, D.C.S.; Himle, J.; Koch, E.; Anson, H.; Lokers, L.; Thornton, J. Accuracy of retrospective memory and covariation estimation in patients with obsessive–compulsive disorder. Behav. Res. Ther. 2008, 46, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Harkin, B.; Kessler, K. How checking breeds doubt: Reduced performance in a simple workingmemory task. Behav. Res. Ther. 2009, 47, 504–512. [Google Scholar] [CrossRef]
- Radomsky, A.S.; Gilchrist, P.T.; Dussault, D. Repeated checking really does cause memory distrust. Behav. Res. Ther. 2006, 44, 305–316. [Google Scholar] [CrossRef] [PubMed]
- van den Hout, M.; Kindt, M. Repeated checking causes memory distrust. Behav. Res. Ther. 2003, 41, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Cuttler, C.; Graf, P. Checking-in on the memory deficit and meta-memory deficit theories of compulsive checking. Clin. Psychol. Rev. 2009, 29, 393–409. [Google Scholar] [CrossRef]
- Cuttler, C.; Graf, P. Sub-clinical compulsive checkers’ prospective memory is impaired. J. Anxiety Disord. 2007, 21, 338–352. [Google Scholar] [CrossRef]
- Breslau, N. Epidemiologic studies of trauma, posttraumatic stress disorder, and other psychiatric disorders. Can. J. Psychiatry 2002, 47, 923–929. [Google Scholar] [CrossRef]
- Javidi, H.; Yadollahie, M. Post-traumatic stress disorder. Int. J. Occup. Environ. Med. 2012, 3, 2–9. [Google Scholar]
- Walton, J.L.; Cuccurullo, L.A.J.; Raines, A.M.; Vidaurri, D.N.; Allan, N.P.; Maieritsch, K.P.; Franklin, C.L. Sometimes less is more: Establishing the core symptoms of PTSD. J. Trauma. Stress 2017, 30, 254–258. [Google Scholar] [CrossRef]
- Petzold, M.; Bunzeck, N. Impaired episodic memory in ptsd patients—A meta-analysis of 47 studies. Front. Psychiatry 2022, 13, 909442. [Google Scholar] [CrossRef]
- Swick, D.; Cayton, J.; Ashley, V.; Turken, A.U. Dissociation between working memory performance and proactive interference control in post-traumatic stress disorder. Neuropsychologia 2017, 96, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Honzel, N.; Justus, T.; Swick, D. Posttraumatic stress disorder is associated with limited executive resources in a working memory task. Cogn. Affect. Behav. Neurosci. 2014, 14, 792–804. [Google Scholar] [CrossRef]
- Galletly, C.; Clark, C.R.; McFarlane, A.C.; Weber, D.L. Working memory in posttraumatic stress disorder--an event-related potential study. J. Trauma. Stress 2001, 14, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Judah, M.R.; Renfroe, J.B.; Wangelin, B.C.; Turner, T.H.; Tuerk, P.W. Hyperarousal symptoms explain the relationship between cognitive complaints and working memory performance in veterans seeking ptsd treatment. J. Head Trauma Rehabil. 2018, 33, E10–E16. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.E.; Moores, K.A.; Clark, R.C.; McFarlane, A.C.; Strother, S.C.; Bryant, R.A.; Brown, G.C.; Taylor, J.D. Functional connectivity reveals inefficient working memory systems in post-traumatic stress disorder. Psychiatry Res. 2009, 172, 235–241. [Google Scholar] [CrossRef]
- Mathew, A.S.; Lotfi, S.; Bennett, K.P.; Larsen, S.E.; Dean, C.; Larson, C.L.; Lee, H.-J. Association between spatial working memory and re-experiencing symptoms in ptsd. J. Behav. Ther. Exp. Psychiatry 2022, 75, 101714. [Google Scholar] [CrossRef]
- Aupperle, R.L.; Allard, C.B.; Grimes, E.M.; Simmons, A.N.; Flagan, T.; Behrooznia, M.; Cissell, S.H.; Twamley, E.W.; Thorp, S.R.; Norman, S.B.; et al. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch. Gen. Psychiatry 2012, 69, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Shin, L.M.; Rauch, S.L.; Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in ptsd. Ann. N. Y. Acad. Sci. 2006, 1071, 67–79. [Google Scholar] [CrossRef]
- Harricharan, S.; McKinnon, M.C.; Lanius, R.A. How processing of sensory information from the internal and external worlds shape the perception and engagement with the world in the aftermath of trauma: Implications for ptsd. Front. Neurosci. 2021, 15, 625490. [Google Scholar] [CrossRef]
- Weber, D.L. Information processing bias in post-traumatic stress disorder. Open Neuroimaging J. 2008, 2, 29–51. [Google Scholar] [CrossRef]
- Vasterling, J.J.; Brailey, K.; Constans, J.I.; Sutker, P.B. Attention and memory dysfunction in posttraumatic stress disorder. Neuropsychology 1998, 12, 125–133. [Google Scholar] [CrossRef]
- Norte, C.E.; Vargas, A.L.V.; de Carvalho Silveira, A. Post-traumatic stress disorder and working memory: A systematic review. Trends Psychol. 2024, 32, 612–623. [Google Scholar] [CrossRef]
- Pitts, B.L.; Eisenberg, M.L.; Bailey, H.R.; Zacks, J.M. PTSD is associated with impaired event processing and memory for everyday events. Cogn. Res. Princ. Implic. 2022, 7, 35. [Google Scholar] [CrossRef]
- Crowell, T.A.; Kieffer, K.M.; Siders, C.A.; Vanderploeg, R.D. Neuropsychological findings in combat-related posttraumatic stress disorder. Clin. Neuropsychol. 2002, 16, 310–321. [Google Scholar] [CrossRef]
- Neylan, T.C.; Lenoci, M.; Rothlind, J.; Metzler, T.J.; Schuff, N.; Du, A.-T.; Franklin, K.W.; Weiss, D.S.; Weiner, M.W.; Marmar, C.R. Attention, learning, and memory in posttraumatic stress disorder. J. Trauma. Stress 2004, 17, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.C.; Dennis, M.F.; Beckham, J.C. Autobiographical memory for stressful events: The role of autobiographical memory in posttraumatic stress disorder. Conscious. Cogn. 2011, 20, 840–856. [Google Scholar] [CrossRef] [PubMed]
- Thome, J.; Terpou, B.A.; McKinnon, M.C.; Lanius, R.A. The neural correlates of trauma-related autobiographical memory in posttraumatic stress disorder: A meta-analysis. Depress. Anxiety 2020, 37, 321–345. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, L.; Randjbar, S.; Seifert, D.; Kellner, M.; Moritz, S. The organization of autobiographical and nonautobiographical memory in posttraumatic stress disorder (ptsd). J. Abnorm. Psychol. 2009, 118, 288–298. [Google Scholar] [CrossRef]
- Litz, B.T.; Orsillo, S.M.; Kaloupek, D.; Weathers, F. Emotional processing in posttraumatic stress disorder. J. Abnorm. Psychol. 2000, 109, 26–39. [Google Scholar] [CrossRef]
- Karl, A.; Malta, L.S.; Maercker, A. Meta-analytic review of event-related potential studies in post-traumatic stress disorder. Biol. Psychol. 2006, 71, 123–147. [Google Scholar] [CrossRef]
- Yehuda, R.; Bierer, L.M.; Schmeidler, J.; Aferiat, D.H.; Breslau, I.; Dolan, S. Low cortisol and risk for ptsd in adult offspring of holocaust survivors. Am. J. Psychiatry 2000, 157, 1252–1259. [Google Scholar] [CrossRef]
- Henigsberg, N.; Kalember, P.; Petrović, Z.K.; Šečić, A. Neuroimaging research in posttraumatic stress disorder—Focus on amygdala, hippocampus and prefrontal cortex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 90, 37–42. [Google Scholar] [CrossRef]
- Aggleton, J.P.; Brown, M.W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 1999, 22, 425–444; discussion 444-489. [Google Scholar] [CrossRef]
- Brewin, C.R.; Dalgleish, T.; Joseph, S. A dual representation theory of posttraumatic stress disorder. Psychol. Rev. 1996, 103, 670–686. [Google Scholar] [CrossRef]
- Bromis, K.; Calem, M.; Reinders, A.A.T.S.; Williams, S.C.R.; Kempton, M.J. Meta-analysis of 89 structural mri studies in posttraumatic stress disorder and comparison with major depressive disorder. Am. J. Psychiatry 2018, 175, 989–998. [Google Scholar] [CrossRef]
- Farrell, K.; Mahood, Q. Reconsolidation and consolidation therapies for the treatment and prevention of post-traumatic stress disorder. Can. J. Health Technol. 2022, 2. [Google Scholar] [CrossRef]
- van Marle, H. PTSD as a memory disorder. Eur. J. Psychotraumatol 2015, 6, 27633. [Google Scholar] [CrossRef]
- Butler, O.; Herr, K.; Willmund, G.; Gallinat, J.; Kühn, S.; Zimmermann, P. Trauma, treatment and tetris: Video gaming increases hippocampal volume in male patients with combat-related posttraumatic stress disorder. J. Psychiatry Neurosci. 2020, 45, 279–287. [Google Scholar] [CrossRef]
- Mallet, C.; Chick, C.F.; Maatoug, R.; Fossati, P.; Brunet, A.; Millet, B. Memory reconsolidation impairment using the β-adrenergic receptor blocker propranolol reduces nightmare severity in patients with posttraumatic stress disorder: A preliminary study. J. Clin. Sleep Med. 2022, 18, 1847–1855. [Google Scholar] [CrossRef]
- Morath, J.; Gola, H.; Sommershof, A.; Hamuni, G.; Kolassa, S.; Catani, C.; Adenauer, H.; Ruf-Leuschner, M.; Schauer, M.; Elbert, T.; et al. The effect of trauma-focused therapy on the altered t cell distribution in individuals with ptsd: Evidence from a randomized controlled trial. J. Psychiatr. Res. 2014, 54, 1–10. [Google Scholar] [CrossRef]
- Womersley, J.; Xulu, K.; Sommer, J.; Hinsberger, M.; Elbert, T.; Weierstall, R.; Kaminer, D.; Malan, S.; Hemmings, S.P. 698 dna methylation correlates of narrative exposure therapy for forensic offender rehabilitation in trauma-exposed men with appetitive aggression. Eur. Neuropsychopharmacol. 2020, 40, S397–S398. [Google Scholar] [CrossRef]
- Kwon, S.M. Episodic Memory Precision and Reality Monitoring; University of Cambridge: Cambridge, UK, 2020. [Google Scholar]
- Radaelli, D.; Benedetti, F.; Cavallaro, R.; Colombo, C.; Smeraldi, E. The reality monitoring deficit as a common neuropsychological correlate of schizophrenic and affective psychosis. Behav. Sci. 2013, 3, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Lin, K.-H.; Chang, H.-A. Exploring cognitive deficits and neuromodulation in schizophrenia: A narrative review. Medicina 2024, 60, 2060. [Google Scholar] [CrossRef]
- Forbes, N.F.; Carrick, L.A.; McIntosh, A.M.; Lawrie, S.M. Working memory in schizophrenia: A meta-analysis. Psychol. Med. 2009, 39, 889–905. [Google Scholar] [CrossRef]
- Zilles, D.; Gruber, E.; Falkai, P.; Gruber, O. Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks. Eur. Arch. Psychiatry Clin. Neurosci 2010, 260, 519–525. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.; Tong, J.; Huang, J.; Tian, B.; Chen, S.; Cui, Y.; Tan, S.; Wang, Z.; Yang, F. The age of onset and cognitive impairment at the early stage of schizophrenia. Cogn. Neurodynamics 2023, 17, 183–190. [Google Scholar] [CrossRef]
- Borgan, F.; O’Daly, O.; Veronese, M.; Reis Marques, T.; Laurikainen, H.; Hietala, J.; Howes, O. The neural and molecular basis of working memory function in psychosis: A multimodal pet-fmri study. Mol. Psychiatry 2021, 26, 4464–4474. [Google Scholar] [CrossRef]
- Corcoran, M.; Hawkins, E.L.; O’Hora, D.; Whalley, H.C.; Hall, J.; Lawrie, S.M.; Dauvermann, M.R. Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav. 2020, 10, e01616. [Google Scholar] [CrossRef]
- Dong, F.; Mao, Z.; Ding, Y.; Wang, L.; Bo, Q.; Li, F.; Wang, F.; Wang, C. Cognitive deficits profiles in the first-episode of schizophrenia, clinical high risk of psychosis, and genetically high-risk of psychosis. Front. Psychiatry 2023, 14, 1292141. [Google Scholar] [CrossRef] [PubMed]
- Aleman, A.; Hijman, R.; De Haan, E.H.F.; Kahn, R.S. Memory impairment in schizophrenia: A meta-analysis. Am. J. Psychiatry 1999, 156, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Bonner-Jackson, A.; Yodkovik, N.; Csernansky, J.G.; Barch, D.M. Episodic memory in schizophrenia: The influence of strategy use on behavior and brain activation. Psychiatry Res. Neuroimaging 2008, 164, 1–15. [Google Scholar] [CrossRef]
- Francis, M.M.; Hummer, T.A.; Vohs, J.L.; Yung, M.G.; Liffick, E.; Mehdiyoun, N.F.; Radnovich, A.J.; McDonald, B.C.; Saykin, A.J.; Breier, A. Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis. Brain Imaging Behav. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Woods, S.P.; Twamley, E.W.; Dawson, M.S.; Narvaez, J.M.; Jeste, D.V. Deficits in cue detection and intention retrieval underlie prospective memory impairment in schizophrenia. Schizophr. Res. 2007, 90, 344–350. [Google Scholar] [CrossRef]
- Thoma, R.J.; Monnig, M.; Hanlon, F.M.; Miller, G.A.; Petropoulos, H.; Mayer, A.R.; Yeo, R.; Euler, M.; Lysne, P.; Moses, S.N. Hippocampus volume and episodic memory in schizophrenia. J. Int. Neuropsychol. Soc. 2009, 15, 182–195. [Google Scholar] [CrossRef]
- Bigdeli, I.; Farzin, A.; Talepasand, S. Prospective memory impairments in schizophrenic patients. Iran. J. Psychiatry Behav. Sci. 2014, 8, 57. [Google Scholar] [PubMed]
- Doughty, O.J.; Done, D.J. Is semantic memory impaired in schizophrenia? a systematic review and meta-analysis of 91 studies. Cogn. Neuropsychiatry 2009, 14, 473–509. [Google Scholar] [CrossRef]
- Chen, E.Y.H.; Wilkins, A.J.; McKenna, P.J. Semantic memory is both impaired and anomalous in schizophrenia. Psychol. Med. 1994, 24, 193–202. [Google Scholar] [CrossRef]
- Gourovitch, M.L.; Goldberg, T.E.; Weinberger, D.R. Verbal fluency deficits in patients with schizophrenia: Semantic fluency is differentially impaired as compared with phonologic fluency. Neuropsychology 1996, 10, 573. [Google Scholar] [CrossRef]
- Lundin, N.B. Disorganized Speech in Psychosis: Computational and Neural Markers of Semantic Foraging and Discourse Cohesion; Indiana University: Bloomington, IN, USA, 2022. [Google Scholar]
- Meijer, J.H.; Schmitz, N.; Nieman, D.H.; Becker, H.E.; van Amelsvoort, T.A.; Dingemans, P.M.; Linszen, D.H.; de Haan, L. Semantic fluency deficits and reduced grey matter before transition to psychosis: A voxelwise correlational analysis. Psychiatry Res. Neuroimaging 2011, 194, 1–6. [Google Scholar] [CrossRef]
- Horan, W.P.; Braff, D.L.; Nuechterlein, K.H.; Sugar, C.A.; Cadenhead, K.S.; Calkins, M.E.; Dobie, D.J.; Freedman, R.; Greenwood, T.A.; Gur, R.E. Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: Findings from the consortium on the genetics of schizophrenia. Schizophr. Res. 2008, 103, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Spataro, P.; Saraulli, D.; Cestari, V.; Costanzi, M.; Sciarretta, A.; Rossi-Arnaud, C. Implicit memory in schizophrenia: A meta-analysis. Compr. Psychiatry 2016, 69, 136–144. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Keefe, R.S.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Barlati, S.; Deste, G.; De Peri, L.; Ariu, C.; Vita, A. Cognitive remediation in schizophrenia: Current status and future perspectives. Schizophr. Res. Treat. 2013, 2013, 156084. [Google Scholar] [CrossRef] [PubMed]
- Eum, S.; Hill, S.K.; Rubin, L.H.; Carnahan, R.M.; Reilly, J.L.; Ivleva, E.I.; Keedy, S.K.; Tamminga, C.A.; Pearlson, G.D.; Clementz, B.A. Cognitive burden of anticholinergic medications in psychotic disorders. Schizophr. Res. 2017, 190, 129–135. [Google Scholar] [CrossRef]
- Mancini, V.; Latreche, C.; Fanshawe, J.B.; Varvari, I.; Zauchenberger, C.-Z.; McGinn, N.; Catalan, A.; Pillinger, T.; McGuire, P.K.; McCutcheon, R.A. Anticholinergic burden and cognitive function in psychosis: A systematic review and meta-analysis. Am. J. Psychiatry 2025, 182, 349–359. [Google Scholar] [CrossRef]
- Tschentscher, N.; Woll, C.F.J.; Tafelmaier, J.C.; Kriesche, D.; Bucher, J.C.; Engel, R.R.; Karch, S. Neurocognitive deficits in first-episode and chronic psychotic disorders: A systematic review from 2009 to 2022. Brain Sci. 2023, 13, 299. [Google Scholar] [CrossRef]
- Sheffield, J.M.; Karcher, N.R.; Barch, D.M. Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychol. Rev. 2018, 28, 509–533. [Google Scholar] [CrossRef]
- Ibanez-Casas, I.; De Portugal, E.; Gonzalez, N.; McKenney, K.A.; Haro, J.M.; Usall, J.; Perez-Garcia, M.; Cervilla, J.A. Deficits in executive and memory processes in delusional disorder: A case-control study. PLoS ONE 2013, 8, e67341. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat. 2006, 2, 531–536. [Google Scholar] [CrossRef]
- Anticevic, A.; Brumbaugh, M.S.; Winkler, A.M.; Lombardo, L.E.; Barrett, J.; Corlett, P.R.; Kober, H.; Gruber, J.; Repovs, G.; Cole, M.W. Global prefrontal and fronto-amygdala dysconnectivity in bipolar i disorder with psychosis history. Biol. Psychiatry 2013, 73, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Gomes, F.V. The circuitry of dopamine system regulation and its disruption in schizophrenia: Insights into treatment and prevention. Schizophr. Bull. 2019, 45, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, M.; Bianchi, V.; Cinti, M.E. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatry 2012, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Bowie, C.R.; Harvey, P.D. Cognition in schizophrenia: Impairments, determinants, and functional importance. Psychiatr. Clin. North Am. 2005, 28, 613–633, 626. [Google Scholar] [CrossRef]
- Jahn, F.S.; Skovbye, M.; Obenhausen, K.; Jespersen, A.E.; Miskowiak, K.W. Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials. Psychiatry Res. 2021, 300, 113928. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, E.; Mucci, A.; Bucci, P.; Galderisi, S. Disturbi cognitivi nei pazienti affetti da schizofrenia: Valutazione e possibili strategie di intervento. Nóos 2013, 19, 71–82. [Google Scholar]
- Barbieri, A.; Visco-Comandini, F. Efficacy of cognitive behavioural therapy in the treatment of psychosis: A meta-review. Riv. Psichiatr. 2019, 54, 189–195. [Google Scholar] [CrossRef]
- Vita, A.; Barlati, S.; De Peri, L.; Deste, G. Tecniche di rimedio cognitivo nella schizofrenia: Ambiti di intervento ed evidenze di efficacia. In La Riabilitazione Cognitiva Della Schizofrenia; Vita, A., Ed.; Springer: Milano, Italy, 2013; pp. 125–147. ISBN 978-88-470-2801-2. [Google Scholar]
- Hatami, M.; Ataeiyan, A. The effectiveness of repetitive transcranial magnetic stimulation (rtms) on attention and short-term memory in patients with major depressive disorder. Hosp. Pract. Res. 2025, 10, 667–673. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Tseng, H.-Y.; Lin, Y.-J.; Wang, C.-J.; Hsu, W.-C. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. Eur. J. Phys. Rehabil. Med. 2020, 56, 47–57. [Google Scholar] [CrossRef]
- Vass, E.; Simon, V.; Fekete, Z.; Lencse, L.; Ecseri, M.; Kis, B.; Simon, L. A novel virtual reality-based theory of mind intervention for outpatients with schizophrenia: A proof-of-concept pilot study. Clin. Psychol. Psychother. 2021, 28, 727–738. [Google Scholar] [CrossRef]
- Bennabi, D.; Haffen, E.; Van Waes, V. Vortioxetine for cognitive enhancement in major depression: From animal models to clinical research. Front. Psychiatry 2019, 10, 771. [Google Scholar] [CrossRef]
- Mahableshwarkar, A.R.; Zajecka, J.; Jacobson, W.; Chen, Y.; Keefe, R.S. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology 2015, 40, 2025–2037. [Google Scholar] [CrossRef]
- Lane, H.-Y.; Lin, C.-H.; Green, M.F.; Hellemann, G.; Huang, C.-C.; Chen, P.-W.; Tun, R.; Chang, Y.-C.; Tsai, G.E. Add-on treatment of benzoate for schizophrenia: A randomized, double-blind, placebo-controlled trial of d-amino acid oxidase inhibitor. JAMA Psychiatry 2013, 70, 1267–1275. [Google Scholar] [CrossRef]
- Fleischhacker, W.W.; Podhorna, J.; Gröschl, M.; Hake, S.; Zhao, Y.; Huang, S.; Keefe, R.S.E.; Desch, M.; Brenner, R.; Walling, D.P.; et al. Efficacy and safety of the novel glycine transporter inhibitor bi 425809 once daily in patients with schizophrenia: A double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 2021, 8, 191–201. [Google Scholar] [CrossRef]
- Brannan, S. 32.2 two global phase iii trials of encenicline for cognitive impairment in chronic schizophrenia patients: Red flags and lessons learned. Schizophr. Bull. 2019, 45, S141–S142. [Google Scholar] [CrossRef]
- Keefe, R.S.; Meltzer, H.A.; Dgetluck, N.; Gawryl, M.; Koenig, G.; Moebius, H.J.; Lombardo, I.; Hilt, D.C. Randomized, double-blind, placebo-controlled study of encenicline, an α7 nicotinic acetylcholine receptor agonist, as a treatment for cognitive impairment in schizophrenia. Neuropsychopharmacology 2015, 40, 3053–3060. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Hinze-Selch, D.; Stawicki, S.; Aust, C.; Knolle-Veentjer, S.; Wilms, S.; Heinz, G.; Erdag, S.; Jahn, H.; Degner, D.; et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol. Psychiatry 2007, 12, 206–220. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Vinberg, M.; Harmer, C.J.; Ehrenreich, H.; Kessing, L.V. Erythropoietin: A candidate treatment for mood symptoms and memory dysfunction in depression. Psychopharmacology 2012, 219, 687–698. [Google Scholar] [CrossRef]
- Bremner, J.D.; Vythilingam, M.; Vermetten, E.; Southwick, S.M.; McGlashan, T.; Staib, L.H.; Soufer, R.; Charney, D.S. Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol. Psychiatry 2003, 53, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [PubMed]
- Arts, B.; Jabben, N.; Krabbendam, L.; van Os, J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol. Med. 2008, 38, 771–785. [Google Scholar] [CrossRef]
- Robinson, O.J.; Vytal, K.; Cornwell, B.R.; Grillon, C. The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Front. Hum. Neurosci. 2013, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Moriya, J.; Sugiura, Y. High visual working memory capacity in trait social anxiety. PLoS ONE 2012, 7, e34244. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Nix, C.A.; Hollier, J.; Sagrera, C.E.; Delacroix, B.M.; Abubakar, T.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Benzodiazepines: Uses, dangers, and clinical considerations. Neurol. Int. 2021, 13, 594–607. [Google Scholar] [CrossRef]
- Hermans, D.; Engelen, U.; Grouwels, L.; Joos, E.; Lemmens, J.; Pieters, G. Cognitive confidence in obsessive-compulsive disorder: Distrusting perception, attention and memory. Behav. Res. Ther. 2008, 46, 98–113. [Google Scholar] [CrossRef]
- Brewin, C.R.; Kleiner, J.S.; Vasterling, J.J.; Field, A.P. Memory for emotionally neutral information in posttraumatic stress disorder: A meta-analytic investigation. J. Abnorm. Psychol. 2007, 116, 448–463. [Google Scholar] [CrossRef]
- Alexandra Kredlow, M.; Fenster, R.J.; Laurent, E.S.; Ressler, K.J.; Phelps, E.A. Prefrontal cortex, amygdala, and threat processing: Implications for ptsd. Neuropsychopharmacology 2022, 47, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Sole, B.; Vieta, E.; Martinez-Aran, A. Neurocognitive impairment in the bipolar spectrum. Neuropsychiatry 2012, 2, 43. [Google Scholar] [CrossRef]
| Disorders | Affected Domains | Neural Circuits |
|---|---|---|
| Major Depressive Disorder | EM, WM, and AM | Hippocampal dysfunction, structural and functional anomalies in hippocampal-PFC circuits, altered connectivity in default mode network |
| Bipolar Disorders | EM, WM, and AM | Fronto-limbic dysfunction, altered attivation in PFC and amygdala |
| Anxiety Disorders | EM and WM | Deactivation and decrease white matter in PFC, amygdala and PFC increase connectivity, altered activation of PFC, PPC, and ACC particularly in dx hemisphere |
| Obsessive–compulsive Disorder | WM and EM | PFC and OFC deactivation, PCC iperactivation |
| Post-Traumatic Stress Disorder | WM, EM and AM | Reduced hippocampal volume, amygdala hyperactivity and PFC underactivation |
| Psychotic Disorders | WM, EM, PM and SM | Hippocampal-PFC dysconnectivity, reduced D1 receptor transmission in DLPFC, imbalances in glutamatergic and GABAergic systems |
| MDD | |||
|---|---|---|---|
| Authors | Type of Study | Tasks | Results |
| Bremner et al., 2004 [316] | fMRI N = 27 (MDD = 18; HC = 9) | Verbal Memory Encoding Task | ↓ Hippocampal and DLPFC activation during encoding and retrieval (t = 6.52, p < 0.0001) |
| Dietsche et al., 2014 [80] | fMRI N = 46 (MDD = 23; HC = 23) | Encoding and Recognition task Verbal Learning and Memory Test (VLMT) | Fronto-limbic disconnection; ↓ activity in DLPFC and ACC (Encoding: t = 1.77, p < 0.08; Recognition: t = 2.68 p < 0.01) |
| Jayaweera et al., 2016 [83] | Case–control N = 111(MDD = 84; HC: 27) | Verbal episodic memory Rey Auditory Verbal Learning Test and Logical Memory (WMS-III) | Smaller right anterior caudate (t = 2.3, p = 0.026) and poorer verbal memory (t = 2.5, p < 0.001); smaller caudate associated with worse memory (r = 0.3, p = 0.003) |
| Butters et al., 2009 [172] | fMRI N = 38 (MDD = 23; HC: 15) | Caudat volumetry and verbal learning | Smaller caudate correlates with poor verbal recall in geriatric MDD (t = 2.23; p 0.032; r = 0.35) |
| Harvey et al., 2005 [99] | fMRI (N = 20; MDD = 10; HC = 10) | Verbal n-back task | LPFC and ACC hyperactivation |
| Walter et al., 2007 [100] | fMRI (N = 20; MDD = 12; HC = 17) | Verbal WM task | ↑ Left DLPFC (Z = 3.90) and ↓ MPFC (Z = 4.48) |
| Fitzgerald et al., 2008 [87] | fMRI (N = 26; MDD = 13; HC = 13) | Tower of London task and n-back task | ↑ Right prefrontal activation across cognitive tasks (t = 2.5, p < 0.05) |
| Wachowska et al., 2022 [84] | Case–control (N = 87; MDD = 50; HC = 30) | Cytokine assays and episodic tasks | ↑ IL-1β and IL-6; no clear link with memory deficits |
| BD | |||
| Deckersbach et al., 2004 [132] | Case–control (N = 90; BD = 30; OCD = 30; HC = 30) | CVLT | Impaired encoding and retrieval in BD; partial compensation through verbal organization |
| Deckersbach et al., 2008 [131] | fMRI (N = 26; BD = 9; HC = 17) | 2-back working memory paradigm | ↑ left DLPFC (BA9/46) activation during sadness (t = 2.59, p = 0.02); ↑ dorsal ACC across conditions |
| Glahn et al., 2010 [142] | Case–control (N = 660; BD = 230; HC = 230) | Digit Symbol Coding Task, Object Delayed Response, and immediate facial memory. | Cognitive impairments genetically correlated with BD risk (ρg = −0.44 to −0.53, p = 0.03–0.009) and intercorrelated across tasks (ρg = 0.59–0.78, p ≤ 0.003). |
| King et al., 2013 [133] | Case–control (N = 20; BDI = 12; BDII = 8) | Autobiographical Memory Interview | Overgeneral and vague recall with mood-congruent bias; ↓ retrieval of positive events (t = 2.33–2.56, p < 0.05) |
| Mullin et al., 2012 [123] | fMRI (N = 41; BDI = 22; HC = 19) | Emotional n-back | ↓ dlPFC, dACC, parietal and putamen activity in 2-back; ↑ left dlPFC and amygdala during fearful distracters (p < 0.05, corrected) |
| Bertocci et al., 2011 [122] | fMRI (N = 57; UDD = 23; BDI: 28; HC: 16) | Emotional face n-back | UDD > BD > HC in left dAMCC and putamen activation (t = 3.06–2.95, p < 0.05); group effects in putamen (F = 6.8–7.7, p < 0.05) |
| Liu et al., 2010 [127] | Comparative fMRI (N = 48; BDI: 14; BDII: 13 HC: 21) | WCST, WMS, TAP | BDI: ↓ FA in right subgenual ACC linked to poor recall (ρ = −0.83, p < 0.001); BDII: broader emotional-cognitive deficits (ρ = −0.39–0.47, p < 0.05) |
| SAD | |||
|---|---|---|---|
| Authors | Type of Study | Tasks | Results |
| Abushalbaq et al., 2021 [194] | Case-control N = 82 (SAD = 20; PD = 18; GAD = 20; HC = 24) | Working memory tasks: NAART; Digit Span (WAIS-R); Short/long-delay; N-back | WM impairments related to both duration and load (d = 0.65–0.80, p < 0.05) |
| Vasa et al., 2006 [196] | Case–control N = 160 (SAD = 22; other anxiety disorder = 35; HC = 103) | Verbal/visual short-term recall task | Significant STM and episodic memory deficits. (F(4,87), p = 0.005) |
| Airaksinen et al., 2005 [164] | Case–control N = 287 (SAD = 32; PD = 33; GAD = 7; SP (specific phobia) = 24; OCD = 16; HC = 175) | Episodic memory task: free and cued recall | Significant impairments in episodic recall for SAD participants (Free recall: F(1,202) = 7.75, p = 0.006 Cued recall: F(1,202) = 7.30, p = 0.007) |
| PD | |||
| Lucas et al., 1991 [180] | Case–control N = 50 (PD = 25; HC = 25) | Verbal and visual memory task | Impaired visual learning, visual recall, and verbal recall in PD patients for verbal and visual memory (F(13,36) = 2.66, p < 0.01) |
| Boldrini et al., 2005 [177] | Case–control N = 55 (PD/A = 15; OCD = 25; HC = 15) | Visual-spatial memory task: RCFT | Impairment in spatial learning (p = 0.028) |
| Airaksinen et al., 2005 [164] | Case–control N = 287 (SAD = 32; PD = 33; GAD = 7; SP (specific phobia) = 24; OCD = 16; HC = 175) | Episodic memory: free and cued recall | Significant impairments in episodic recall in PD patients Free recall: F(1,203) = 8.66, p = 0.004 Cued recall: F(1,203) =5.31, p = 0.022 |
| GAD | |||
| Vytal et al., 2013 [160] | Case-control N = 60 (GAD = 30; HC = 30) | Verbal WM task: N-back | Persistent WM impairments even under low load (F(2,118) = 58, p = 0.001, η2 = 0.21) |
| Balderston et al., 2017 [155] | Case-control N = 64 (GAD = 7; SAD = 3; GAD/SAD = 13; HC = 41) | WM task: N-back (safe and threat conditions) | Reduced accuracy and slower reaction times in both conditions (Reaction time: t(487) = 3.39; p < 0.01 Accuracy: t(487) = 3.36; p < 0.01) |
| Tempesta et al., 2013 [168] | Case-control N = 71 (GAD = 40; HC = 31) | Verbal and non-verbal memory tasks (drug-naïve vs. SSRI): Digit Span; CBTT; ROCF | Impairments in immediate verbal memory and SM/LTM non-verbal memory in SSRI users (Fa = 0.96 to 0.81) |
| Other Anxiety Disorders | |||
| Toren et al., 2000 [199] | Case-control N = 33 (SeAD and/or OAD = 19; HC = 14) | Verbal and semantic memory task: California Verbal Learning Test (CVLT) | Impairments in verbal and semantic memory (F(10,20) = 3.26, p < 0.05) |
| Sbicigo et al., 2020 [158] | Cross-sectional N = 54 (SeAD = 45; GAD = 41; SAD = 17) | Visuospatial WM and episodic memory tasks: Brazilian Brief Neuropsychological Assessment Battery (NEUPSILINInf) | (WM deficits: d = 0.49 to 0.96 Episodic memory deficits: d = 0.56 to 0.77) |
| OCD | |||
|---|---|---|---|
| Shin et al., 2004 [204] | Case–control; 30 OCD vs. 30 HC | ROCF | Markedly ↓ performance on immediate and delayed recall in OCD group |
| Sawamura et al., 2005 [203] | Case–control; 16 OCD vs. 16 HC | Word categorization, recall, recognition | ↓ semantic categorization and recall/recognition accuracy under time constraints |
| Yue et al., 2021 [211] | Case–control; 55 drug-naive OCD vs. 55 HC | DST, VSMT, SCWT | ↓ across working memory components and reduced executive control |
| Psychotic Disorder | |||
|---|---|---|---|
| Type of Study | Tasks | Results | |
| Ibáñez-Casas et al., 2013 [295] | Case–control; N = 429 (DD = 86; HC = 343) | TAVEC | ↓ Immediate Recall T1 (d = 0.82); ↓ Learning (Trials 1 & 5, Total Words); ↓ Short/Long Free Recall; ↓ Hits; ↑ Intrusions (d = 0.41); ↑ False Positives (d = 0.54) |
| Dong et al., 2023 [275] | Cross-sectional; N = 186 (CHR = 42; GHR = 26; FES = 56; HC = 62) | MCCB | ↓ Processing Speed, WM, Verbal Learning, Reasoning, Social Cognition (FES vs. HC d = 0.71–1.71; CHR vs. HC d = 0.47–1.46; GHR vs. HC d = 0.36–1.80). Impairments stronger in FES vs. CHR (p = 0.008– < 0.001; d = 0.57–1.00) and vs. GHR (p = 0.004–0.04; d = 0.73–1.09) |
| Anticevic et al., 2013 [297] | Cross-sectional, resting-state fMRI; N = 119 (BD = 68, p = 34; HC = 51) | Resting-state fMRI at 3T | mPFC dysconnectivity ↓ Amygdala–mPFC ↑ Amygdala–dlPFC ↓ Psychosis severity ↑ |
| PTSD | |||
|---|---|---|---|
| Type of Study | Tasks | Results | |
| Swick et al., 2017 [236] | Cross-sectional (N = 58; PTSD = 29) | Verbal and visuospatial working tasks | ↓ accuracy (Recency effect: F(1,56) = 107.73, p < 0.0001, ηp2 = 0.658), with no difference in reaction times (F(1,56) = 0.08, p = 0.78, ηp2 = 0.001). WM impairments correlated with intrusion and hyperarousal symptoms |
| Petzold & Bunzeck, 2022 [235] | Meta-analysis (N = 3062) | Episodic memory tests (verbal and non-verbal) | ↓ episodic memory (d* = −0.50, p < 0.0001), with stronger deficits in verbal memory (d* = −0.47 vs. −0.40 non-verbal) |
| Aupperle et al., 2012 [242] | fMRI (N = 71; PTSD: 37; HC: 34) | fMRI during anticipation of negative/positive emotional images; Neuropsychological tests: WAIS-III Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test; Wisconsin Card Sorting Test | ↑ DLPFC, ventrolateral PFC/ACC, inferior parietal, precentral; ↓ medial PFC, parahippocampal/amygdala during WM; supports link between poor executive control and intrusive memories |
| Jelinek et al., 2009 [253] | Comparative Study N = 111 (PTSD = 26; no PTSD = 55; HC = 30) | Autobiographical Memory Task Trauma | memories were significantly more disorganized in the PTSD group (F = 3.16, p = 0.05; t = 2.48, p = 0.02), whereas unpleasant-event memories showed no group differences (p > 0.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurrieri, R.; Gambini, M.; Russomanno, G.; Mucci, F.; Carbone, M.G.; Sità, G.; Pescini, E.; Stagi, S.; Casucci, A.C.; Mastrogiacomo, D.; et al. Memory in Psychiatric Disorders: A Review. Life 2025, 15, 1926. https://doi.org/10.3390/life15121926
Gurrieri R, Gambini M, Russomanno G, Mucci F, Carbone MG, Sità G, Pescini E, Stagi S, Casucci AC, Mastrogiacomo D, et al. Memory in Psychiatric Disorders: A Review. Life. 2025; 15(12):1926. https://doi.org/10.3390/life15121926
Chicago/Turabian StyleGurrieri, Riccardo, Matteo Gambini, Gerardo Russomanno, Federico Mucci, Manuel Glauco Carbone, Giorgia Sità, Elena Pescini, Sibilla Stagi, Anna Chiara Casucci, Diletta Mastrogiacomo, and et al. 2025. "Memory in Psychiatric Disorders: A Review" Life 15, no. 12: 1926. https://doi.org/10.3390/life15121926
APA StyleGurrieri, R., Gambini, M., Russomanno, G., Mucci, F., Carbone, M. G., Sità, G., Pescini, E., Stagi, S., Casucci, A. C., Mastrogiacomo, D., Bressan, F., & Marazziti, D. (2025). Memory in Psychiatric Disorders: A Review. Life, 15(12), 1926. https://doi.org/10.3390/life15121926

