Mitochondrial DNA Deletions and Plasma GDF-15 Protein Levels Are Linked to Hormonal Dysregulation and Multi-Organ Involvement in Female Reproductive Endocrine Disorders
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Cohort
2.2. Molecular Genetic Analysis
2.2.1. Sample Collection and DNA Analysis
2.2.2. Analysis of mtDNA Deletion
2.2.3. Measurement of GDF-15 Plasma Level
2.3. Statistical Analysis
3. Results
3.1. Investigation of Symptoms in Different Organ Systems Associated with Mitochondrial Dysfunction and Clinical Features of Patients with Elevated Plasma GDF-15 Levels
3.2. Distribution of Clinical Symptoms in Different Clinical Subgroups
3.3. Association Between GDF-15 Levels and Hormone Levels
4. Discussion
5. Conclusions
6. Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acyl-CoA | Acyl Coenzyme A |
| ANOVA | Analysis of variance |
| AMH | Anti-Müllerian Hormone |
| ATP | Adenosine Triphosphate |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| DAG | Diacylglycerol |
| DNA | Deoxyribonucleic Acid |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| FSH | Follicle-Stimulating Hormone |
| GDF-15 | Growth Differentiation Factor 15 |
| GI | Gastrointestinal |
| HOMA | Homeostatic Model Assessment |
| IR | Insulin Resistance |
| LH | Luteinizing Hormone |
| mtDNA | Mitochondrial DNA |
| PBS | Phosphate-Buffered Saline |
| PCOS | Polycystic Ovary Syndrome |
| POI | Premature Ovarian Insufficiency |
| ROS | Reactive Oxygen Species |
| S.E.M. | Standard Error of the Mean |
| T2DM | Type 2 diabetes mellitus |
| T3 | Triiodothyronine |
| T4 | Thyroxine |
| TGF-β | Transforming Growth Factor Beta |
| TIA | Transient Ischemic Attack |
| TSH | Thyroid-Stimulating Hormone |
| UV | Ultraviolet |
References
- Adachi, T.; Endo, M.; Ohashi, K. Regret over the delay in childbearing decision negatively associates with life satisfaction among Japanese women and men seeking fertility treatment: A cross-sectional study. BMC Public Health 2020, 20, 886. [Google Scholar] [CrossRef] [PubMed]
- Fahed, M.; Jaoudeh, M.G.A.; Merhi, S.; Mosleh, J.M.B.; Ghadieh, R.; Al Hayek, S.; Fares, J.E.E.H. Evaluation of risk factors for insulin resistance: A cross sectional study among employees at a private university in Lebanon. BMC Endocr. Disord. 2020, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Varhegyi, V.; Modos, A.; Trager, D.; Gerszi, D.; Horvath, E.M.; Sipos, M.; Acs, N.; Molnar, M.J.; Varbiro, S.; Gal, A. GDF-15 and mtDNA Deletions Are Useful Biomarkers of Mitochondrial Dysfunction in Insulin Resistance and PCOS. Int. J. Mol. Sci. 2024, 25, 10916. [Google Scholar] [CrossRef]
- Chen, X.; Wan, Y.; Xie, L. Insulin Resistance in PCOS: Pathophysiological Mechanisms of Menstrual Dysfunction and Evidence-Based Treatment Strategies. Biol. Reprod. 2025, ioaf197. [Google Scholar] [CrossRef]
- Parker, J.; Briden, L.; Gersh, F.L. Recognizing the Role of Insulin Resistance in Polycystic Ovary Syndrome: A Paradigm Shift from a Glucose-Centric Approach to an Insulin-Centric Model. J. Clin. Med. 2025, 14, 4021. [Google Scholar] [CrossRef]
- Song, D.K.; Hong, Y.S.; Sung, Y.A.; Lee, H. Insulin Resistance According to β-Cell Function in Women with Polycystic Ovary Syndrome and Normal Glucose Tolerance. PLoS ONE 2017, 12, e0178120. [Google Scholar] [CrossRef]
- Amisi, C.A. Markers of Insulin Resistance in Polycystic Ovary Syndrome Women: An Update. World J. Diabetes 2022, 13, 129–149. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Bousvarou, M.D.; Kostara, C.E.; Papakonstantinou, E.J.; Salamou, E.; Guzman, E. Insulin Resistance and Cardiovascular Disease. J. Int. Med. Res. 2023, 51, 3000605231164548. [Google Scholar] [CrossRef]
- Andrade, V.H.; Mata, A.M.; Borges, R.S.; Costa-Silva, D.R.; Martins, L.M.; Ferreira, P.M.; Cunha-Nunes, L.C.; Silva, B.B. Current aspects of polycystic ovary syndrome: A literature review. Rev. Assoc. Med. Bras. 2016, 62, 867–871. [Google Scholar] [CrossRef]
- Rahmatnezhad, L.; Moghaddam-Banaem, L.; Behroozi-Lak, T.; Shiva, A.; Rasouli, J. Association of insulin resistance with polycystic ovary syndrome phenotypes and patients’ characteristics: A cross-sectional study in Iran. Reprod. Biol. Endocrinol. 2023, 21, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ren, J.; Wang, F.; Pan, M.; Cui, L.; Li, M.; Qu, F. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic. Biol. Med. 2022, 187, 1–16. [Google Scholar] [CrossRef]
- Jelenik, T.; Roden, M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid. Redox Signal. 2013, 19, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Galgani, J.E.; Fernández-Verdejo, R. Pathophysiological Role of Metabolic Flexibility on Metabolic Health. Obes. Rev. 2021, 22, e13131. [Google Scholar] [CrossRef]
- Pang, B.P.S.; Chan, W.S.; Chan, C.B. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle—Do Myokines Play a Role? Antioxidants 2021, 10, 179. [Google Scholar] [CrossRef]
- Chon, S.J.; Umair, Z.; Yoon, M.S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- Fortuño, C.; Labarta, E. Genetics of primary ovarian insufficiency: A review. J. Assist. Reprod. Genet. 2014, 31, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- França, M.M.; Mendonca, B.B. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J. Endocr. Soc. 2019, 4, bvz037. [Google Scholar] [CrossRef]
- Shelling, A.N.; Ahmed Nasef, N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants 2023, 12, 1601. [Google Scholar] [CrossRef]
- Tucker, E.J.; Baker, M.J.; Hock, D.H.; Warren, J.T.; Jaillard, S.; Bell, K.M.; Sreenivasan, R.; Bakhshalizadeh, S.; A Hanna, C.; Caruana, N.J.; et al. Premature Ovarian Insufficiency in CLPB Deficiency: Transcriptomic, Proteomic and Phenotypic Insights. J. Clin. Endocrinol. Metab. 2022, 107, 3328–3340. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhao, Q.; Li, Y.; Zheng, Z.; Kong, X.; Shu, C.; Liu, Y.; Shi, Y. The role of oxidative stress in ovarian aging: A review. J. Ovarian Res. 2022, 15, 100. [Google Scholar] [CrossRef]
- Montero, R.; Yubero, D.; Villarroya, J.; Henares, D.; Jou, C.; Rodríguez, M.A.; Ramos, F.; Nascimento, A.; Ortez, C.I.; Campistol, J.; et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS ONE 2016, 11, e0148709. [Google Scholar] [CrossRef]
- Davis, R.L.; Liang, C.; Sue, C.M. A Comparison of Current Serum Biomarkers as Diagnostic Indicators of Mitochondrial Diseases. Neurology 2016, 86, 2010–2015. [Google Scholar] [CrossRef]
- Lehtonen, J.M.; Auranen, M.; Darin, N.; Sofou, K.; Bindoff, L.; Hikmat, O.; Uusimaa, J.; Vieira, P.; Tulinius, M.; Lönnqvist, T.; et al. Diagnostic Value of Serum Biomarkers FGF21 and GDF15 Compared to Muscle Sample in Mitochondrial Disease. J. Inherit. Metab. Dis. 2021, 44, 469–480. [Google Scholar] [CrossRef]
- Tűű, L.; Nas, K.; Jakab, A.; Halász, L.; Várbíró, S. Management of Disturbed Carbohydrate and Insulin Metabolism of Reproductive-Aged Women with Bleeding Disorder, Infertility and Recurrent Spontaneous Abortions: Insulin Resistance Task Force of the Hungarian Society for Obstetric and Gynecologic Endocrinology. Magy. Nőorvosok Lapja 2024, 87, 327–331. [Google Scholar]
- Varhaug, K.N.; Nido, G.S.; de Coo, I.; Isohanni, P.; Suomalainen, A.; Tzoulis, C.; Knappskog, P.; Bindoff, L.A. Using urine to diagnose large-scale mtDNA deletions in adult patients. Ann. Clin. Transl. Neurol. 2020, 7, 1318–1326. [Google Scholar] [CrossRef]
- Welsh, P.; Kimenai, D.M.; Marioni, R.E.; Hayward, C.; Campbell, A.; Porteous, D.; Mills, N.L.; O’Rahilly, S.; Sattar, N. Reference ranges for GDF-15, and risk factors associated with GDF-15, in a large general population cohort. Clin. Chem. Lab. Med. 2022, 60, 1820–1829. [Google Scholar] [CrossRef]
- Finsterer, J.; Zarrouk-Mahjoub, S. Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders. Neuropsychiatr. Dis. Treat. 2017, 13, 2569–25799. [Google Scholar] [CrossRef]
- Shah, V.O.; Scariano, J.; Waters, D.; Qualls, C.; Morgan, M.; Pickett, G.; Gasparovic, C.; Dokladny, K.; Moseley, P.; Raj, D.S. Mitochondrial DNA Deletion and Sarcopenia. Genet. Med. 2009, 11, 147–152. [Google Scholar] [CrossRef]
- Huo, Y.; Ji, S.; Yang, H.; Wu, W.; Yu, L.; Ren, Y.; Wang, F. Differential expression of microRNA in the serum of patients with polycystic ovary syndrome with insulin resistance. Ann. Transl. Med. 2022, 10, 762. [Google Scholar] [CrossRef]
- Prathiba, S.; Girijasivam, S.P.; Ravi Shankar, N. Study of influence of body adiposity on insulin resistance in PCOS. J. Evol. Med. Dent. Sci. 2016, 5, 6906–6908. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Hu, K.; Tang, Y.; Zeng, X.; Liu, J.; Xu, J. Effects of metformin treatment on serum levels of C-reactive protein and interleukin-6 in women with polycystic ovary syndrome: A meta-analysis: A PRISMA-compliant article. Medicine 2017, 96, e8183. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, Q.; Long, S.L.; Zhong, Q.; Mo, Z. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. DNA Cell Biol. 2020, 39, 1401–1409. [Google Scholar] [CrossRef]
- Xu, W.D.; Huang, Q.; Yang, C.; Li, R.; Huang, A.F. GDF-15: A Potential Biomarker and Therapeutic Target in Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 926373. [Google Scholar] [CrossRef]
- Lorenz, G.; Ribeiro, A.; von Rauchhaupt, E.; Würf, V.; Schmaderer, C.; Cohen, C.D.; Vohra, T.; Anders, H.J.; Lindenmeyer, M.; Lech, M. GDF15 Suppresses Lymphoproliferation and Humoral Autoimmunity in a Murine Model of Systemic Lupus Erythematosus. J. Innate Immun. 2022, 14, 673–689. [Google Scholar] [CrossRef]
- Esalatmanesh, K.; Fayyazi, H.; Esalatmanesh, R.; Khabbazi, A. The association between serum levels of growth differentiation factor-15 and rheumatoid arthritis activity. Int. J. Clin. Pract. 2020, 74, e13564. [Google Scholar] [CrossRef]
- Reyes, J.; Yap, G.S. Emerging Roles of Growth Differentiation Factor 15 in Immunoregulation and Pathogenesis. J. Immunol. 2023, 210, 5–11. [Google Scholar] [CrossRef]
- Barroso, P.N.; Vecchio, S.D.; Xavier, Y.R.; Sesselmann, M.; Araújo, P.A.; Pinotti, M. Improvement of Hand Function in Children with Cerebral Palsy via an Orthosis That Provides Wrist Extension and Thumb Abduction. Clin. Biomech. 2011, 26, 937–943. [Google Scholar] [CrossRef]
- Hartung, B.; Sampson, S.; Leucht, S. Perphenazine for Schizophrenia. Cochrane Database Syst. Rev. 2015, 2015, CD003443. [Google Scholar] [CrossRef]
- Scaiano, M.; Middleton, G.; Arbuckle, L.; Kolhatkar, V.; Peyton, L.; Dowling, M.; Gipson, D.S.; El Emam, K. A Unified Framework for Evaluating the Risk of Re-Identification of Text De-Identification Tools. J. Biomed. Inform. 2016, 63, 174–183. [Google Scholar] [CrossRef]
- Leng, X.Y.; Liu, C.N.; Wang, S.C.; Peng, H.D.; Wang, D.G.; Pan, H.F. Comparison of the Efficacy of Nonsteroidal Anti-Inflammatory Drugs and Opioids in the Treatment of Acute Renal Colic: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 12, 728908. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Chen, Y.; Zhang, S.; Ying, H.; Song, Z.; Lu, Y.; Li, X.; Xiong, X.; Jiang, J. Elevated Serum Growth Differentiation Factor 15 Levels in Hyperthyroid Patients. Front. Endocrinol. 2019, 9, 793. [Google Scholar] [CrossRef]
- Matta Reddy, A.; Iqbal, M.; Chopra, H.; Urmi, S.; Junapudi, S.; Bibi, S.; Kumar Gupta, S.; Nirmala Pangi, V.; Singh, I.; Abdel-Daim, M.M. Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI J. 2022, 21, 967–990. [Google Scholar] [CrossRef]
- Sung, C.C.; Liao, M.T.; Lu, K.C.; Wu, C.C. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol. 2012, 2012, 634195. [Google Scholar] [CrossRef]
- Guo, J.; Duckles, S.P.; Weiss, J.H.; Li, X.; Krause, D.N. 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic. Biol. Med. 2012, 52, 2151–2160. [Google Scholar] [CrossRef]
- Ribas, V.; Drew, B.G.; Zhou, Z.; Phun, J.; Kalajian, N.Y.; Soleymani, T.; Daraei, P.; Widjaja, K.; Wanagat, J.; Vallim, T.Q.d.A.; et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 2016, 8, 334ra54. [Google Scholar] [CrossRef]
- Kobayashi, H.; Matsubara, S.; Yoshimoto, C.; Shigetomi, H.; Imanaka, S. The role of mitochondrial dynamics in the pathophysiology of endometriosis. J. Obstet. Gynaecol. Res. 2023, 49, 2783–2791. [Google Scholar] [CrossRef]
- Ho, J.E.; Hwang, S.J.; Wollert, K.C.; Larson, M.G.; Cheng, S.; Kempf, T.; Vasan, R.S.; Januzzi, J.L.; Wang, T.J.; Fox, C.S. Biomarkers of cardiovascular stress and incident chronic kidney disease. Clin. Chem. 2013, 59, 1613–1620. [Google Scholar] [CrossRef]
- Semba, R.D.; Gonzalez-Freire, M.; Tanaka, T.; Biancotto, A.; Zhang, P.; Shardell, M.; Moaddel, R.; CHI Consortium; Ferrucci, L. Elevated Plasma Growth and Differentiation Factor 15 Is Associated With Slower Gait Speed and Lower Physical Performance in Healthy Community-Dwelling Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 175–180. [Google Scholar] [CrossRef]
- Ueland, T.; Gullestad, L.; Kou, L.; Young, J.B.; Pfeffer, M.A.; van Veldhuisen, D.J.; Swedberg, K.; Mcmurray, J.J.V.; Desai, A.S.; Anand, I.S.; et al. Growth differentiation factor 15 predicts poor prognosis in patients with heart failure and reduced ejection fraction and anemia: Results from RED-HF. Clin. Res. Cardiol. 2022, 111, 440–450. [Google Scholar] [CrossRef]
- Lu, Y.C.; Liu, S.L.; Zhang, Y.S.; Liang, F.; Zhu, X.Y.; Xiao, Y.; Wang, J.; Ding, C.; Banerjee, S.; Yin, J.Y.; et al. Association between growth differentiation factor 15 levels and gestational diabetes mellitus: A combined analysis. Front. Endocrinol. 2023, 14, 1084896. [Google Scholar] [CrossRef]
- Jing, J.; Ding, N.; Wang, D.; Ge, X.; Ma, J.; Ma, R.; Huang, X.; Jueraitetibaike, K.; Liang, K.; Wang, S.; et al. Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis. 2020, 11, 626. [Google Scholar] [CrossRef]
- Apaiajai, N.; Chunchai, T.; Jaiwongkam, T.; Kerdphoo, S.; Chattipakorn, S.C.; Chattipakorn, N. Testosterone Deprivation Aggravates Left-Ventricular Dysfunction in Male Obese Insulin-Resistant Rats via Impairing Cardiac Mitochondrial Function and Dynamics Proteins. Gerontology 2018, 64, 333–343. [Google Scholar] [CrossRef]
- Tian, X.; Lou, S.; Shi, R. From mitochondria to sarcopenia: Role of 17β-estradiol and testosterone. Front. Endocrinol. 2023, 14, 1156583. [Google Scholar] [CrossRef]
- Somasundaram, I.; Jain, S.M.; Blot-Chabaud, M.; Pathak, S.; Banerjee, A.; Rawat, S.; Sharma, N.R.; Duttaroy, A.K. Mitochondrial dysfunction and its association with age-related disorders. Front. Physiol. 2024, 15, 1384966. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Xiang, W. The impact of mitochondrial dysfunction on ovarian aging. J. Transl. Med. 2025, 23, 211. [Google Scholar] [CrossRef]
- Chiang, J.L.; Shukla, P.; Pagidas, K.; Ahmed, N.S.; Karri, S.; Gunn, D.D.; Hurd, W.W.; Singh, K.K. Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Res. Rev. 2020, 63, 101168. [Google Scholar] [CrossRef]
- Erel, C.T.; Ozcivit, I.B. Anti-Müllerian hormone and ovarian aging. Gynecol. Endocrinol. 2021, 37, 867–868. [Google Scholar] [CrossRef]
- Tiosano, D.; Mears, J.A.; Buchner, D.A. Mitochondrial Dysfunction in Primary Ovarian Insufficiency. Endocrinology 2019, 160, 2353–2366. [Google Scholar] [CrossRef]
- Gunning, M.N.; Meun, C.; van Rijn, B.B.; Daan, N.M.P.; van Lennep, J.E.R.; Appelman, Y.; Boersma, E.; Hofstra, L.; Fauser, C.G.K.M.; Rueda-Ochoa, O.L.; et al. The cardiovascular risk profile of middle age women previously diagnosed with premature ovarian insufficiency: A case-control study. PLoS ONE 2020, 15, e0229576. [Google Scholar] [CrossRef]




| Clinical Symptoms | Whole Cohort | mtDNA del. Neg | mtDNA del. Pos | Fisher Exact Test | Chi2 | Normal GDF-15 | Elevated GDF-15 | Fisher Exact Test | Chi2 |
|---|---|---|---|---|---|---|---|---|---|
| Exercise intolerance | 40.0% (32/81) | 29.4% (9/31) | 42.1% (21/50) | 0.34 | 1.38 | 39.7% (27/69) | 41.70% (5/12) | 1 | 0.03 |
| Visual impairment | 8.2% (7/81) | 8.8% (3/31) | 7.0% (4/50) | 0.71 | 0.08 | 8.2% (6/69) | 8.30% (1/12) | 1 | 0.01 |
| Hearing impairment | 3.5% (3/81) | 0.0% (0/31) | 5.3% (3/50) | 0.28 | NA | 4.1% (3/69) | 0.00% (0/12) | 1 | NA |
| GI symptoms | 43.5% (35/81) | 32.4% (10/31) | 45.6% (23/50) | 0.25 | 1.49 | 43.8% (30/69) | 41.70% (5/12) | 1 | 0.01 |
| Cardiac involvement | 14.1% (11/81) | 17.6% (5/31) | 10.5% (5/50) | 0.49 | 0.66 | 16.4% (11/69) | 0.00% (0/12) | 0.21 | NA |
| TIA/Stroke | 0.0% (0/81) | 0.0% (0/31) | 0.0% (0/50) | 1 | NA | 0.0% (0/69) | 0.00% (0/12) | 1 | NA |
| Psychomotor delay | 9.4% (8/81) | 2.9% (1/31) | 12.3% (6/50) | 0.24 | 1.86 | 9.6% (7/69) | 8.30% (1/12) | 1 | 0.04 |
| Neurological symptoms | 7.1% (6/81) | 5.9% (2/31) | 7.0% (4/50) | 1 | 0.05 | 8.2% (6/69) | 0.00% (0/12) | 0.59 | NA |
| Psychiatric involvement | 35.3% (29/81) | 26.5% (8/31) | 36.8% (18/50) | 0.46 | 0.91 | 37.0% (26/69) | 25.00% (3/12) | 0.53 | 0.72 |
| Autoimmune involvement | 25.9% (21/81) | 17.6% (5/31) | 28.1% (14/50) | 0.29 | 1.50 | 24.7% (17/69) | 33.30% (4/12) | 0.5 | 0.40 |
| Heat or cold intolerance | 56.5% (46/81) | 50.0% (16/31) | 54.4% (27/50) | 1 | 0.12 | 56.2% (39/69) | 66.6% (8/12) | 0.75 | 0.45 |
| Other endocrine symptoms | 45.7% (38/81) | 29% (9/31) | 57.1% (29/50) | 0.013 | 6.45 | 46.4% (32/69) | 41.7% (5/12) | 1 | 0.09 |
| Clinical Symptoms | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Exercise intolerance (n = 5) | + | − | + | + | − | − | − | − | − | + | + | − |
| Visual impairment (n = 1) | − | + | − | − | − | − | − | − | − | − | − | − |
| Hearing impairment (n = 0) | − | − | − | − | − | − | − | − | − | − | − | − |
| GI symptoms (n = 5) | + | − | − | + | + | + | + | − | − | − | − | − |
| Cardiac involvement (n = 1) | − | − | − | − | − | − | − | + | − | − | − | − |
| TIA/Stroke (n = 0) | − | − | − | − | − | − | − | − | − | − | − | − |
| Psychomotor delay (n = 1) | + | − | − | − | − | − | − | − | − | − | − | − |
| Neurological symptoms (n = 0) | − | − | − | − | − | − | − | − | − | − | − | − |
| Psychiatric involvement (n = 3) | + | − | − | + | + | − | − | − | − | − | − | − |
| Autoimmune involvement (n = 4) | + | − | − | + | − | + | + | − | − | − | − | − |
| Heat or cold intolerance (n = 8) | + | + | + | + | + | + | − | − | − | + | − | + |
| Other endocrine symptoms (n = 5) | − | − | − | + | + | + | + | − | − | − | + | − |
| Clinical Symptoms | IR | IR-PCOS | Fisher Exact Test | Chi2 | IR-POI | Fisher Exact Test | Chi2 |
|---|---|---|---|---|---|---|---|
| IR vs. IR-PCOS | IR vs. IR-POI | ||||||
| Exercise intolerance | 40.8% (20/49) | 42.1% (8/19) | 1 | 0.01 | 30.8% (4/13) | 0.44 | 0.75 |
| Visual impairment | 8.2% (4/49) | 10.5% (2/19) | 0.67 | 0.10 | 0.0% (0/13) | NA | 0.57 |
| Hearing impairment | 4.1% (2/49) | 0.0% (0/19) | 1 | NA | 7.7% (1/13) | 0.29 | 0.51 |
| GI symptoms | 36.7% (18/49) | 52.6% (10/19) | 0.28 | 1.43 | 38.5% (5/13) | 0.01 | 1 |
| Cardiac involvement | 10.2% (5/49) | 26.3% (5/19) | 0.13 | 2.83 | 0.0% (0/13) | NA | 0.57 |
| TIA/Stroke | 0.0% (0/49) | 0.0% (0/19) | 1 | NA | 0.0% (0/13) | NA | 1 |
| Psychomotor delay | 10.2% (5/49) | 15.8% (3/19) | 0.68 | 0.41 | 0.0% (0/13) | NA | 0.57 |
| Neurological symptoms | 6.1% (3/49) | 10.5% (2/19) | 0.61 | 1.03 | 0.0% (0/13) | NA | 1 |
| Psychiatric involvement | 38.8% (19/49) | 26.3% (5/19) | 0.41 | 0.93 | 38.5% (5/13) | 0.00 | 1 |
| Autoimmune involvement | 26.5% (13/49) | 26.3% (5/19) | 1 | 0.01 | 15.4% (2/13) | 0.70 | 0.49 |
| Heat or cold intolerance | 57.1% (28/49) | 52.6% (10/19) | 0.79 | 0.11 | 53.8% (7/13) | 0.05 | 1 |
| Other endocrine symptoms | 46.9% (23/49) | 36.8% (7/19) | 0.23 | 0.81 | 36.8% (7/13) | 0.66 | 0.79 |
| Predictor | Subgroup | b (Coeff.) | SE | t | p-Value | Model p | Model R2 |
|---|---|---|---|---|---|---|---|
| T4 | Total (n = 58) | 88.39 | 40.832 | 2.165 | 0.035 | 0.043 | 0.139 |
| T4 | mtDNA del. neg. (n = 22) | 99.565 | 55.612 | 1.79 | 0.09 | 0.015 | 0.434 |
| T4 | mtDNA del. pos. (n = 36) | 114.886 | 55.877 | 2.056 | 0.048 | 0.196 | 0.056 |
| Vitamin D3 | mtDNA del. neg. (n = 22) | −10.187 | 10.488 | −0.971 | 0.344 | 0.035 | 0.402 |
| Testosterone | mtDNA del. pos. (n = 20) | 3567.303 | 1281.813 | 2.783 | 0.013 | 0.016 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varhegyi, V.; Banfi, B.; Trager, D.; Gerszi, D.; Horvath, E.M.; Sipos, M.; Acs, N.; Molnar, M.J.; Varbiro, S.; Gal, A. Mitochondrial DNA Deletions and Plasma GDF-15 Protein Levels Are Linked to Hormonal Dysregulation and Multi-Organ Involvement in Female Reproductive Endocrine Disorders. Life 2025, 15, 1744. https://doi.org/10.3390/life15111744
Varhegyi V, Banfi B, Trager D, Gerszi D, Horvath EM, Sipos M, Acs N, Molnar MJ, Varbiro S, Gal A. Mitochondrial DNA Deletions and Plasma GDF-15 Protein Levels Are Linked to Hormonal Dysregulation and Multi-Organ Involvement in Female Reproductive Endocrine Disorders. Life. 2025; 15(11):1744. https://doi.org/10.3390/life15111744
Chicago/Turabian StyleVarhegyi, Vera, Barnabas Banfi, Domonkos Trager, Dora Gerszi, Eszter Maria Horvath, Miklos Sipos, Nandor Acs, Maria Judit Molnar, Szabolcs Varbiro, and Aniko Gal. 2025. "Mitochondrial DNA Deletions and Plasma GDF-15 Protein Levels Are Linked to Hormonal Dysregulation and Multi-Organ Involvement in Female Reproductive Endocrine Disorders" Life 15, no. 11: 1744. https://doi.org/10.3390/life15111744
APA StyleVarhegyi, V., Banfi, B., Trager, D., Gerszi, D., Horvath, E. M., Sipos, M., Acs, N., Molnar, M. J., Varbiro, S., & Gal, A. (2025). Mitochondrial DNA Deletions and Plasma GDF-15 Protein Levels Are Linked to Hormonal Dysregulation and Multi-Organ Involvement in Female Reproductive Endocrine Disorders. Life, 15(11), 1744. https://doi.org/10.3390/life15111744

