Complex Characterization of Cerebral Vasoreactivity in Internal Carotid Artery Stenotic Patients with Transcranial Doppler Sonography
Abstract
1. Introduction
1.1. Reactivity of Cerebrovascular System to Changes in Blood CO2 Concentration
1.2. Pressure–Flow Reactivity
1.2.1. Common Carotid Artery Compression (CCC) Test
1.2.2. Valsalva Maneuver (VM)
2. Materials and Methods
2.1. Transcranial Doppler (TCD) Study Protocol
- HV/BH test
- CCC test
- VM
2.1.1. HV/BH Test
2.1.2. CCC Test
2.1.3. VM
2.2. Data Processing
2.3. Variables
2.3.1. HV and BH Tests
2.3.2. Cerebral Arterial Resistance (CAR) Values During HV/BH Test
2.3.3. Cerebral Arterial Resistance Area Under the Curve (CAR-AUC) Calculations During HV/BH
2.3.4. CCC Test
2.3.5. VM
2.4. Statistical Analysis
3. Results
3.1. HV and BH Tests
3.2. CCC Test
3.3. VM Test
- (1)
- CVAR had a significantly lower value on the ICAop side. (Wilcoxon ranked test p = 0.002 and p = 0.014 according to the subgroup 2 analysis).
- (2)
- OS time was significantly longer on the ICAop side (both according to Wilcoxon ranked test with p = 0.015; p = 0.038 according to the subgroup-2 analysis) and the Wald test of the Cox proportional hazards model with p < 0.0001.
- (3)
- Evaluating the autonomic values, we found the following:
- 15 patients had a VHRR value less than 1.35;
- 8 patients had a longer PRT than 4 sec;
- 23 patients had an SI underneath 0.
4. Discussion
- CO2 changes induced by hyperventilation and breath-holding elicited similar responses in MBFV on both carotid/MCA sides (i.e., ICAop and ICAnonop). The only significant differences were found between the two sides in the time to reach the minimum MBFV of the ipsilateral MCA induced by hyperventilation and ΔMBFVBH in subgroup 2.
- CCC elicited different reactive hyperemic blood flow velocity responses in the two carotid/MCA vascular regions. Two indices of response to CCC were different: a) the THRR index calculated from MCA peak systolic blood flow velocity values and b) the cumulative change in cerebral arterial resistance (CAR-AUC) after cessation of common carotid artery compression. The two mentioned variables were significantly lower on the planned operated side (ICAop) compared to the other side (ICAnonop).
- Valsalva Maneuver induced different flow changes in the two carotid/MCA sides. Calculated resistance index, CVAR, and the time to OS were significantly reduced on the side to be operated on (ICAop) compared to the other side (ICAnonop).
- Changes in systemic arterial blood pressure and heart rate in response to VM indicated that most patients also had severe cardiovascular autonomic dysfunction.
4.1. Clinical Importance of Our Findings
4.1.1. CO2 Reactivity (Hyperventilation/Breath-Holding)
4.1.2. Pressure–Flow Cerebral Vasoreactivity
CCC Test
VM Test
4.2. Why Is It Necessary to Use Several Tests and a More Complex TCD Protocol?
4.3. Study Limitations
4.4. Strength of the Study
4.5. Translational Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABP | Arterial Blood Pressure |
| AUC | Area Under the Curve |
| BFV | Blood Flow Velocity |
| BH | Breath-Holding Test |
| BHI | Breath-Holding Index |
| BL | Baseline |
| CAR | Cerebral Arterial Resistance |
| CCA | Common Carotid Artery |
| CAR-AUC | Cerebral Arterial Resistance—Area Under the Curve |
| CCC | Common Carotid Artery Compression Test |
| CEA | Carotid Endarterectomy |
| CPVR | Centro-Peripheral Valsalva Ratio |
| CPOI | Centro-Peripheral Overshoot Index |
| CVAR | Cerebrovascular Valsalva Ratio |
| CVR | Cerebral Vasoreactivity |
| ECG | Electrocardiogram |
| ESVS | European Society for Vascular Surgery |
| HV | Hyperventilation |
| HVI | Hyperventilation Index |
| ICA | Internal Carotid Artery |
| ICAop | Side to be operated |
| ICAnonop | Side no to be operated |
| ICAS | Internal Carotid Artery Stenosis |
| MABP | Mean Arterial Blood Pressure |
| MBFV | Mean Blood Flow Velocity |
| MCA | Middle Cerebral Artery |
| NASCET | North American Symptomatic Carotid Endarterectomy Trial |
| PRT | Pressure Recovery Time |
| PSV | Peak Systolic Velocity |
| RTB | Return to Baseline |
| SI | Sympathetic Index |
| TCD | Transcranial Doppler |
| THR | Transient Hyperemic Response |
| THRR | Transient Hyperemic Response Ratio |
| VM | Valsalva Maneuver |
| VHRR | Valsalva Heart Rate Ratio |
References
- Claassen, J.A.H.R.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flowin humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.; Szarka, N.; Farkas, E.; Ezer, E.; Czeiter, E.; Amrein, K.; Ungvari, Z.; Hartings, J.A.; Buki, A.; Koller, A. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H1118–H1131. [Google Scholar] [CrossRef]
- Nemeth, Z.; Eros, K.; Munkacsy, G.; Koller, A. Differential Gene and Protein Expressions Responsible for Vasomotor Signaling Provide Mechanistic Bases for the Opposite Flow-Induced Responses of Pre- and Post-Circle of Willis Arteries. Life 2025, 15, 856. [Google Scholar] [CrossRef]
- Toth, P.; Rozsa, B.; Springo, Z.; Doczi, T.; Koller, A. Isolated human and rat cerebral arteries constrict to increases in flow: Role of 20-HETE and TP receptors. J. Cereb. Blood Flow Metab. 2011, 31, 2096–2105. [Google Scholar] [CrossRef]
- Aaslid, R.; Markwalder, T.-M. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef]
- Aaslid, R.; Lindegaard, K.-F.; Sorteberg, W.; Nornes, H. Cerebral Autoregulation Dynamics in Humans. Stroke 1989, 20, 45–52. [Google Scholar] [CrossRef]
- Markus, H.S.; Harrison, M.J.G. Estimation of Cerebrovascular Reactivity Using Transcranial Doppler, Including the Use of Breath-Holding as the Vasodilatory Stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef]
- Zavoreo, I.; Demarin, V. Breath holding index in the evaluation of cerebral vasoreactivity. Acta Clin. Croat. 2004, 43, 15–19. [Google Scholar]
- Giller, C.A. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir. 1991, 108, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Cavill, G.; Simpson, E.J.; Mahajan, R.P. Factors affecting assessment of cerebral autoregulation using the transient hyperaemic response test. Br. J. Anaesth. 1998, 81, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Smielewski, P.; Czosnyka, M.; Kirkpatrick, P.; McEroy, H.; Rutkowska, H.; Pickard, J.D. Assessment of cerebral autoregulation using carotid artery compression. Stroke 1996, 27, 2197–2203. [Google Scholar] [CrossRef]
- Tiecks, F.P.; Lam, A.M.; Matta, B.F.; Strebel, S.; Douville, C.; Newell, D.W. Effects of the Valsalva Maneuver on Cerebral Circulation in Healthy Adults: A Transcranial Doppler Study. Stroke 1995, 26, 1386–1392. [Google Scholar] [CrossRef]
- Flaherty, M.L.; Kissela, B.; Khoury, J.C.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Ferioli, S.; Adeoye, O.; Broderick, J.P.; et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology 2012, 40, 36–41. [Google Scholar] [CrossRef]
- Markus, H.; Cullinane, M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001, 124, 457–467. [Google Scholar] [CrossRef]
- Naylor, R.; Rantner, B.; Ancetti, S.; de Borst, G.J.; De Carlo, M.; Halliday, A.; Kakkos, S.K.; Markus, H.S.; McCabe, D.J.H.; Sillesen, H.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on the Management of Atherosclerotic Carotid and Vertebral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2023, 65, 7–111. [Google Scholar] [CrossRef]
- Xiong, L.; Leung, H.W.; Chen, X.Y.; Han, J.H.; Leung, W.H.; Soo, O.Y.; Lau, Y.L.; Wong, K.S. Autonomic dysfunction in ischemic stroke with carotid stenosis. Acta Neurol. Scand. 2012, 126, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.R.; Sandroni, P.; Low, P.A. Blood pressure recovery from Valsalva maneuver in patients with autonomic failure. Neurology 2005, 65, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.G.; Dawson, S.L.; Eames, P.J.; Panerai, R.B.; Potter, J.F. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke 2003, 34, 705–712. [Google Scholar] [CrossRef]
- King, A.; Serena, J.; Bornstein, N.M.; Markus, H.S. Does impaired cerebrovascular reactivity predict stroke risk in asymptomatic carotid stenosis?: A prospective substudy of the asymptomatic carotid emboli study. Stroke 2011, 42, 1550–1555. [Google Scholar] [CrossRef]
- Lengyel, B.; Magyar-Stang, R.; Pál, H.; Debreczeni, R.; Sándor, Á.D.; Székely, A.; Gyürki, D.; Csippa, B.; István, L.; Kovács, I.; et al. Non-Invasive Tools in Perioperative Stroke Risk Assessment for Asymptomatic Carotid Artery Stenosis with a Focus on the Circle of Willis. J. Clin. Med. 2024, 13, 2487. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Schwarzer, G.; Briel, M.; Altamura, C.; Palazzo, P.; King, A.; Bornstein, N.M.; Petersen, N.; Motschall, E.; Hetzel, A.; et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology 2014, 83, 1424–1431. [Google Scholar] [CrossRef]
- Reinhard, M.; Roth, M.; Müller, T.; Guschlbauer, B.; Timmer, J.; Czosnyka, M.; Hetzel, A. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation. Stroke 2004, 35, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Kleiser, B.; Widder, B. Course of Carotid Artery Occlusions with impaired cerebrovascular reactivity. Stroke 1992, 23, 171–174. [Google Scholar] [CrossRef]
- Visser, G.H.; Wieneke, G.H.; Van Huffelen, A.C.; Eikelboom, B.C. The use of preoperative transcranial Doppler variables to predict which patients do not need a shunt during carotid endarterectomy. Eur. J. Vasc. Endovasc. Surg. 2000, 19, 226–232. [Google Scholar] [CrossRef]
- Magyar-Stang, R.; István, L.; Pál, H.; Csányi, B.; Gaál, A.; Mihály, Z.; Czinege, Z.; Sótonyi, P.; Tamás, H.; Koller, A.; et al. Impaired cerebrovascular reactivity correlates with reduced retinal vessel density in patients with carotid artery stenosis: Cross-sectional, single center study. PLoS ONE 2023, 18, e0291521. [Google Scholar] [CrossRef]
- Magyar-Stang, R.; Pál, H.; Csányi, B.; Gaál, A.; Mihály, Z.; Czinege, Z.; Csipo, T.; Ungvari, Z.; Sótonyi, P.; Varga, A.; et al. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. GeroScience 2023, 45, 3333–3357. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Chazen, J.L.; Hartman, M.; Delgado, D.; Anumula, N.; Shao, H.; Mazumdar, M.; Segal, A.Z.; Kamel, H.; Leifer, D.; et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: A systematic review and meta-analysis. Stroke 2012, 43, 2884–2891. [Google Scholar] [CrossRef] [PubMed]
- Reivich, M. Arterial Pco2 and Cerebral Hemodynamics. Am. J. Physiol. 1964, 206, 25–35. [Google Scholar] [CrossRef]
- Hoiland, R.L.; Fisher, J.A.; Ainslie, P.N. Regulation of the cerebral circulation by arterial carbon dioxide. Compr. Physiol. 2019, 9, 1101–1154. [Google Scholar] [CrossRef]
- Raichle, M.E.; Plum, F. Hyperventilation and cerebra blood flow. Stroke 1972, 3, 566–575. [Google Scholar] [CrossRef]
- Brian, J.E.J. Carbon dioxide and the cerebral circulation. Anesthesiology 1998, 88, 1365–1386. [Google Scholar] [CrossRef]
- Valdueza, J.M.; Balzer, J.O.; Villringer, A.; Vogl, T.J.; Kutter, R.; Einhäupl, K.M. Changes in Blood Flow Velocity and Diameter of the Middle Cerebral Artery during Hyperventilation: Assessment with MR and Transcranial Doppler Sonography. AJNR Am. J. Neuroradiol. 1997, 18, 1929–1934. [Google Scholar]
- Raichle, M.E.; Posner, J.B.; Plum, F. Cerebral Blood Flow During. Arch. Neurol. 1970, 23, 394–403. [Google Scholar] [CrossRef]
- Settakis, G.; Páll, D.; Molnár, C.; Katona, E.; Bereczki, D.; Fülesdi, B. Hyperventilation-induced cerebrovascular reactivity among hypertensive and healthy adolescents. Kidney Blood Press. Res. 2006, 29, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Bogossian, E.G.; Peluso, L.; Creteur, J.; Taccone, F.S. Hyperventilation in Adult TBI Patients: How to Approach It? Front. Neurol. 2021, 11, 580859. [Google Scholar] [CrossRef]
- Müller, M.; Voges, M.; Piepgras, U.; Schimrigk, K. Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding. A comparison with acetazolamide as vasodilatory stimulus. Stroke 1995, 26, 96–100. [Google Scholar] [CrossRef]
- Prakash, K.; Chandran, D.S.; Khadgawat, R.; Jaryal, A.K.; Deepak, K.K. Correction for blood pressure improves correlation between cerebrovascular reactivity assessed by breath holding and 6% CO2 breathing. J. Stroke Cerebrovasc. Dis. 2014, 23, 630–635. [Google Scholar] [CrossRef]
- Jung, K.O.; Lee, S.J.; Lee, T.K. A Breath-Holding Index Applied to the Internal Carotid Artery Siphon in Transcranial Doppler Studies. J. Neuroimaging 2020, 30, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Smielewski, P.; Czosnyka, M.; Iyer, V.; Piechnik, S.; Whitehouse, H.; Pickard, J. Computerised transient hyperaemic response test--a method for the assessment of cerebral autoregulation. Ultrasound Med. Biol. 1995, 21, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, M.; Pickard, J.; Whitehouse, H.; Piechnik, S. The hyperaemic response to a transient reduction in cerebral perfusion pressure—A modelling study. Acta Neurochir. 1992, 115, 90–97. [Google Scholar] [CrossRef]
- Anzola, G.P.; Limoni, P.; Cavrini, G. Predictors of carotid clamping intolerance during endarterectomy that would be wise to apply to stenting procedures. Cerebrovasc. Dis. 2008, 26, 494–501. [Google Scholar] [CrossRef]
- Pstras, L.; Thomaseth, K.; Waniewski, J.; Balzani, I.; Bellavere, F. The Valsalva manoeuvre: Physiology and clinical examples. Acta Physiol. 2016, 217, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.M.; Santos, R.; Freitas, J.; Panerai, R.B.; Azevedo, E. Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: Comparison between healthy and autonomic dysfunction subjects. J. Appl. Physiol. 2014, 117, 205–213. [Google Scholar] [CrossRef]
- Novak, P. Assessment of sympathetic index from the Valsalva maneuver. Neurology 2011, 76, 2010–2016. [Google Scholar] [CrossRef]
- Švigelj, V.; Šinkovec, M.; Avbelj, V.; Trobec, R.; Gaspar, L.; Petrovič, D.; Kruzliak, P. Cardiovagal and adrenergic function tests in unilateral carotid artery stenosis patients—A Valsalva manoeuvre tool to show an autonomic dysfunction? Wien. Klin. Wochenschr. 2016, 128, 504–512. [Google Scholar] [CrossRef]
- Wallasch, T.M.; Kropp, P. Cerebrovascular response to valsalva maneuver: Methodology, normal values, and retest reliability. J. Clin. Ultrasound 2012, 40, 540–546. [Google Scholar] [CrossRef]
- Sharpey-Schafer, E.P. Effects of Valsalva’s Maneuvre on the normal and failing circulation. Br. Med. J. 1955, 1, 693–695. [Google Scholar] [CrossRef]
- Sharpey-Schafer, E.P.; Taylor, P.J. Absent circulatory reflexes in diabetic neuritis. Lancet 1960, 275, 559–562. [Google Scholar] [CrossRef]
- Zöllei, É.; Paprika, D.; Csillik, A.; Rudas, L. Valsalva maneuver, Müller maneuver: Hemodynamic and reflex mechanisms, relevances. Orvosi Hetil. 2007, 148, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.J.; Taylor, D.W.; Eliasziw, M.; Fox, A.J.; Ferguson, G.G.; Haynes, R.B.; Rankin, R.N.; Clagett, G.P.; Hachinski, V.C.; Sackett, D.L.; et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med. 1998, 339, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.J.M. Original contributions north american symptomatic carotid endarterectomy trial: Methods, patient characteristics, and progress. Stroke 1991, 22, 711–720. [Google Scholar]
- Hoksbergen, A.W.J.; Legemate, D.A.; Ubbink, D.T.; De Vos, H.J.; Jacobs, M.J.H.M. Influence of the collateral function of the circle of Willis on hemispherical perfusion during carotid occlusion as assessed by transcranial colour-coded duplex ultrasonography. Eur. J. Vasc. Endovasc. Surg. 1999, 17, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Hoksbergen, A.W.J.; Legemate, D.A.; Ubbink, D.T.; Jacobs, M.J.H.M. Collateral variations in circle of willis in atherosclerotic population assessed by means of transcranial color-coded duplex ultrasonography. Stroke 2000, 31, 1656–1660. [Google Scholar] [CrossRef]
- Kuo, T.B.J.; Chern, C.M.; Yang, C.C.H.; Hsu, H.Y.; Wong, W.J.; Sheng, W.Y.; Hu, H.H. Mechanisms underlying phase lag between systemic arterial blood pressure and cerebral blood flow velocity. Cerebrovasc. Dis. 2003, 16, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.L.; Panerai, R.B.; Potter, J.F. Critical closing pressure explains cerebral hemodynamics during the valsalva maneuver. J. Appl. Physiol. 1999, 86, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Wallasch, T.M.; Beckmann, P.; Kropp, P. Cerebrovascular reactivity during the valsalva maneuver in migraine, tension-type headache and medication overuse headache. Funct. Neurol. 2011, 26, 223–227. [Google Scholar]
- Novak, P. Quantitative autonomic testing. J. Vis. Exp. 2011, 2502. [Google Scholar] [CrossRef]
- Mense, L.; Reimann, M.; Rüdiger, H.; Gahn, G.; Reichmann, H.; Hentschel, H.; Ziemssen, T. Autonomic function and cerebral autoregulation in patients undergoing carotid endarterectomy. Circ. J. 2010, 74, 2139–2145. [Google Scholar] [CrossRef]




| Definition of Indicator | Abbreviation | Description |
|---|---|---|
| Baseline Mean Blood Flow Velocity | MBFVHVbl | average of MBFV values of MCAs for the 10 s preceding HV |
| Mean Blood Flow Velocity—Minimum Value | MBFVHVmin | minimum value of MCA MBFV during HV |
| Mean Blood Flow Velocity—At the End of 30 sec Hyperventilation | MBFVHV30 | MCA MBFV value at the end of HV test |
| Difference in Mean Blood Flow Velocity Values Regarding the HV Test | ΔMBFVHV | the difference between MCA MBFVBL and MBFVHVmin |
| Time to the Minimum Value of Mean Blood Flow Velocity During Hyperventilation | time-to-MBFVHVmin | is the time passed from the beginning of HV until MCA MBFVHVmin |
| Hyperventilation Index | HVI | HVI = |
| Mean Blood Flow Velocity Values at the Beginning of Breath-Holding | MBFVBHstart | MCA MBFV value at the beginning of the BH (same as MBFVHV30 |
| Mean Blood Flow Velocity Values at the End of Breath-holding | MBFVBHend | MCA MBFV value recorded at the end of the BH |
| Difference in the Mean Blood Flow Velocity Values Regarding Breath-Holding Test | ΔMBFVBH | ΔMBFVBH was calculated by the difference between MCA MBFVBHend–MBFVBHstart |
| Time to the Baseline Mean Blood Flow Velocity Values During Breath-Holding | time to MBFVBHbl | the time passed from MCA MBFVBHstart until it reaches the baseline MBFV value |
| Time of Breath-Holding | time of BH | the time passed from MBFVBHstart until MBFVBHend |
| Breath-Holding Index | BHI | BHI = [7] |
| Definition of Indicator | Abbreviation | Description |
|---|---|---|
| Cerebral Arterial Resistance— Baseline Values | CARbl | average of CAR values for the 10 s preceding HV/BH test |
| Cerebral Arterial Resistance— Maximal Values | CARmax | the maximum CAR value registered during the HV/BH test |
| Cerebral Arterial Resistance— Minimal Values | CARmin | is the minimum CAR value registered during the HV/BH test |
| Difference in CAR Values Regarding the Maximum and Minimum Phases | ΔCAR | the difference between CARmax and CARmin |
| Time From the Baseline CAR Values Until the Maximal CAR Values | CARtime-to-max | the time passed from CARbl until CARmaxHV |
| Time From the Maximum CAR Value Until the Minimal CAR Value | CARtime-to-min | the time passed from CARmax to CAR min |
| Cerebral Arterial Resistance Index During Hyperventilation | CARIHV | 100 |
| Cerebral Arterial Resistance Index During Breath-Holding | CARIBH | 100 |
| Definition of Indicator | Abbreviation | Description |
|---|---|---|
| Return to Baseline | RTB | the time passed from the release of the carotid compression until the MCA velocity values reached its baseline |
| Transient Hyperemic Response Ratio | THRR | THRR was defined from the MBFV—THRRMBFV, and peak systolic velocity (PSV)—THRRPSV values [25]. THRR = , where F1 is the baseline BFV, and F3 means the BFV value just after the release of the compression |
| Cerebral Arterial Resistance Values—Area Under the Curve During CCC Test | CARCCCAUC: | the cumulative change in CAR until return to baseline CAR was determined by calculating the area under the curve (AUC) using the so-called trapezoidal method mentioned before |
| Definition of Indicator | Abbreviation | Description |
|---|---|---|
| Centro-Peripheral Valsalva Ratio | CPRV | reflects the changes regarding the MFBV and MABP between phases 2b and 3 [46]. CPVR = |
| Centro-Peripheral Overshoot Index | CPOI | based on the CPVR, we defined the CPOI which refers to the difference between the OS and BL values of the mean BFV, and in the denominator is the difference between the OS and BL values of the MABP CPOI |
| Cerebrovascular Valsalva Ratio | CVAR | expresses the increase in mean BFV in phase IIb compared to phase III [46,56] CVAR = |
| Time to Phase IIb of Valsalva Maneuver | time-to-2b | temporal variables refer to the time elapsed until phase 2b |
| Time to Phase Overshoot of Valsalva Maneuver | time-to-OS | temporal variables refer to the time elapsed until phase OS |
| Sympathetic Index | SI | expresses the percentage increase in the MABP measured at the end of phase II (MABP IIend) compared to the initial baseline MABP (MABP BL). Normal value of SI is ≥ 0. Based on the SI, patients with cardiovascular ANS dysfunction were defined with a negative SI value [44,57]. SI = × 100 |
| Pressure Recovery Time | PRT | is defined as a time interval (in seconds) that starts when the systolic ABP is lowest in phase III (t1) and ends when the systolic ABP reaches the BL value again in phase IV (t2). The normal value of PRT is ˂4 s. Based on the PRT, patients with a PRT longer than four seconds were considered to have cardiovascular ANS dysfunction [17,57]. PRT = t2 − t1 |
| Valsalva Heart Rate Ratio | VHRR | is defined as the maximum heart rate (HRmax) during the maneuver divided by the lowest heart rate (HRmin) obtained within 30 s after the peak heart rate. The normal value of VHRR over 60 years is >1.35. Patients with a VHRR less than 1.35 were considered having cardiovascular ANS dysfunction [49,57] VHRR = |
| Variables | ICAop (Mean + SD) | ICAnonop (Mean + SD) | p Value |
|---|---|---|---|
| MBFVHVbl | 52.21 ± 13.86 cm/s | 53.54 ± 14.11 cm/s | 0.81 |
| MBFVHVmin | 33.60 ± 9.60 cm/s | 33.30 ± 9.80 cm/s | 0.69 |
| ΔMBFVHV | 18.61 ± 7.74 cm/s | 20.24 ± 8.19 cm/s | 0.6 |
| MBFVHV30s | 34.72 ± 9.93 cm/s | 35.16 ± 9.44 cm/s | 0.94 |
| time to MBFVHVmin | 22.98 ± 5.36 s | 24.66 ± 5.08 s | 0.012 |
| HVI | −1.10 ± 0.32 | −1.12 ± 0.34 | 0.64 |
| MBFVBHstart | 34.72 ± 9.93 cm/s | 35.11 ± 9.48 cm/s | 0.97 |
| MBFVBHend | 60.16 ± 15.99 cm/s | 63.75 ± 19.10 cm/s | 0.26 |
| ΔMBFVBH | 25.44 ± 9.77 cm/s | 28.65 ± 13.4 cm/s | 0.08 |
| time to MBFVBHbl | 29.42 ± 14.65 s | 30.79 ± 14.64 s | 0.85 |
| BHI | 2.35 ± 1.87 | 2.63 ± 2.60 | 0.32 |
| CARbl | 2.02 ± 0.59 mmHg×s/cm | 1.93 ± 0.54 mmHg×s/cm | 0.53 |
| CARmaxHV | 2.98 ± 1.00 mmHg×s/cm | 2.96 ± 1.16 mmHg×s/cm | 0.81 |
| CARminBH | 1.75 ± 0.51 mmHg×s/cm | 1.66 ± 0.50 mmHg×s/cm | 0.31 |
| ΔCAR | 1.22 ± 0.63 mmHg×s/cm | 1.30 ± 0.92 mmHg×s/cm | 0.75 |
| CARtime-to-max | 27.53 ± 11.03 s | 27.37 ± 10.19 s | 0.43 |
| CARtime-to-min | 50.05 ± 22.40 s | 54.05 ± 22.55 s | 0.11 |
| CARIHV | 1.56 ± 0.93 | 1.72 ± 1.10 | 0.29 |
| CARIBH | −1.19 ± 0.70 | −1.21 ± 0.70 | 0.43 |
| CARHVAUC | 15.75 ± 12.01 mmHg×s/cm | 14.45 ± 9.05 mmHg×s/cm | 0.8 |
| CARBHAUC | 4.05 ± 4.89 mmHg×s/cm | 5.00 ± 4.86 mmHg×s/cm | 0.36 |
| Variables | ICAop (Mean + SD) | ICAnonop (Mean + SD) | p Value |
|---|---|---|---|
| MBFVCCCbl | 46.86 ± 16.58 cm/s | 52.21 ± 18.19 cm/s | 0.16 |
| PSVCCCbl | 81.55 ± 25.87 cm/s | 94.30 ± 28.11 cm/s | 0.0096 |
| RTB | 19. 35 ± 14.72 s | 18.15 ± 12.22 s | 0.94 |
| THRRMBFV | 0.12 ± 0.17 | 0.20 ± 0.25 | 0.13 |
| THRRPSV | 8.80 ± 28.17 | 31.07 ± 29.04 | 0.0046 |
| CARCCCAUC | 4.46 ± 4.64 mmHg × s/cm | 6.46 ± 5.13 mmHg × s/cm | 0.021 |
| Variables | ICAop (Mean + SD) | ICAnonop (Mean + SD) | p Value |
|---|---|---|---|
| MBFVVMbl | 52.81 ± 18.21 cm/s | 52.14 ± 16.48 cm/s | 0.59 |
| CPRV | 0.20 ± 7.84 | −1.57 ± 5.93 | 0.5 |
| CVAR | 0.91 ± 1.33 | 1.47 ± 1.43 | 0.002 |
| CPOI | 1.57 ± 6.94 | 1.42 ± 6.87 | 0.72 |
| time-to-2b | 8.18 ± 2.69 s | 8.15 ± 2.70 s | 0.86 |
| time-to-OS | 22.68 ± 3.54 s | 21.49 ± 2.80 s | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pál, H.; Magyar-Stang, R.; Csányi, B.; Gaál, A.; Mihály, Z.; Czinege, Z.; Sótonyi, P.; Horváth, T.; Dobi, B.; Bereczki, D.; et al. Complex Characterization of Cerebral Vasoreactivity in Internal Carotid Artery Stenotic Patients with Transcranial Doppler Sonography. Life 2025, 15, 1692. https://doi.org/10.3390/life15111692
Pál H, Magyar-Stang R, Csányi B, Gaál A, Mihály Z, Czinege Z, Sótonyi P, Horváth T, Dobi B, Bereczki D, et al. Complex Characterization of Cerebral Vasoreactivity in Internal Carotid Artery Stenotic Patients with Transcranial Doppler Sonography. Life. 2025; 15(11):1692. https://doi.org/10.3390/life15111692
Chicago/Turabian StylePál, Hanga, Rita Magyar-Stang, Borbála Csányi, Anna Gaál, Zsuzsanna Mihály, Zsófia Czinege, Péter Sótonyi, Tamás Horváth, Balázs Dobi, Dániel Bereczki, and et al. 2025. "Complex Characterization of Cerebral Vasoreactivity in Internal Carotid Artery Stenotic Patients with Transcranial Doppler Sonography" Life 15, no. 11: 1692. https://doi.org/10.3390/life15111692
APA StylePál, H., Magyar-Stang, R., Csányi, B., Gaál, A., Mihály, Z., Czinege, Z., Sótonyi, P., Horváth, T., Dobi, B., Bereczki, D., Koller, A., & Debreczeni, R. (2025). Complex Characterization of Cerebral Vasoreactivity in Internal Carotid Artery Stenotic Patients with Transcranial Doppler Sonography. Life, 15(11), 1692. https://doi.org/10.3390/life15111692

