Toe-In and Toe-Out Walking Patterns and Lateral Wedge Insoles: A Musculoskeletal Simulation and Probabilistic Modelling Assessment of Medial Tibiofemoral Cartilage Mechanics
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Insoles
2.3. Foot Progression Angles
2.4. Procedure
2.5. Processing
2.5.1. Kinematic and Temporal Data
2.5.2. Simulation Modelling
2.5.3. Medial Tibiofemoral Contact Mechanics
2.5.4. Probabilistic Modelling of Tibiofemoral Cartilage
2.6. Statistical Analyses
3. Results
3.1. Kinematic and Temporal Data
3.2. Simulation Modelling
3.3. Medial Tibiofemoral Contact Mechanics
3.4. Probabilistic Modelling of Tibiofemoral Cartilage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Martins, R.; Kotsopoulos, N.; Kließ, M.K.; Beck, C.; Abraham, L.; Large, S.; Connolly, M.P. Comparing the fiscal consequences of controlled and uncontrolled osteoarthritis pain applying a UK public economic perspective. J. Health Econ. Outcomes Res. 2021, 8, 127–136. [Google Scholar] [CrossRef]
- Chen, D.I.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Alshami, A.M. Knee osteoarthritis related pain: A narrative review of diagnosis and treatment. Int. J. Health Sci. 2014, 8, 85–104. [Google Scholar] [CrossRef]
- Losina, E.; Weinstein, A.M.; Reichmann, W.M.; Burbine, S.A.; Solomon, D.H.; Daigle, M.E.; Katz, J.N. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013, 65, 703–711. [Google Scholar] [CrossRef]
- Wise, B.L.; Niu, J.; Yang, M.; Lane, N.E.; Harvey, W.; Felson, D.T.; Multicenter Osteoarthritis (MOST) Group. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res. 2012, 64, 847–852. [Google Scholar] [CrossRef]
- Eitner, A.; Hofmann, G.O.; Schaible, H.G. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front. Mol. Neurosci. 2017, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Morgenroth, D.C.; Medverd, J.R.; Seyedali, M.; Czerniecki, J.M. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging. Clin. Biomech. 2014, 29, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Lu, B.; Kuang, M.J.; Wang, Y.; Zhao, Y.L.; Zhao, J.; Ma, X.L. A systematic review and meta-analysis into the effect of lateral wedge arch support insoles for reducing knee joint load in patients with medial knee osteoarthritis. Medicine 2017, 96, e7168. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J. Mechanical effects of medial and lateral wedged orthoses during running. Phys. Ther. Sport 2018, 32, 48–53. [Google Scholar] [CrossRef]
- Jones, R.K.; Nester, C.J.; Richards, J.D.; Kim, W.Y.; Johnson, D.S.; Jari, S.; Tyson, S.F. A comparison of the biomechanical effects of valgus knee braces and lateral wedged insoles in patients with knee osteoarthritis. Gait Posture 2013, 37, 368–372. [Google Scholar] [CrossRef]
- Hsu, W.C.; Jhong, Y.C.; Chen, H.L.; Lin, Y.J.; Chen, L.F.; Hsieh, L.F. Immediate and long-term efficacy of laterally-wedged insoles on persons with bilateral medial knee osteoarthritis during walking. Biomed. Eng. Online 2015, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Hinman, R.S.; Payne, C.; Metcalf, B.R.; Wrigley, T.V.; Bennell, K.L. Lateral wedges in knee osteoarthritis: What are their immediate clinical and biomechanical effects and can these predict a three—Month clinical outcome? Arthritis Care Res. 2008, 59, 408–415. [Google Scholar] [CrossRef]
- Hinman, R.S.; Bowles, K.A.; Metcalf, B.B.; Wrigley, T.V.; Bennell, K.L. Lateral wedge insoles for medial knee osteoarthritis: Effects on lower limb frontal plane biomechanics. Clin. Biomech. 2012, 27, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Tanimoto, K.; Tokuda, K.; Iwamoto, Y.; Ogata, Y.; Anan, M.; Shinkoda, K. Rear foot kinematics when wearing lateral wedge insoles and foot alignment influence the effect of knee adduction moment for medial knee osteoarthritis. Gait Posture 2017, 57, 177–181. [Google Scholar] [CrossRef]
- Shimada, S.; Kobayashi, S.; Wada, M.; Uchida, K.; Sasaki, S.; Kawahara, H.; Baba, H. Effects of disease severity on response to lateral wedged shoe insole for medial compartment knee osteoarthritis. Arch. Phys. Med. Rehabil. 2006, 87, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.C.; Lelas, J.L.; Goggins, J.; Merriman, G.J.; Kaplan, R.J.; Felson, D.T. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2002, 83, 889–893. [Google Scholar] [CrossRef]
- Dessery, Y.; Belzile, É.; Turmel, S.; Corbeil, P. Effects of foot orthoses with medial arch support and lateral wedge on knee adduction moment in patients with medial knee osteoarthritis. Prosthet. Orthot. Int. 2017, 41, 356–363. [Google Scholar] [CrossRef]
- Alshawabka, A.Z.; Liu, A.; Tyson, S.F.; Jones, R.K. The use of a lateral wedge insole to reduce knee loading when ascending and descending stairs in medial knee osteoarthritis patients. Clin. Biomech. 2014, 29, 650–656. [Google Scholar] [CrossRef]
- Maly, M.R.; Culham, E.G.; Costigan, P.A. Static and dynamic biomechanics of foot orthoses in people with medial compartment knee osteoarthritis. Clin. Biomech. 2002, 17, 603–610. [Google Scholar] [CrossRef]
- Nester, C.J.; Van Der Linden, M.L.; Bowker, P. Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 2003, 17, 180–187. [Google Scholar] [CrossRef]
- Hatef, M.R.; Mirfeizi, Z.; Sahebari, M.; Jokar, M.H.; Mirheydari, M. Superiority of laterally elevated wedged insoles to neutrally wedged insoles in medial knee osteoarthritis symptom relief. Int. J. Rheum. Dis. 2014, 17, 84–88. [Google Scholar] [CrossRef]
- Hsieh, R.L.; Lee, W.C. Clinical effects of lateral wedge arch support insoles in knee osteoarthritis: A prospective double-blind randomized study. Medicine 2016, 95, e3952. [Google Scholar] [CrossRef]
- Skou, S.T.; Hojgaard, L.; Simonsen, O.H. Customized foot insoles have a positive effect on pain, function, and quality of life in patients with medial knee osteoarthritis. J. Am. Podiatr. Med. Assoc. 2013, 103, 50–55. [Google Scholar] [CrossRef]
- Sasaki, T.; Yasuda, K. Clinical evaluation of the treatment of osteoarthritic knees using a newly designed wedged insole. Clin. Orthop. Relat. Res. 1987, 221, 181–187. [Google Scholar] [CrossRef]
- Baker, K.; Goggins, J.; Xie, H.; Szumowski, K.; LaValley, M.; Hunter, D.J.; Felson, D.T. A randomized crossover trial of a wedged insole for treatment of knee osteoarthritis. Arthritis Rheum. 2007, 56, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Bowles, K.A.; Payne, C.; Cicuttini, F.; Williamson, E.; Forbes, A.; Hinman, R.S. Lateral wedge insoles for medial knee osteoarthritis: 12 month randomised controlled trial. BMJ 2011, 342, d2912. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Maillefert, J.F.; Hudry, C.; Kieffert, P.; Bourgeois, P.; Lechevalier, D.; Dougados, M. Laterally elevated wedged insoles in the treatment of medial knee osteoarthritis: A two-year prospective randomized controlled study. Osteoarthr. Cartil. 2004, 12, 46–55. [Google Scholar] [CrossRef]
- Khan, S.S.; Khan, S.J.; Usman, J. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics. Gait Posture 2017, 53, 185–192. [Google Scholar] [CrossRef]
- Hunt, M.A.; Takacs, J. Effects of a 10-week toe-out gait modification intervention in people with medial knee osteoarthritis: A pilot, feasibility study. Osteoarthr. Cartil. 2014, 22, 904–911. [Google Scholar] [CrossRef]
- Guo, M.; Axe, M.J.; Manal, K. The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture 2007, 26, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lynn, S.K.; Kajaks, T.; Costigan, P.A. The effect of internal and external foot rotation on the adduction moment and lateral–medial shear force at the knee during gait. J. Sci. Med. Sport 2008, 11, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, D.J.; Hubley-Kozey, C.L.; Deluzio, K.J.; Stanish, W.D.; Dunbar, M. Foot progression angle and the knee adduction moment: A cross-sectional investigation in knee osteoarthritis. Osteoarthr. Cartil. 2008, 16, 883–889. [Google Scholar] [CrossRef]
- Jenkyn, T.R.; Hunt, M.A.; Jones, I.C.; Giffin, J.R.; Birmingham, T.B. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: A tri-planar kinetic mechanism. J. Biomech. 2008, 41, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Shultz, R.; Silder, A.; Dragoo, J.L.; Besier, T.F.; Cutkosky, M.R.; Delp, S.L. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J. Biomech. 2013, 46, 122–128. [Google Scholar] [CrossRef]
- Lynn, S.K.; Costigan, P.A. Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Clin. Biomech. 2008, 23, 779–786. [Google Scholar] [CrossRef]
- Van den Noort, J.C.; Schaffers, I.; Snijders, J.; Harlaar, J. The effectiveness of voluntary modifications of gait pattern to reduce the knee adduction moment. Hum. Mov. Sci. 2013, 32, 412–424. [Google Scholar] [CrossRef]
- Simic, M.; Wrigley, T.V.; Hinman, R.S.; Hunt, M.A.; Bennell, K.L. Altering foot progression angle in people with medial knee osteoarthritis: The effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr. Cartil. 2013, 21, 1272–1280. [Google Scholar] [CrossRef]
- Deo, M.; Jain, S. Effect of toe-out gait modification on pain and quality of life in patients with knee osteoarthritis: A randomised controlled pilot trial. MOJ Orthop. Rheumatol. 2022, 14, 139–145. [Google Scholar] [CrossRef]
- Sinclair, J.K.; Ingram, J.; Taylor, P.J.; Chockalingam, N. Acute effects of different orthoses on lower extremity kinetics and kinematics during running; a musculoskeletal simulation analysis. Acta Bioeng. Biomech. 2019, 21, 13–25. [Google Scholar] [CrossRef]
- Herzog, W.; Clark, A.; Wu, J. Resultant and local loading in models of joint disease. Arthritis Care Res.—Off. J. Am. Coll. Rheumatol. 2003, 49, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, I.; Trepczynski, A.; Heller, M.O.; Bergmann, G. Knee adduction moment and medial contact force–facts about their correlation during gait. PLoS ONE 2013, 8, e81036. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Sinclair, J.; Lynch, H.; Chockalingam, N.; Taylor, P.J. Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling. Life 2023, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.H.; Krupenevich, R.L. Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: A theoretical biomechanical model of failure phenomena. PeerJ 2020, 8, e9676. [Google Scholar] [CrossRef]
- Sinclair, J.; Brooks, D.; Taylor, P.J.; Liles, N. Effects of toe-in/out toe-in gait and lateral wedge orthoses on lower extremity joint kinetics; an exploration using musculoskeletal simulation and Bayesian contrasts. Sport Sci. Health 2021, 17, 781–795. [Google Scholar] [CrossRef]
- Chang, A.; Hurwitz, D.; Dunlop, D.; Song, J.; Cahue, S.; Hayes, K.; Sharma, L. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann. Rheum. Dis. 2007, 66, 1271–1275. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The influence of tester experience on the reliability of 3D kinematic information during running. Gait Posture 2014, 40, 707–711. [Google Scholar] [CrossRef]
- Graydon, R.; Fewtrell, D.J.; Atkins, S.J.; Sinclair, J.K. The test-retest reliability of different ankle joint center location techniques. Foot Ankle Online J. 2015, 8, 26–31. [Google Scholar]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The test-retest reliability of knee joint center location techniques. J. Appl. Biomech. 2015, 31, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Taylor, P.J.; Currigan, G.; Hobbs, S.J. The test-retest reliability of three different hip joint centre location techniques. Mov. Sport Sci.—Sci. Mot. 2014, 83, 31–39. [Google Scholar] [CrossRef]
- Sinclair, J.K.; Edmundson, C.J.; Brooks, D.; Hobbs, S.J. Evaluation of kinematic methods of identifying gait Events during running. Int. J. Sports Sci. Eng. 2011, 5, 188–192. [Google Scholar]
- Sinclair, J.; Taylor, P.J.; Hobbs, S.J. Digital filtering of three-dimensional lower extremity kinematics: An assessment. J. Hum. Kinet. 2013, 39, 25–36. [Google Scholar] [CrossRef]
- Sinclair, J.; Chockalingam, N.; Taylor, P.J. Lower Extremity Kinetics and Kinematics in Runners with Patellofemoral Pain: A Retrospective Case–Control Study Using Musculoskeletal Simulation. Appl. Sci. 2022, 12, 585. [Google Scholar] [CrossRef]
- Sinclair, J.; Taylor, P.J.; Shadwell, G.; Stone, M.; Booth, N.; Jones, B.; Edmundson, C.J. Two-Experiment Examination of Habitual and Manipulated Foot Placement Angles on the Kinetics, Kinematics, and Muscle Forces of the Barbell Back Squat in Male Lifters. Sensors 2022, 22, 6999. [Google Scholar] [CrossRef]
- Lerner, Z.F.; DeMers, M.S.; Delp, S.L.; Browning, R.C. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 2015, 48, 644–650. [Google Scholar] [CrossRef]
- Steele, K.M.; DeMers, M.S.; Schwartz, M.H.; Delp, S.L. Compressive tibiofemoral force during crouch gait. Gait Posture 2012, 35, 556–560. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.A.; Cusumano, J.P.; Hieronymi, A.; Rubenson, J. Humans trade off whole-body energy cost to avoid overburdening muscles while walking. Proc. R. Soc. B 2022, 289, 20221189. [Google Scholar] [CrossRef]
- McNeill, A.R. Energetics and optimization of human walking and running: The 2000 Raymond Pearl memorial lecture. Am. J. Hum. Biol. 2002, 14, 641–648. [Google Scholar] [CrossRef]
- McAllister, M.J.; Chen, A.; Selinger, J.C. Behavioural energetics in human locomotion: How energy use influences how we move. J. Exp. Biol. 2025, 228 (Suppl. 1), JEB248125. [Google Scholar] [CrossRef]
- Thelen, D.G.; Anderson, F.C. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 2006, 39, 1107–1115. [Google Scholar] [CrossRef]
- Thelen, D.G.; Anderson, F.C.; Delp, S.L. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 2003, 36, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Umberger, B.R.; Gerritsen, K.G.; Martin, P.E. A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 2003, 6, 99–111. [Google Scholar] [CrossRef]
- Johnson, M.; Polgar, J.; Weightman, D.; Appleton, D. Data on the distribution of fibre types in thirty-six human muscles: An autopsy study. J. Neurol. Sci. 1973, 18, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.E., Jr.; Califf, J.C.; Bassett, F.H. Histochemical correlates of hamstring injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Alway, S.E. Is fiber mitochondrial volume density a good indicator of muscle fatigability to isometric exercise? J. Appl. Physiol. 1991, 70, 2111–2119. [Google Scholar] [CrossRef]
- Uchida, T.K.; Hicks, J.L.; Dembia, C.L.; Delp, S.L. Stretching your energetic budget: How tendon compliance affects the metabolic cost of running. PLoS ONE 2016, 11, e0150378. [Google Scholar] [CrossRef]
- Gonabadi, M.A.; Antonellis, P.; Malcolm, P. Differences between joint-space and musculoskeletal estimations of metabolic rate time profiles. PLoS Comput. Biol. 2020, 16, e1008280. [Google Scholar]
- Hamner, S.R.; Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013, 46, 780–787. [Google Scholar] [CrossRef]
- Miller, R.H. A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 2014, 47, 1373–1381. [Google Scholar] [CrossRef]
- Waters, R.L.; Mulroy, S. The energy expenditure of normal and pathologic gait. Gait Posture 1999, 9, 207–231. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.E.; Pieper, N.L.; Clark, W.H.; Franz, J.R. Muscle metabolic energy costs while modifying propulsive force generation during walking. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1552–1565. [Google Scholar] [CrossRef] [PubMed]
- Nuno, N.; Ahmed, A.M. Sagittal profile of the femoral condyles and its application to femorotibial contact analysis. J. Biomechical Eng. 2001, 123, 18–26. [Google Scholar] [CrossRef]
- Liu, F.; Kozanek, M.; Hosseini, A.; Van de Velde, S.K.; Gill, T.J.; Rubash, H.E.; Li, G. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 2010, 43, 658–665. [Google Scholar] [CrossRef]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, D.E.; Seedhom, B.B. The instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 1999, 38, 124–132. [Google Scholar] [CrossRef]
- Danso, E.K.; Mäkelä, J.T.A.; Tanska, P.; Mononen, M.E.; Honkanen, J.T.J.; Jurvelin, J.S.; Korhonen, R.K. Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities. J. Biomech. 2015, 48, 1499–1507. [Google Scholar] [CrossRef]
- Blöcker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.; OAI investigators. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing–data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2013, 21, 419–427. [Google Scholar] [CrossRef]
- Henderson, C.E.; Higginson, J.S.; Barrance, P.J. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint. J. Biomech. Eng. 2011, 133, 014502. [Google Scholar] [CrossRef]
- DeFrate, L.E.; Sun, H.; Gill, T.J.; Rubash, H.E.; Li, G. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J. Biomech. 2004, 37, 1499–1504. [Google Scholar] [CrossRef]
- Weightman, B.O.; Freeman, M.A.R.; Swanson, S.A.V. Fatigue of articular cartilage. Nature 1973, 244, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.; Stovitz, S.D.; Choh, A.C.; Czerwinski, S.A.; Towne, B.; Demerath, E.W. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int. J. Obes. 2012, 36, 535–541. [Google Scholar] [CrossRef]
- Taylor, D. Fatigue of bone and bones: An analysis based on stressed volume. J. Orthop. Res. 1998, 16, 163–169. [Google Scholar] [CrossRef]
- Taylor, D.; Kuiper, J.H. The prediction of stress fractures using a ‘stressed volume’concept. J. Orthop. Res. 2001, 19, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Casolari, E.; Bignardi, C. Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 2004, 22, 487–494. [Google Scholar] [CrossRef]
- Sinclair, J.; Huang, G.; Taylor, P.J.; Chockalingam, N.; Fan, Y. Effects of Running in Minimal and Conventional Footwear on Medial Tibiofemoral Cartilage Failure Probability in Habitual and Non-Habitual Users. J. Clin. Med. 2022, 11, 7335. [Google Scholar] [CrossRef] [PubMed]
- Paluch, A.E.; Gabriel, K.P.; Fulton, J.E.; Lewis, C.E.; Schreiner, P.J.; Sternfeld, B.; Carnethon, M.R. Steps per day and all-cause mortality in middle-aged adults in the coronary artery risk development in young adults study. JAMA Netw. Open 2021, 4, e2124516. [Google Scholar] [CrossRef]
- Riemenschneider, P.E.; Rose, M.D.; Giordani, M.; McNary, S.M. Compressive fatigue and endurance of juvenile bovine articular cartilage explants. J. Biomech. 2019, 95, 109304. [Google Scholar] [CrossRef]
- Nakamura, N.; Horibe, S.; Toritsuka, Y.; Mitsuoka, T.; Natsuume, T.; Yoneda, K.; Shino, K. The location-specific healing response of damaged articular cartilage after ACL reconstruction: Short-term follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 843–848. [Google Scholar] [CrossRef]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Araya-Ajoy, Y.G. Robustness of linear mixed--effects models to violations of distributional assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ismailidis, P.; Egloff, C.; Hegglin, L.; Pagenstert, G.; Kernen, R.; Eckardt, A.; Nüesch, C. Kinematic changes in patients with severe knee osteoarthritis are a result of reduced walking speed rather than disease severity. Gait Posture 2020, 79, 256–261. [Google Scholar] [CrossRef]
- Rao, K. Understanding Elevated Metabolic Cost of Asymmetric Walking. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 2019. [Google Scholar]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Kutzner, I. Standardized loads acting in knee implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef]
- Cho, H.J.; Chang, C.B.; Kim, K.W.; Park, J.H.; Yoo, J.H.; Koh, I.J.; Kim, T.K. Gender and prevalence of knee osteoarthritis types in elderly Koreans. J. Arthroplast. 2011, 26, 994–999. [Google Scholar] [CrossRef]
- Clément, J.; Toliopoulos, P.; Hagemeister, N.; Desmeules, F.; Fuentes, A.; Vendittoli, P.A. Healthy 3D knee kinematics during gait: Differences between women and men, and correlation with X-ray alignment. Gait Posture 2018, 64, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New insight on its pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Caldwell, L.K.; Laubach, L.L.; Barrios, J.A. Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin. Biomech. 2013, 28, 649–654. [Google Scholar] [CrossRef] [PubMed]



| Neutral | Toe-In | Toe-Out | Lateral Insoles | Conditions | |||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
| Foot progression angle (°) | 3.51 | 5.86 | −10.63 | 3.91 | 11.95 | 2.25 | 2.33 | 3.10 | |
| Walking velocity (m/s) | 1.54 | 0.11 | 1.49 | 0.15 | 1.49 | 0.11 | 1.56 | 0.12 | A, B |
| Stride length (m) | 1.71 | 0.10 | 1.72 | 0.11 | 1.74 | 0.12 | 1.71 | 0.09 | |
| Daily loading cycles | 7048.38 | 406.15 | 6997.73 | 413.27 | 6939.62 | 499.41 | 7055.44 | 382.94 | |
| CoP position relative to foot centre of mass (mm) | 1.39 | 5.12 | 8.45 | 8.05 | −4.58 | 7.63 | −1.03 | 4.25 | A, C, D, E, F |
| Neutral | Toe-In | Toe-Out | Lateral Insoles | Conditions | |||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
| Peak compressive medial tibiofemoral force (BW) | 2.68 | 0.47 | 2.51 | 0.46 | 2.43 | 0.46 | 2.69 | 0.49 | A, B, C, E |
| Medial compressive medial tibiofemoral cumulative load (BW/m) | 0.85 | 0.09 | 0.81 | 0.13 | 0.80 | 0.09 | 0.84 | 0.09 | A, B, E |
| Vastus intermedius (BW) | 0.51 | 0.09 | 0.41 | 0.15 | 0.35 | 0.17 | 0.46 | 0.19 | A, B, E, F |
| Vastus lateralis (BW) | 0.93 | 0.17 | 0.72 | 0.29 | 0.64 | 0.32 | 0.82 | 0.35 | A, B, E |
| Vastus medialis (BW) | 0.42 | 0.08 | 0.37 | 0.13 | 0.29 | 0.14 | 0.39 | 0.15 | A, B, F |
| Rectus femoris (BW) | 0.29 | 0.20 | 0.24 | 0.23 | 0.45 | 0.33 | 0.36 | 0.34 | A, B, C, F |
| Biceps femoris long head (BW) | 0.08 | 0.04 | 0.06 | 0.03 | 0.07 | 0.07 | 0.07 | 0.05 | |
| Biceps femoris short head (BW) | 0.02 | 0.02 | 0.02 | 0.01 | 0.03 | 0.04 | 0.01 | 0.01 | |
| Semimembranosus (BW) | 0.09 | 0.06 | 0.07 | 0.05 | 0.06 | 0.07 | 0.08 | 0.07 | |
| Semitendinosus (BW) | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | |
| Lateral gastrocnemius (BW) | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | |
| Medial gastrocnemius (BW) | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.06 | 0.02 | 0.01 | |
| Neutral | Toe-In | Toe-Out | Lateral Insoles | Conditions | |||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
| Peak compressive medial tibiofemoral stress (MPa) | 2.61 | 0.64 | 2.47 | 0.66 | 2.40 | 0.64 | 2.64 | 0.68 | A, B, C, E |
| Peak compressive medial tibiofemoral strain | 0.22 | 0.05 | 0.21 | 0.05 | 0.21 | 0.05 | 0.22 | 0.05 | A, B, C, E |
| Neutral | Toe-In | Toe-Out | Lateral Insoles | Conditions | |||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
| Probability of failure with repair (%) | 14.04 | 27.57 | 10.66 | 24.70 | 7.89 | 19.55 | 14.58 | 29.53 | A, E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinclair, J.; Zhang, G. Toe-In and Toe-Out Walking Patterns and Lateral Wedge Insoles: A Musculoskeletal Simulation and Probabilistic Modelling Assessment of Medial Tibiofemoral Cartilage Mechanics. Life 2025, 15, 1677. https://doi.org/10.3390/life15111677
Sinclair J, Zhang G. Toe-In and Toe-Out Walking Patterns and Lateral Wedge Insoles: A Musculoskeletal Simulation and Probabilistic Modelling Assessment of Medial Tibiofemoral Cartilage Mechanics. Life. 2025; 15(11):1677. https://doi.org/10.3390/life15111677
Chicago/Turabian StyleSinclair, Jonathan, and Guoying Zhang. 2025. "Toe-In and Toe-Out Walking Patterns and Lateral Wedge Insoles: A Musculoskeletal Simulation and Probabilistic Modelling Assessment of Medial Tibiofemoral Cartilage Mechanics" Life 15, no. 11: 1677. https://doi.org/10.3390/life15111677
APA StyleSinclair, J., & Zhang, G. (2025). Toe-In and Toe-Out Walking Patterns and Lateral Wedge Insoles: A Musculoskeletal Simulation and Probabilistic Modelling Assessment of Medial Tibiofemoral Cartilage Mechanics. Life, 15(11), 1677. https://doi.org/10.3390/life15111677

