Advancing Precision Diagnosis of Sarcopenic Obesity Through Digital Technologies, Wearables and Omics Data
Abstract
1. Introduction
2. Review Methodology
3. Diagnosis and Screening
4. Digital Tools and At-Home Testing
5. Multi-Omics
6. Discussion and Direction of Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Shor, D.B.-A.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, e464–e465. [Google Scholar] [CrossRef]
- Bjerregaard, L.G.; Jensen, B.W.; Ängquist, L.; Osler, M.; Sørensen, T.I.A.; Baker, J.L. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N. Engl. J. Med. 2018, 378, 1302–1312. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef]
- Arnold, M.; Pandeya, N.; Byrnes, G.; Renehan, A.G.; Stevens, G.A.; Ezzati, M.; Ferlay, J.; Miranda, J.J.; Romieu, I.; Dikshit, R.; et al. Global Burden of Cancer Attributable to High Body-Mass Index in 2012: A Population-Based Study. Lancet Oncol. 2015, 16, 36–46. [Google Scholar] [CrossRef]
- Cawley, J.; Meyerhoefer, C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. J. Health Econ. 2012, 31, 219–230. [Google Scholar] [CrossRef]
- Economic Impact of Overweight and Obesity to Surpass $4 Trillion by 2035. World Obesity Federation. Available online: https://www.worldobesity.org/news/economic-impact-of-overweight-and-obesity-to-surpass-4-trillion-by-2035 (accessed on 27 November 2025).
- Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; Aroda, V.R.; Lean, M.E.J. Treating Chronic Diseases without Tackling Excess Adiposity Promotes Multimorbidity. Lancet Diabetes Endocrinol. 2023, 11, 58–62. [Google Scholar] [CrossRef]
- Atkins, J.L.; Wannamathee, S.G. Sarcopenic Obesity in Ageing: Cardiovascular Outcomes and Mortality. Br. J. Nutr. 2020, 124, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Evans, W.J.; Guralnik, J.; Cawthon, P.; Appleby, J.; Landi, F.; Clarke, L.; Vellas, B.; Ferrucci, L.; Roubenoff, R. Sarcopenia: No Consensus, No Diagnostic Criteria, and No Approved Indication—How Did We Get Here? Geroscience 2023, 46, 183–190. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Atkins, J.L. Muscle Loss and Obesity: The Health Implications of Sarcopenia and Sarcopenic Obesity. Proc. Nutr. Soc. 2015, 74, 405–412. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic Obesity in Older Adults: Aetiology, Epidemiology and Treatment Strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Prado, C.M.; Batsis, J.A.; Donini, L.M.; Gonzalez, M.C.; Siervo, M. Sarcopenic Obesity in Older Adults: A Clinical Overview. Nat. Rev. Endocrinol. 2024, 20, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global Prevalence of Sarcopenic Obesity in Older Adults: A Systematic Review and Meta-Analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef]
- Murdock, D.J.; Wu, N.; Grimsby, J.S.; Calle, R.A.; Donahue, S.; Glass, D.J.; Sleeman, M.W.; Sanchez, R.J. The Prevalence of Low Muscle Mass Associated with Obesity in the USA. Skelet. Muscle 2022, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Chen, X.; Luo, S.; Hou, L.; Yue, J.; Liu, X.; Xia, X.; Liu, F.; Dong, B.; Ge, N. Association between Sarcopenia Grade and Fall History among Older Adults in West China: A Retrospective Study. BMJ Open 2024, 14, e080426. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a Risk Factor for Falls in Elderly Individuals: Results from the IlSIRENTE Study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Yang, M.; Hu, M.; Zhang, Y.; Jia, S.; Sun, X.; Zhao, W.; Ge, M.; Dong, B. Sarcopenic Obesity Is Associated with Frailty among Community-Dwelling Older Adults: Findings from the WCHAT Study. BMC Geriatr. 2022, 22, 863. [Google Scholar] [CrossRef]
- Damanti, S.; Citterio, L.; Zagato, L.; Brioni, E.; Magnaghi, C.; Simonini, M.; De Lorenzo, R.; Ruggiero, M.; Santoro, S.; Senini, E.; et al. Sarcopenic Obesity and Pre-Sarcopenia Contribute to Frailty in Community-Dwelling Italian Older People: Data from the FRASNET Study. BMC Geriatr. 2024, 24, 638. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic Obesity Predicts Instrumental Activities of Daily Living Disability in the Elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Silay, K.; Selvi Oztorun, H. Sarcopenic Obesity Is Linked to Worse Clinical Outcomes than Sarcopenia or Obesity Alone in Hospitalized Older Adults. BMC Geriatr. 2025, 25, 443. [Google Scholar] [CrossRef]
- Khatoon B, S.; Saravanan, D.; Ganamurali, N.; Sabarathinam, S. A Narrative Review on the Impact of Sarcopenic Obesity and Its Psychological Consequence in Quality of Life. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102846. [Google Scholar] [CrossRef]
- Cho, Y.; Shin, S.Y.; Shin, M.J. Sarcopenic Obesity Is Associated with Lower Indicators of Psychological Health and Quality of Life in Koreans. Nutr. Res. 2015, 35, 384–392. [Google Scholar] [CrossRef]
- Hong, S.H.; Choi, K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, Y.; Shi, Y.; Wang, X.; Liao, Z.; Wei, P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front. Endocrinol. 2020, 11, 553369. [Google Scholar] [CrossRef]
- Lou, Y.; Xie, Y.; Jiang, Q.; Huang, S.; Wang, X.; Wang, L.; Wang, H.; Cao, S. The Effect of Sarcopenic Obesity on Glycaemic Status Based on Fasting Plasma Glucose and Glycated Haemoglobin: A Prospective Cohort Study. Diabetes Obes. Metab. 2025, 27, 291–299. [Google Scholar] [CrossRef]
- Filis, P.; Papagiannopoulos, C.K.; Markozannes, G.; Chalitsios, C.V.; Zerdes, I.; Valachis, A.; Papandreou, C.; Christakoudi, S.; Tsilidis, K.K. Associations of Sarcopenia, Sarcopenia Components and Sarcopenic Obesity with Cancer Incidence: A Prospective Cohort Study of 414,094 Participants in UK Biobank. Int. J. Cancer 2025, 157, 1316–1332. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, X.; Fan, P.; Zong, Y.; Feng, X.; Huang, L. Impact of Sarcopenic Obesity on Postoperative Complications and Long-Term Survival in Patients with Gastric Cancer. Eur. J. Surg. Oncol. 2025, 51, 110437. [Google Scholar] [CrossRef]
- Liu, C.; Liu, T.; Deng, L.; Zhang, Q.; Song, M.; Shi, J.; Liu, C.; Xie, H.; Chen, Y.; Lin, S.; et al. Sarcopenic Obesity and Outcomes for Patients with Cancer. JAMA Netw. Open 2024, 7, e2417115. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Park, R.; Oh, C.M.; Moon, S. Association of Low Muscle Mass and Obesity with Increased All-Cause and Cardiovascular Disease Mortality in US Adults. J. Cachexia Sarcopenia Muscle 2024, 15, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.E.; Mathur, R.; Schmidt, A.F.; Bhaskaran, K.; Fatemifar, G.; Eastwood, S.V.; Finan, C.; Denaxas, S.; Smeeth, L.; Chaturvedi, N. Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. J. Am. Heart Assoc. 2019, 8, e011638. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Hall, K.D.; Klein, S. Is Weight Loss-Induced Muscle Mass Loss Clinically Relevant? JAMA 2024, 332, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, K.; Yamaguchi, A. Sarcopenic Obesity and Endocrinal Adaptation with Age. Int. J. Endocrinol. 2013, 2013, 204164. [Google Scholar] [CrossRef]
- Huang, L.T.; Wang, J.H. The Therapeutic Intervention of Sex Steroid Hormones for Sarcopenia. Front. Med. 2021, 8, 739251. [Google Scholar] [CrossRef]
- Sørensen, M.B.; Rosenfalck, A.M.; Højgaard, L.; Ottesen, B. Obesity and Sarcopenia after Menopause Are Reversed by Sex Hormone Replacement Therapy. Obes. Res. 2001, 9, 622–626. [Google Scholar] [CrossRef]
- Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between Sarcopenia and Levels of Growth Hormone and Insulin-like Growth Factor-1 in the Elderly. BMC Musculoskelet. Disord. 2020, 21, 214. [Google Scholar] [CrossRef]
- Xu, Q.; Bu, F.; Song, Z.T.; Li, K.; Fang, C.; Luo, Y.; Zhang, L.; Pei, Y.F. Association of Serum 25-Hydroxyvitamin D with Sarcopenic Obesity Risk: A Longitudinal Observational Study from the UK Biobank. Obesity 2025, 33, 1136–1144. [Google Scholar] [CrossRef]
- Kalinkovich, A.; Livshits, G. Sarcopenic Obesity or Obese Sarcopenia: A Cross Talk between Age-Associated Adipose Tissue and Skeletal Muscle Inflammation as a Main Mechanism of the Pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef]
- Shulman, G.I. Cellular Mechanisms of Insulin Resistance. J. Clin. Investig. 2000, 106, 171–176. [Google Scholar] [CrossRef]
- Aoi, W. Myokines: A Potential Key Factor in Development, Treatment, and Biomarker of Sarcopenia. In Sarcopenia: Molecular Mechanism and Treatment Strategies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 171–185. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Ryu, J.Y.; Choi, H.Y.; Hong, H.C.; Yoo, H.J.; Kang, H.J.; Song, W.; Park, S.W.; Baik, S.H.; et al. Impact of Visceral Fat on Skeletal Muscle Mass and Vice Versa in a Prospective Cohort Study: The Korean Sarcopenic Obesity Study (KSOS). PLoS ONE 2014, 9, e115407. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Gray-Gaillard, E.F.; Elisseeff, J.H. Cellular Senescence in Musculoskeletal Homeostasis, Diseases, and Regeneration. Bone Res. 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xie, W.; Li, H.; Jin, H.; Zhang, Y.; Li, Y. Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Front. Cell Dev. Biol. 2022, 9, 793088. [Google Scholar] [CrossRef]
- de Marco Castro, E.; Murphy, C.H.; Roche, H.M. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front. Nutr. 2021, 8, 656730. [Google Scholar] [CrossRef]
- Fernández-Martínez, J.; Ramírez-Casas, Y.; Yang, Y.; Aranda-Martínez, P.; Martínez-Ruiz, L.; Escames, G.; Acuña-Castroviejo, D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023, 13, 1779. [Google Scholar] [CrossRef]
- Gandham, A.; Zengin, A.; Bonham, M.P.; Brennan-Olsen, S.L.; Aitken, D.; Winzenberg, T.M.; Ebeling, P.R.; Jones, G.; Scott, D. Associations between Socioeconomic Status and Obesity, Sarcopenia, and Sarcopenic Obesity in Community-Dwelling Older Adults: The Tasmanian Older Adult Cohort Study. Exp. Gerontol. 2021, 156, 111627. [Google Scholar] [CrossRef]
- Batsis, J.A.; Mackenzie, T.A.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, Sarcopenic Obesity, and Functional Impairments in Older Adults: National Health and Nutrition Examination Surveys 1999–2004. Nutr. Res. 2015, 35, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Chen, T.P.; Kao, H.H.; Ogawa, W.; Arai, H.; Tahapary, D.L.; Assantachai, P.; Tham, K.W.; Chan, D.C.; Yuen, M.M.A.; Appannah, G.; et al. The Asia–Oceania Consensus: Definitions and Diagnostic Criteria for Sarcopenic Obesity. Obes. Res. Clin. Pract. 2025, 19, 185–192. [Google Scholar] [CrossRef]
- Woo, J.; Leung, J.; Morley, J.E. Validating the SARC-F: A Suitable Community Screening Tool for Sarcopenia? J. Am. Med. Dir. Assoc. 2014, 15, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.C.; Won, C.W.; Kim, M.; Chun, K.J.; Yoo, J. Il SARC-F as a Useful Tool for Screening Sarcopenia in Elderly Patients with Hip Fractures. J. Nutr. Health Aging 2020, 24, 78–82. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Ida, S.; Kaneko, R.; Murata, K. SARC-F for Screening of Sarcopenia Among Older Adults: A Meta-Analysis of Screening Test Accuracy. J. Am. Med. Dir. Assoc. 2018, 19, 685–689. [Google Scholar] [CrossRef]
- Cesari, M.; Fielding, R.A.; Pahor, M.; Goodpaster, B.; Hellerstein, M.; van Kan, G.A.; Anker, S.D.; Rutkove, S.; Vrijbloed, J.W.; Isaac, M.; et al. Biomarkers of Sarcopenia in Clinical Trials-Recommendations from the International Working Group on Sarcopenia. J. Cachexia Sarcopenia Muscle 2012, 3, 181–190. [Google Scholar] [CrossRef]
- Konečná, M.; Poráčová, J.; Sedlák, V.; Gaľová, J.; Babejová, A.; Zahatňanská, M.; Kimáková, T.; Nagy, M.; Bernátová, R.; Bernát, M.; et al. Use of Bioimpedance in Prevention of Sarcopenia in the Elderly. Cent. Eur. J. Public Health 2023, 31, S62–S68. [Google Scholar] [CrossRef]
- Wareham, N.J. Personalised Prevention of Type 2 Diabetes. Diabetologia 2022, 65, 1796–1803. [Google Scholar] [CrossRef]
- Caturano, A.; Amaro, A.; Berra, C.C.; Conte, C. Sarcopenic Obesity and Weight Loss-Induced Muscle Mass Loss. Curr. Opin. Clin. Nutr. Metab. Care 2025, 28, 339. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN Practical Guideline: Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef]
- Volpe, S.L.; Sukumar, D.; Milliron, B.J. Obesity Prevention in Older Adults. Curr. Obes. Rep. 2016, 5, 166–175. [Google Scholar] [CrossRef]
- Irvin, L.; Madden, L.A.; Marshall, P.; Vince, R.V. Digital Health Solutions for Weight Loss and Obesity: A Narrative Review. Nutrients 2023, 15, 1858. [Google Scholar] [CrossRef]
- Bae, J.H.; Seo, J.W.; Li, X.; Ahn, S.Y.; Sung, Y.; Kim, D.Y. Neural Network Model for Prediction of Possible Sarcopenic Obesity Using Korean National Fitness Award Data (2010–2023). Sci. Rep. 2024, 14, 14565. [Google Scholar] [CrossRef]
- Zambon Azevedo, V.; Ponnaiah, M.; Bel Lassen, P.; Ratziu, V.; Oppert, J.M. A Diagnostic Proposal for Sarcopenic Obesity in Adults Based on Body Composition Phenotypes. Clin. Nutr. ESPEN 2022, 52, 119–130. [Google Scholar] [CrossRef]
- Lian, R.; Tang, H.; Chen, Z.; Chen, X.; Luo, S.; Jiang, W.; Jiang, J.; Yang, M. Development and Multi-Center Cross-Setting Validation of an Explainable Prediction Model for Sarcopenic Obesity: A Machine Learning Approach Based on Readily Available Clinical Features. Aging Clin. Exp. Res. 2025, 37, 63. [Google Scholar] [CrossRef] [PubMed]
- Duff, O.M.; Walsh, D.M.J.; Furlong, B.A.; O’Connor, N.E.; Moran, K.A.; Woods, C.B. Behavior Change Techniques in Physical Activity EHealth Interventions for People With Cardiovascular Disease: Systematic Review. J. Med. Internet Res. 2017, 19, e281. [Google Scholar] [CrossRef] [PubMed]
- Muellmann, S.; Forberger, S.; Möllers, T.; Bröring, E.; Zeeb, H.; Pischke, C.R. Effectiveness of EHealth Interventions for the Promotion of Physical Activity in Older Adults: A Systematic Review. Prev. Med. 2018, 108, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Shang, B.; Liang, W.; Du, G.; Yang, M.; Rhodes, R.E. Effects of EHealth-Based Multiple Health Behavior Change Interventions on Physical Activity, Healthy Diet, and Weight in People with Noncommunicable Diseases: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2021, 23, e23786. [Google Scholar] [CrossRef]
- Schoufour, J.D.; Tieland, M.; Barazzoni, R.; Ben Allouch, S.; van der Bie, J.; Boirie, Y.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinková, E.; Visser, B.; et al. The Relevance of Diet, Physical Activity, Exercise, and Persuasive Technology in the Prevention and Treatment of Sarcopenic Obesity in Older Adults. Front. Nutr. 2021, 8, 661449. [Google Scholar] [CrossRef]
- Bailey, D.P.; Harper, J.H.; Kilbride, C.; McGowan, L.J.; Victor, C.; Brierley, M.L.; Chater, A.M. The Frail-LESS (LEss Sitting and Sarcopenia in Frail Older Adults) Remote Intervention to Improve Sarcopenia and Maintain Independent Living via Reductions in Sedentary Behaviour: Findings from a Randomised Controlled Feasibility Trial. BMC Geriatr. 2024, 24, 747. [Google Scholar] [CrossRef]
- Shi, B.; Li, G.; Wu, S.; Ge, H.; Zhang, X.; Chen, S.; Pan, Y.; He, Q. Assessing the Effectiveness of EHealth Interventions to Manage Multiple Lifestyle Risk Behaviors Among Older Adults: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e58174. [Google Scholar] [CrossRef]
- Lemos, T.; Gallagher, D. Current Body Composition Measurement Techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310. [Google Scholar] [CrossRef] [PubMed]
- Johnson Stoklossa, C.A.; Forhan, M.; Padwal, R.S.; Gonzalez, M.C.; Prado, C.M. Practical Considerations for Body Composition Assessment of Adults with Class II/III Obesity Using Bioelectrical Impedance Analysis or Dual-Energy X-Ray Absorptiometry. Curr. Obes. Rep. 2016, 5, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Beausejour, J.P.; Knowles, K.S.; Wilson, A.T.; Mangum, L.C.; Hill, E.C.; Hanney, W.J.; Wells, A.J.; Fukuda, D.H.; Stout, J.; Stock, M.S. Innovations in the Assessment of Skeletal Muscle Health: A Glimpse into the Future. Int. J. Sports Med. 2024, 45, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Rolfe, E.D.L.; Mak, E.; Sengupta, A.; Powell, R.; Watson, L.P.E.; Heymsfield, S.B.; Shepherd, J.A.; Wareham, N.; Brage, S.; et al. Prediction of Total and Regional Body Composition from 3D Body Shape. Npj Digit. Med. 2024, 7, 298. [Google Scholar] [CrossRef]
- Florez, C.M.; Rodriguez, C.; Siedler, M.R.; Tinoco, E.; Tinsley, G.M. Body Composition Estimation from Mobile Phone Three-Dimensional Imaging: Evaluation of the USA Army One-Site Method. Br. J. Nutr. 2024, 132, 1143–1151. [Google Scholar] [CrossRef]
- Graybeal, A.J.; Brandner, C.F.; Tinsley, G.M. Visual Body Composition Assessment Methods: A 4-Compartment Model Comparison of Smartphone-Based Artificial Intelligence for Body Composition Estimation in Healthy Adults. Clin. Nutr. 2022, 41, 2464–2472. [Google Scholar] [CrossRef]
- Graybeal, A.J.; Swafford, S.H.; Compton, A.T.; Renna, M.E.; Thorsen, T.; Stavres, J. Predicting Bone Mineral Content from Smartphone Digital Anthropometrics: Evaluation of an Existing Application and the Development of New Prediction Models. J. Clin. Densitom. 2025, 28, 101537. [Google Scholar] [CrossRef]
- Scott, D.; Chandrasekara, S.D.; Laslett, L.L.; Cicuttini, F.; Ebeling, P.R.; Jones, G. Associations of Sarcopenic Obesity and Dynapenic Obesity with Bone Mineral Density and Incident Fractures Over 5–10 Years in Community-Dwelling Older Adults. Calcif. Tissue Int. 2016, 99, 30–42. [Google Scholar] [CrossRef]
- Bennett, J.P.; Liu, Y.E.; Kelly, N.N.; Quon, B.K.; Wong, M.C.; McCarthy, C.; Heymsfield, S.B.; Shepherd, J.A. Next-Generation Smart Watches to Estimate Whole-Body Composition Using Bioimpedance Analysis: Accuracy and Precision in a Diverse, Multiethnic Sample. Am. J. Clin. Nutr. 2022, 116, 1418–1429. [Google Scholar] [CrossRef]
- Thomas, D.M.; Crofford, I.; Scudder, J.; Oletti, B.; Deb, A.; Heymsfield, S.B. Updates on Methods for Body Composition Analysis: Implications for Clinical Practice. Curr. Obes. Rep. 2025, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Brandner, C.F.; Tinsley, G.M.; Graybeal, A.J. Smartwatch-Based Bioimpedance Analysis for Body Composition Estimation: Precision and Agreement with a 4-Compartment Model. Appl. Physiol. Nutr. Metab. 2023, 48, 172–182. [Google Scholar] [CrossRef]
- Ruiz-Cárdenas, J.D.; Montemurro, A.; del Mar Martínez-García, M.; Rodríguez-Juan, J.J. Sit-to-Stand Video Analysis-Based App for Diagnosing Sarcopenia and Its Relationship with Health-Related Risk Factors and Frailty in Community-Dwelling Older Adults: Diagnostic Accuracy Study. J. Med. Internet Res. 2023, 25, e47873. [Google Scholar] [CrossRef]
- Vavasour, G.; Giggins, O.M.; Doyle, J.; Kelly, D. How Wearable Sensors Have Been Utilised to Evaluate Frailty in Older Adults: A Systematic Review. J. Neuroeng. Rehabil. 2021, 18, 112. [Google Scholar] [CrossRef]
- Zhang, Y.; Morita, M.; Hirano, T.; Doi, K.; Han, X.; Matsunaga, K.; Jiang, Z. A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test. Sensors 2024, 24, 4489. [Google Scholar] [CrossRef] [PubMed]
- Connolly, K.; Cunningham, C.; Murphy, N.; Romero-Ortuno, R.; Horgan, F. Using Accelerometers in the Assessment of Sarcopenia in Older Adults Attending a Day Hospital Service in Ireland. J. Frailty Sarcopenia Falls 2021, 6, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kweon, H.J.; Choi, J. Assessment of Gait Parameters Using Wearable Sensors and Their Association with Muscle Mass, Strength, and Physical Performance in Korean Older Adults: Cross-Sectional Study. JMIR Form. Res. 2025, 9, e63928. [Google Scholar] [CrossRef]
- Aznar-Gimeno, R.; Perez-Lasierra, J.L.; Pérez-Lázaro, P.; Bosque-López, I.; Azpíroz-Puente, M.; Salvo-Ibáñez, P.; Morita-Hernandez, M.; Hernández-Ruiz, A.C.; Gómez-Bernal, A.; Rodrigalvarez-Chamarro, M.d.l.V.; et al. Gait-Based AI Models for Detecting Sarcopenia and Cognitive Decline Using Sensor Fusion. Diagnostics 2024, 14, 2886. [Google Scholar] [CrossRef]
- Perez-Lasierra, J.L.; Azpíroz-Puente, M.; Alfaro-Santafé, J.V.; Almenar-Arasanz, A.J.; Alfaro-Santafé, J.; Gómez-Bernal, A. Sarcopenia Screening Based on the Assessment of Gait with Inertial Measurement Units: A Systematic Review. BMC Geriatr. 2024, 24, 863. [Google Scholar] [CrossRef]
- Han, S.; Xiao, Q.; Liang, Y.; Chen, Y.; Yan, F.; Chen, H.; Yue, J.; Tian, X.; Xiong, Y. Using Flexible-Printed Piezoelectric Sensor Arrays to Measure Plantar Pressure during Walking for Sarcopenia Screening. Sensors 2024, 24, 5189. [Google Scholar] [CrossRef]
- Huang, Z.; Ou, Q.; Li, D.; Feng, Y.; Cai, L.; Hu, Y.; Chu, H. Wearable Fabric System for Sarcopenia Detection. Biosensors 2024, 14, 622. [Google Scholar] [CrossRef] [PubMed]
- Rescio, G.; Sciurti, E.; Giampetruzzi, L.; Carluccio, A.M.; Francioso, L.; Leone, A. Preliminary Study on Wearable Smart Socks with Hydrogel Electrodes for Surface Electromyography-Based Muscle Activity Assessment. Sensors 2025, 25, 1618. [Google Scholar] [CrossRef]
- Shin, J.; Song, K.; Kim, S.W.; Choi, S.; Lee, H.; Kim, I.S.; Im, S.; Baek, M.S. A Wearable Approach for Sarcopenia Diagnosis Using Stimulated Muscle Contraction Signal. Biomed. Eng. Lett. 2025, 15, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Liarakos, A.L.; Panagiotou, G.; Chondronikola, M.; Wilmot, E.G. Continuous Glucose Monitoring in People at High Risk of Diabetes and Dysglycaemia: Transforming Early Risk Detection and Personalised Care. Life 2025, 15, 1579. [Google Scholar] [CrossRef]
- Metwally, A.A.; Perelman, D.; Park, H.; Wu, Y.; Jha, A.; Sharp, S.; Celli, A.; Ayhan, E.; Abbasi, F.; Gloyn, A.L.; et al. Prediction of Metabolic Subphenotypes of Type 2 Diabetes via Continuous Glucose Monitoring and Machine Learning. Nat. Biomed. Eng. 2025, 9, 1222–1239. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Metwally, A.A.; Delfarah, A.; Wu, Y.; Perelman, D.; Mayer, C.; McGinity, C.; Rodgar, M.; Celli, A.; McLaughlin, T.; et al. High-Resolution Lifestyle Profiling and Metabolic Subphenotypes of Type 2 Diabetes. npj Digit. Med. 2025, 8, 352. [Google Scholar] [CrossRef]
- Starkoff, B.E.; Nickerson, B.S. Emergence of Imaging Technology beyond the Clinical Setting: Utilization of Mobile Health Tools for at-Home Testing. Nutr. Clin. Pract. 2024, 39, 518–529. [Google Scholar] [CrossRef]
- Watanabe, K.; Wilmanski, T.; Diener, C.; Earls, J.C.; Zimmer, A.; Lincoln, B.; Hadlock, J.J.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T.; et al. Multiomic Signatures of Body Mass Index Identify Heterogeneous Health Phenotypes and Responses to a Lifestyle Intervention. Nat. Med. 2023, 29, 996–1008. [Google Scholar] [CrossRef]
- Sacoto, D.; Hurtado, M.D.; Acosta, A. Precision Medicine and Obesity. Handb. Exp. Pharmacol. 2022, 274, 467–485. [Google Scholar] [CrossRef]
- Woldemariam, S.; Dorner, T.E.; Wiesinger, T.; Stein, K.V. Multi-Omics Approaches for Precision Obesity Management: Potentials and Limitations of Omics in Precision Prevention, Treatment and Risk Reduction of Obesity. Wien. Klin. Wochenschr 2023, 135, 113–124. [Google Scholar] [CrossRef]
- Lynch, D.H.; Spangler, H.B.; Franz, J.R.; Krupenevich, R.L.; Kim, H.; Nissman, D.; Zhang, J.; Li, Y.Y.; Sumner, S.; Batsis, J.A. Multimodal Diagnostic Approaches to Advance Precision Medicine in Sarcopenia and Frailty. Nutrients 2022, 14, 1384. [Google Scholar] [CrossRef]
- Liu, J.C.; Dong, S.S.; Shen, H.; Yang, D.Y.; Chen, B.-B.; Ma, X.Y.; Peng, Y.R.; Xiao, H.M.; Deng, H.W. Multi-Omics Research in Sarcopenia: Current Progress and Future Prospects. Ageing Res. Rev. 2022, 76, 101576. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic Obesity: Epidemiology, Pathophysiology, Cardiovascular Disease, Mortality, and Management. Front. Endocrinol. 2023, 14, 1185221. [Google Scholar] [CrossRef] [PubMed]
- Ran, S.; Jiang, Z.X.; He, X.; Liu, Y.; Zhang, Y.X.; Zhang, L.; Pei, Y.F.; Zhang, M.; Hai, R.; Gu, G.S.; et al. Replication of FTO Gene Associated with Lean Mass in a Meta-Analysis of Genome-Wide Association Studies. Sci. Rep. 2020, 10, 5057. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhao, Q.G.; Ma, X.L.; Yan, S.S.; Han, B.X.; Song, Z.T.; Bu, F.; Li, K.; Zhang, L.; Pei, Y.F. Exome-Wide Sequencing Study Identified Genetic Variants Associated with Sarcopenic Obesity. J. Gerontol. Ser. A 2024, 79, glae025. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, J.; Xu, H.; Fan, L.; Deng, L.; Li, J.; Li, D.; Li, H.; Zhang, F.; Zhao, R.C. Long Noncoding RNA LYPLAL1-AS1 Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells by Targeting Desmoplakin and Inhibiting the Wnt/β-Catenin Pathway. Cell Death Discov. 2021, 7, 105. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kawamura, R.; Takata, Y.; Tabara, Y.; Maruyama, K.; Takakado, M.; Hadate, T.; Ohashi, J.; Saito, I.; Ogawa, Y.; et al. Resistin G–A Haplotype at SNP-420/-358 Is Associated with the Latent Sarcopenic Obesity Index in the Toon Genome Study. J. Diabetes Investig. 2023, 14, 686–694. [Google Scholar] [CrossRef]
- Burton, M.A.; Antoun, E.; Garratt, E.S.; Westbury, L.; Baczynska, A.; Dennison, E.M.; Harvey, N.C.; Cooper, C.; Patel, H.P.; Godfrey, K.M.; et al. Adiposity Is Associated with Widespread Transcriptional Changes and Downregulation of Longevity Pathways in Aged Skeletal Muscle. J. Cachexia Sarcopenia Muscle 2023, 14, 1762–1774. [Google Scholar] [CrossRef]
- Tarum, J.; Ball, G.; Gustafsson, T.; Altun, M.; Santos, L. Artificial Neural Network Inference Analysis Identified Novel Genes and Gene Interactions Associated with Skeletal Muscle Aging. J. Cachexia Sarcopenia Muscle 2024, 15, 2143–2155. [Google Scholar] [CrossRef]
- Shu, H.; Huang, Y.; Zhang, W.; Ling, L.; Hua, Y.; Xiong, Z. An Integrated Study of Hormone-Related Sarcopenia for Modeling and Comparative Transcriptome in Rats. Front. Endocrinol. 2023, 14, 1073587. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Gou, L.; Zhu, Y.; Zhong, W.; Guo, H.; Du, Y. Integrating Transcriptomic and Proteomic Data for a Comprehensive Molecular Perspective on the Association between Sarcopenia and Osteoporosis. Arch. Gerontol. Geriatr. 2024, 125, 105486. [Google Scholar] [CrossRef]
- Yu, R.; Miao, L.; Wang, J.; Wang, D.; Liu, Y.; Wang, L.; Wang, R. Integrated Transcriptomics Unveils Mitochondrial Oxidative Phosphorylation Dysfunction as a Shared Mechanism in Sarcopenia and Obesity. Sci. Rep. 2025, 15, 34810. [Google Scholar] [CrossRef] [PubMed]
- Huemer, M.T.; Bauer, A.; Petrera, A.; Scholz, M.; Hauck, S.M.; Drey, M.; Peters, A.; Thorand, B. Proteomic Profiling of Low Muscle and High Fat Mass: A Machine Learning Approach in the KORA S4/FF4 Study. J. Cachexia Sarcopenia Muscle 2021, 12, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Hinkley, J.M.; Cornnell, H.H.; Standley, R.A.; Chen, E.Y.; Narain, N.R.; Greenwood, B.P.; Bussberg, V.; Tolstikov, V.V.; Kiebish, M.A.; Yi, F.; et al. Older Adults with Sarcopenia Have Distinct Skeletal Muscle Phosphodiester, Phosphocreatine, and Phospholipid Profiles. Aging Cell 2020, 19, e13135. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; He, P.; Mao, X.; Jing, X.; Hu, Y.; Jing, L. LC/MS-Based Untargeted Lipidomics Reveals Lipid Signatures of Sarcopenia. Int. J. Mol. Sci. 2024, 25, 8793. [Google Scholar] [CrossRef]
- Han, P.; Yuan, C.; Chen, X.; Hu, Y.; Hu, X.; Xu, Z.; Guo, Q. Metabolic Signatures and Potential Biomarkers of Sarcopenia in Suburb-Dwelling Older Chinese: Based on Untargeted GC–MS and LC–MS. Skelet. Muscle 2024, 14, 4. [Google Scholar] [CrossRef] [PubMed]
| Technology/Approach | Key Findings/Features | Study Design/Sample Size | Implications for SO | Drawbacks/Limitations |
|---|---|---|---|---|
| Body fat percentage (via BIA) and grip strength Artificial intelligence (AI) and neural network models | Neural network model achieved 93.1% validation accuracy for SO detection | Large population cocohort (n = 107,545) of older Korean adults [64] | Demonstrates the feasibility of AI in accurately identifying SO based on simple clinical and body composition parameters | Accuracy dependent on quality of BIA measurements. |
| Unsupervised machine learning algorithms based on DEXA | Diagnostic model for SO and associated comorbidities | Large cross-sectional study of people with overweight/obesity (n = 1165), validation dataset (n = 262), French population [65] | Enables unbiased classification and stratification of SO risk phenotypes | DEXA not scalable for population screening. Limited generalizability in ethnically and clinically diverse populations. |
| Web-based predictive models | Web application using an 8-feature model (demographic, anthropometric, and physical performance data) predicted SO | Web-based predictive tool, derivation cohort (n = 1431), validation cohort (n = 832) [66] | Offers a scalable and accessible platform for community-level SO screening | External validation and calibration needed before adoption across different healthcare settings. |
| Smartphone-based imaging and 3D optical body composition assessment | 3D imaging, BIA and body-shape analysis using smartphones provide accurate estimates of body composition and bone mineral content | Imaging validation studies [75,76,77,78,79,81,82,83] | Enables non-invasive, low-cost, and remote assessment of lean and bone mass relevant to SO | Limited validation in clinical populations. Accuracy may be affected by fluid retention. Not validated in altered body composition phenotypes, pregnancy and pediatric populations. Algorithm may not perform uniformly across ethnic groups. |
| Wearables and accelerometer-based models | Wearable sensor data used to evaluate frailty and sarcopenia indices; AI gait analysis via inertial measurement units effective in screening | Community-dwelling older adults [85,86,87,88,89,90] | Highlights the role of wearables in early detection and continuous monitoring of SO | Lack of standardized data formats and sensor specifications limits harmonization. Device-specific algorithms reduce comparability. |
| Video-based functional testing | Sit-to-stand video analysis app demonstrated good diagnostic performance for sarcopenia detection | Cohort study of community-dwelling older Spanish adults (n = 686) [84] | Facilitates remote muscle function assessment complementing body composition metrics | Performance depends on camera quality and user compliance. Requires digital literacy. |
| Wearable piezoelectric and piezoresistive sensors | Flexible piezoelectric plantar sensors achieved >93% accuracy in detecting sarcopenia; fabric-based sensors tracked gait and mobility | Small case–control (sarcopenia vs. control) sensor-based detection studies [91,92] | Potential for real-time mobility tracking and SO screening through gait and balance monitoring | Lack of validation in SO and elderly populations limits generalizability of the results. Unclear performance in patients with foot deformities and peripheral neuropathy. |
| Wearable electromyography and muscle contraction sensors | Surface EMG integrated into socks and muscle stimulation signal analysis proposed for sarcopenia monitoring | Prototype sensor development. Healthy volunteers (n = 5) [93] & case–control (sarcopenia vs. non-sarcopenia) design (n = 199) [94] | Enables non-invasive muscle performance tracking and potential integration into digital SO monitoring frameworks | Unclear long-term usability. Lack of validation in elderly population. |
| Integrated Continuous Glucose Monitoring and multimodal wearable data | High predictive accuracy (AUC up to 95%) in detecting muscle insulin resistance and metabolic heterogeneity, highlighting the role of circadian and behavioral patterns in metabolic health. | Small cohort studies, n = 32 [96] n = 36 [97] | Combining continuous biosensor data with lifestyle monitoring may be able to capture early metabolic alterations relevant to SO, such as muscle insulin resistance, supporting precision digital screening and phenotyping of individuals at risk. | Increased cost, lack of defined criteria for muscle insulin resistance and validation in non-diabetic populations. |
| eHealth and digital health interventions | Remote programs based on wearable data and tailored feedback improved sarcopenia | Feasibility two-arm RCT, arms: tailored feedback on sitting, standing and stepping, health coaching and wearables vs. control (n = 60, mean age 74 years; duration 6 months) [78] | Supports delivery of lifestyle modification through remote, personalized interventions | Limited sample size and short follow-up. Findings may vary with adherence. Not yet validated in individuals with SO. |
| Omics Type | Key Findings/Biomarkers | Study Design/Model | Implications for SO | Drawbacks/Limitations | References |
|---|---|---|---|---|---|
| Genomics | 78 single nucleotide polymorphisms associated with sarcopenia markers, 55 overlapping with adiposity; rare variants in PDE3B, MYOZ3, SLC15A3, RNF130, TNK2; RETN variants associated with SO index | UK Biobank, exome and genome-wide association studies | Genetic predictors of susceptibility to SO and shared genomic loci between sarcopenia and obesity | Genomic risk does not capture environmental drivers of SO. | [105,106,107,108,109] |
| Long noncoding RNA | LYPLAL1-AS1 variant associated with SO; co-localized with adiponectin | UK Biobank, exome-wide sequencing | Possible regulatory role in adipocyte differentiation and SO pathogenesis | Requires replication across different cohorts. | [107,108] |
| Transcriptomics | Upregulation of USP54, CHAD, ZDBF2 in aging muscle; pathways include apoptosis, immune response, bone development | Human RNA-sequencing datasets, artificial neural network inference | Insight into molecular pathways contributing to muscle aging and SO | Tissue-specific effects, muscle biopsies are invasive procedures and not practical in routine care. | [110,111] |
| 208 common differentially expressed genes enriched in mitochondrial oxidative phosphorylation; downregulation of SDHB, SDHD ATP5F1A, ATP5F1B | Human integrated transcriptomic analyses | Mitochondrial dysfunction as a shared pathological mechanism linking sarcopenia and obesity | Mitochondrial dysfunction may reflect aging or comorbidities rather than SO specifically. | [114] | |
| Proteomics | PDIA5, TUBB1, CYFIP2, MYH7, NCAM1 involved in muscle and bone pathways | Human proteomic and transcriptomic integration studies | Candidate biomarkers and therapeutic targets linking muscle and bone metabolism | Variability with inflammation, comorbid disease and across platforms limits comparability. | [113] |
| C-C motif chemokine 28, metalloproteinase inhibitor 4, and NT-proBNP associated with concurrent low muscle mass and high fat mass and longitudinal body composition change | Longitudinal cohort, median 13.5-year follow-up | Potential biomarkers connecting SO to heart failure and cardiometabolic complications | Requires replication and further validation in SO. | [115] | |
| Metabolomics and lipidomics | Phosphocreatine, PDE2, and multiple phospholipids identified as markers of muscle health; 12-metabolite risk score mediating SO–heart failure relationship | UK Biobank, 31-phosphorus magnetic resonance spectroscopy, muscle biopsies | Biomarkers linking metabolic dysregulation, muscle decline, and cardiovascular risk in SO | Metabolite concentrations may be influenced by behaviors. Lack of standardization across laboratories and absence of defined reference range for clinical use. | [116,117,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotou, G.; Brage, S. Advancing Precision Diagnosis of Sarcopenic Obesity Through Digital Technologies, Wearables and Omics Data. Life 2025, 15, 1911. https://doi.org/10.3390/life15121911
Panagiotou G, Brage S. Advancing Precision Diagnosis of Sarcopenic Obesity Through Digital Technologies, Wearables and Omics Data. Life. 2025; 15(12):1911. https://doi.org/10.3390/life15121911
Chicago/Turabian StylePanagiotou, Grigorios, and Soren Brage. 2025. "Advancing Precision Diagnosis of Sarcopenic Obesity Through Digital Technologies, Wearables and Omics Data" Life 15, no. 12: 1911. https://doi.org/10.3390/life15121911
APA StylePanagiotou, G., & Brage, S. (2025). Advancing Precision Diagnosis of Sarcopenic Obesity Through Digital Technologies, Wearables and Omics Data. Life, 15(12), 1911. https://doi.org/10.3390/life15121911
