Impact of General Anesthetics on Postoperative Infections—A Narrative Review
Abstract
1. Introduction
2. Methods
3. In Vitro Evidence
3.1. Sevoflurane
3.2. Isoflurane
3.3. Halothane
3.4. Desflurane
3.5. Propofol
4. In Vivo Evidence
4.1. Wound Healing and Tissue Regeneration Models
4.2. Sepsis Models
4.3. Viral and Bacterial Infection Models
5. Clinical Evidence
5.1. Retrospective Studies in Adult Populations
5.2. Retrospective Studies in Pediatric Populations
5.3. Randomized Controlled Trials
6. Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ban, K.A.; Minei, J.P.; Laronga, C.; Harbrecht, B.G.; Jensen, E.H.; Fry, D.E.; Itani, K.M.F.; Dellinger, P.E.; Ko, C.Y.; Duane, T.M. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J. Am. Coll. Surg. 2017, 224, 59–74. [Google Scholar] [CrossRef]
- Ronghe, V.; Modak, A.; Gomase, K.; Mahakalkar, M.G. From Prevention to Management: Understanding Postoperative Infections in Gynaecology. Cureus 2023, 15, e46319. [Google Scholar] [CrossRef]
- Hinson, C.; Kilpatrick, C.; Rasa, K.; Ren, J.; Nthumba, P.; Sawyer, R.; Ameh, E. Global Surgery Is Stronger When Infection Prevention and Control Is Incorporated: A Commentary and Review of the Surgical Infection Landscape. BMC Surg. 2024, 24, 397. [Google Scholar] [CrossRef]
- Ackerman, R.S.; Luddy, K.A.; Icard, B.E.; Piñeiro Fernández, J.; Gatenby, R.A.; Muncey, A.R. The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesth. Analg. 2021, 133, 676–689. [Google Scholar] [CrossRef]
- Kurosawa, S.; Kato, M. Anesthetics, Immune Cells, and Immune Responses. J. Anesth. 2008, 22, 263–277. [Google Scholar] [CrossRef]
- Fagundes, T.R.; Coradi, C.; Sotomayor, M.R.; Campos, A.G.H.; da Silva, L.C.F.; Ferneda, H.A.; da Silva Pereira Junior, W.; Bellandi, G.B.; Simonato, M.E.P.; Steffanello, V.V.; et al. Mechanisms of Anesthetic-Induced Immune Dysregulation. Anesthesiol. Perioper. Sci. 2025, 3, 37. [Google Scholar] [CrossRef]
- Visvabharathy, L.; Freitag, N.E. Propofol Sedation Exacerbates Kidney Pathology and Dissemination of Bacteria during Staphylococcus Aureus Bloodstream Infections. Infect. Immun. 2017, 85, e00097-17. [Google Scholar] [CrossRef]
- Chen, M.S.; Lin, W.C.; Yeh, H.-T.; Hu, C.L.; Sheu, S.M. Propofol Specifically Suppresses IL-1β Secretion but Increases Bacterial Survival in Staphylococcus Aureus-Infected RAW264.7 Cells. Mol. Cell. Biochem. 2018, 449, 117–125. [Google Scholar] [CrossRef]
- Koutsogiannaki, S.; Bernier, R.; Tazawa, K.; Yuki, K. Volatile Anesthetic Attenuates Phagocyte Function and Worsens Bacterial Loads in Wounds. J. Surg. Res. 2019, 233, 323–330. [Google Scholar] [CrossRef]
- Loop, T.; Scheiermann, P.; Doviakue, D.; Musshoff, F.; Humar, M.; Roesslein, M.; Hoetzel, A.; Schmidt, R.; Madea, B.; Geiger, K.K.; et al. Sevoflurane Inhibits Phorbol-Myristate-Acetate-Induced Activator Protein-1 Activation in Human T Lymphocytes in Vitro: Potential Role of the P38-Stress Kinase Pathway. Anesthesiology 2004, 101, 710–721. [Google Scholar] [CrossRef]
- Vulcano, T.J.; Abdulahad, W.H.; van Meurs, M.; Jongman, R.M.; Struys, M.M.R.F.; Bosch, D.J. The Impact of Different Anesthetics on the Distribution and Cytotoxic Function of NK Cell Subpopulations: An In Vitro Study. Int. J. Mol. Sci. 2024, 25, 11045. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeon, S.; Lee, H.J.; Bae, J.; Ri, H.-S.; Hong, J.-M.; Paek, S.I.; Kwon, S.K.; Kim, J.-R.; Park, S.; et al. Effects of Sevoflurane on Metalloproteinase and Natural Killer Group 2, Member D (NKG2D) Ligand Expression and Natural Killer Cell-Mediated Cytotoxicity in Breast Cancer: An in Vitro Study. Korean J. Anesthesiol. 2023, 76, 627–639. [Google Scholar] [CrossRef]
- Minguet, G.; Franck, T.; Joris, J.; Serteyn, D. Sevoflurane Modulates the Release of Reactive Oxygen Species, Myeloperoxidase, and Elastase in Human Whole Blood: Effects of Different Stimuli on Neutrophil Response to Volatile Anesthetic In Vitro. Int. J. Immunopathol. Pharmacol. 2017, 30, 362–370. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.-X.; Sun, D.-D.; Zhang, Z.-X.; Yang, W.-W.; Shao, T.; Han, H.; Zhang, E.-F.; Pu, Z.-S.; Hou, Z.-X.; et al. Sub-Anesthesia Dose of Isoflurane in 60% Oxygen Reduces Inflammatory Responses in Experimental Sepsis Models. Chin. Med. J. 2017, 130, 840–853. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Li, N.; Li, J.; Yu, F.; Zhao, Y.; Wang, L.; Yi, J.; Wang, L.; Bian, J.; et al. Subanesthetic Isoflurane Reduces Zymosan-Induced Inflammation in Murine Kupffer Cells by Inhibiting ROS-Activated P38 MAPK/NF-κB Signaling. Oxid. Med. Cell. Longev. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- El-Bassiouni, E.A.; Abo-Ollo, M.M.; Helmy, M.H.; Ismail, S.; Ramadan, M.I.A. Changes in the Defense Against Free Radicals in the Liver and Plasma of the Dog During Hypoxia and/or Halothane Anaesthesia. Toxicology 1998, 128, 25–34. [Google Scholar] [CrossRef]
- Cheng, L.; You, Q.; Yin, H.; Holt, M.P.; Ju, C. Involvement of Natural Killer T Cells in Halothane-Induced Liver Injury in Mice. Biochem. Pharmacol. 2010, 80, 255–261. [Google Scholar] [CrossRef]
- Roesslein, M.; Frick, M.; Auwaerter, V.; Humar, M.; Goebel, U.; Schwer, C.; Geiger, K.K.; Pahl, H.L.; Pannen, B.H.J.; Loop, T. Sevoflurane-Mediated Activation of P38-Mitogen-Activated Stresskinase Is Independent of Apoptosis in Jurkat T-Cells. Anesth. Analg. 2008, 106, 1150–1160. [Google Scholar] [CrossRef]
- Müller-Edenborn, B.; Roth-Z’graggen, B.; Bartnicka, K.; Borgeat, A.; Hoos, A.; Borsig, L.; Beck-Schimmer, B. Volatile Anesthetics Reduce Invasion of Colorectal Cancer Cells Through Down-Regulation of Matrix Metalloproteinase-9. Anesthesiology 2012, 117, 293–301. [Google Scholar] [CrossRef]
- Kochiyama, T.; Li, X.; Nakayama, H.; Kage, M.; Yamane, Y.; Takamori, K.; Iwabuchi, K.; Inada, E. Effect of Propofol on the Production of Inflammatory Cytokines by Human Polarized Macrophages. Mediat. Inflamm. 2019, 2019, 1919538. [Google Scholar] [CrossRef]
- Yamamoto, W.; Hamada, T.; Suzuki, J.; Matsuoka, Y.; Omori-Miyake, M.; Kuwahara, M.; Matsumoto, A.; Nomura, S.; Konishi, A.; Yorozuya, T.; et al. Suppressive Effect of the Anesthetic Propofol on the T Cell Function and T Cell-Dependent Immune Responses. Sci. Rep. 2024, 14, 19337. [Google Scholar] [CrossRef]
- Hiraoka, S.; Satooka, H.; Kitagawa, H.; Hirata, T. Intravenous Anesthetic Propofol Suppresses T Cell–Dependent Antibody Production in Mice. J. Anesth. 2025, Volume, Pages. [Google Scholar] [CrossRef]
- Eger, E.I. Characteristics of Anesthetic Agents Used for Induction and Maintenance of General Anesthesia. Am. J. Health Syst. Pharm. 2004, 61, S3–S10. [Google Scholar] [CrossRef]
- Ebert, T.J.; Robinson, B.J.; Uhrich, T.D.; Mackenthun, A.; Pichotta, P.J. Recovery from Sevoflurane Anesthesia. Anesthesiology 1998, 89, 1524–1531. [Google Scholar] [CrossRef]
- Tanos, T.; Marinissen, M.J.; Leskow, F.C.; Hochbaum, D.; Martinetto, H.; Gutkind, J.S.; Coso, O.A. Phosphorylation of C-Fos by Members of the P38 MAPK Family. J. Biol. Chem. 2005, 280, 18842–18852. [Google Scholar] [CrossRef]
- Khalaf, H.; Jass, J.; Olsson, P.-E. Differential Cytokine Regulation by NF-ΚB and AP-1 in Jurkat T-Cells. BMC Immunol. 2010, 11, 26. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Xin, J.; Wang, J.; Yao, C.; Zhang, Z. Role of NKG2D and Its Ligands in Cancer Immunotherapy. Am. J. Cancer Res. 2019, 9, 2064–2078. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6834480/ (accessed on 22 June 2025).
- O’Brien, H.D. The Introduction of Halothane into Clinical Practice: The Oxford Experience. Anaesth. Intensive Care 2006, 34, 27–32. [Google Scholar] [CrossRef]
- Habibollahi, P.; Mahboobi, N.; Esmaeili, S.; Safari, S.; Dabbagh, A.; Alavian, S.M. Halothane-Induced Hepatitis: A Forgotten Issue in Developing Countries. Hepat. Mon. 2011, 11, 3–6. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3206652/ (accessed on 24 June 2025).
- Ravi, P.; Nanda, H.; Anant, S. Comparative Study of Recovery after Sevoflurane Versus Halothane Anaesthesia in Adult Patients. Med. J. Armed Forces India 2008, 64, 325–328. [Google Scholar] [CrossRef]
- Khan, J.; Patel, P.; Liu, M. Desflurane. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537106/ (accessed on 3 June 2025).
- Sahinovic, M.M.; Struys, M.M.R.F.; Absalom, A.R. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin. Pharmacokinet. 2018, 57, 1539–1558. [Google Scholar] [CrossRef]
- Shin, D.J.; Germann, A.L.; Johnson, A.D.; Forman, S.A.; Steinbach, J.H.; Akk, G. Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABAA Receptors. Mol. Pharmacol. 2018, 93, 178–189. [Google Scholar] [CrossRef]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of Effector CD4 T Cell Populations. Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef]
- Koutsogiannaki, S.; Hou, L.; Babazada, H.; Okuno, T.; Blazon-Brown, N.; Soriano, S.G.; Yokomizo, T.; Yuki, K. The Volatile Anesthetic Sevoflurane Reduces Neutrophil Apoptosis via Fas Death Domain–Fas-associated Death Domain Interaction. Fed. Am. Soc. Exp. Biol. J. 2019, 33, 12668–12679. [Google Scholar] [CrossRef]
- Zhou, B.-W.; Zhang, W.-J.; Zhang, F.-L.; Yang, X.; Ding, Y.-Q.; Yao, Z.-W.; Yan, Z.-Z.; Zhao, B.-C.; Chen, X.-D.; Li, C.; et al. Propofol Improves Survival in a Murine Model of Sepsis via Inhibiting Rab5a-Mediated Intracellular Trafficking of TLR4. J. Transl. Med. 2024, 22, 316. [Google Scholar] [CrossRef]
- Ivascu, R.; Torsin, L.I.; Hostiuc, L.; Nitipir, C.; Corneci, D.; Dutu, M. The Surgical Stress Response and Anesthesia: A Narrative Review. J. Clin. Med. 2024, 13, 3017. [Google Scholar] [CrossRef]
- Choi, B.S.; Lee, H.J.; Choi, H.J.; Jung, K.Y.; Kim, C.H.; Shin, S.W. Effects of Sevoflurane and Propofol on Wound Healing in Rats: Comparison of Blood Flow and Wound Size. Korean J. Anesthesiol. 2009, 56, 313. [Google Scholar] [CrossRef]
- Schläpfer, M.; Piegeler, T.; Dull, R.O.; Schwartz, D.E.; Mao, M.; Bonini, M.G.; Z’Graggen, B.R.; Beck-Schimmer, B.; Minshall, R.D. Propofol Increases Morbidity and Mortality in a Rat Model of Sepsis. Crit. Care 2015, 19, 45. [Google Scholar] [CrossRef]
- Oliveira, T.B.; Braga, C.L.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M.; Silva, P.L.; Cruz, F.F. Comparison Between Sevoflurane and Propofol on Immunomodulation in an In Vitro Model of Sepsis. Front. Med. 2023, 10, 1225179. [Google Scholar] [CrossRef]
- Liu, D.; Mei, L.; Zhao, P. Immunomodulatory Effects of Anaesthetic Sevoflurane in Septic Mouse Model. Saudi J. Biol. Sci. 2021, 28, 2733–2738. [Google Scholar] [CrossRef]
- Penna, A.M.; Johnson, K.J.; Camilleri, J.; Knight, P.R. Alterations in Influenza A Virus Specific Immune Injury in Mice Anesthetized with Halothane or Ketamine. Intervirology 1990, 31, 188–196. [Google Scholar] [CrossRef]
- Woodrow, J.S.; Palmisano, M.; Kulp, J.; Hopster, K. Effects of General Anesthesia on Airway Immune Cell Function in an Equine in Vivo Model. Vet. Anaesth. Analg. 2024, 51, 621–628. [Google Scholar] [CrossRef]
- Visvabharathy, L.; Xayarath, B.; Weinberg, G.; Shilling, R.A.; Freitag, N.E. Propofol Increases Host Susceptibility to Microbial Infection by Reducing Subpopulations of Mature Immune Effector Cells at Sites of Infection. PLoS ONE 2015, 10, e0138043. [Google Scholar] [CrossRef]
- Weiss, B.; Schiefenhövel, F.; Grunow, J.J.; Krüger, M.; Spies, C.D.; Menk, M.; Kruppa, J.; Grubitzsch, H.; Sander, M.; Treskatsch, S.; et al. Infectious Complications after Etomidate vs. Propofol for Induction of General Anesthesia in Cardiac Surgery—Results of a Retrospective, Before–After Study. J. Clin. Med. 2021, 10, 2908. [Google Scholar] [CrossRef]
- Zhang, G.H.; Wang, W. Effects of Sevoflurane and Propofol on the Development of Pneumonia after Esophagectomy: A Retrospective Cohort Study. BMC Anesthesiol. 2017, 17, 164. [Google Scholar] [CrossRef]
- Hu, J.; Lv, B.; West, R.; Chen, X.; Yan, Y.; Pac Soo, C.; Ma, D. Comparison Between Dexmedetomidine and Propofol on Outcomes after Coronary Artery Bypass Graft Surgery: A Retrospective Study. BMC Anesthesiol. 2022, 22, 51. [Google Scholar] [CrossRef]
- Koo, B.-W.; Sim, J.-B.; Shin, H.-J.; Kim, D.-W.; Kang, S.-B.; Do, S.-H.; Na, H.-S. Surgical Site Infection after Colorectal Surgery According to the Main Anesthetic Agent: A Retrospective Comparison Between Volatile Anesthetics and Propofol. Korean J. Anesthesiol. 2016, 69, 332. [Google Scholar] [CrossRef]
- Shimizu, K.; Hirose, M.; Mikami, S.; Takamura, K.; Goi, T.; Yamaguchi, A.; Morioka, K.; Ichikawa, T.; Shigemi, K. Effect of Anaesthesia Maintained with Sevoflurane and Propofol on Surgical Site Infection after Elective Open Gastrointestinal Surgery. J. Hosp. Infect. 2010, 74, 129–136. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nagamine, Y.; Miyashita, T.; Ito, S.; Iwasawa, Y.; Kawai, M.; Saito, S.; Tamai, T.; Goto, T. Perioperative and Anesthetic Risk Factors of Surgical Site Infection in Patients Undergoing Pancreaticoduodenectomy: A Retrospective Cohort Study. PLoS ONE 2020, 15, e0240490. [Google Scholar] [CrossRef]
- Kishimoto, M.; Yamana, H.; Inoue, S.; Noda, T.; Akahane, M.; Inagaki, Y.; Matsui, H.; Yasunaga, H.; Kawaguchi, M.; Imamura, T. Suspected Periprosthetic Joint Infection After Total Knee Arthroplasty under Propofol versus Sevoflurane Anesthesia: A Retrospective Cohort Study. Can. J. Anaesth. 2018, 65, 893–900. [Google Scholar] [CrossRef]
- Shibamura-Fujiogi, M.; Ormsby, J.; Breibart, M.; Zalieckas, J.; Sandora, T.J.; Priebe, G.P.; Yuki, K. The Role of Anesthetic Management in Surgical Site Infections After Pediatric Intestinal Surgery. J. Surg. Res. 2021, 259, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Alhayyan, A.; McSorley, S.; Roxburgh, C.; Kearns, R.; Horgan, P.; McMillan, D. The Effect of Anesthesia on the Postoperative Systemic Inflammatory Response in Patients Undergoing Surgery: A Systematic Review and Meta-Analysis. Surg. Open Sci. 2020, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Chen, Y.; Shang, K.X.; Yu, H.; Li, X.F.; Yu, H. Effect of Volatile Anesthesia Versus Intravenous Anesthesia on Postoperative Pulmonary Complications in Patients Undergoing Minimally Invasive Esophagectomy: A Randomized Clinical Trial. Anesth. Analg. 2024, 139, 571–580. [Google Scholar] [CrossRef] [PubMed]

| Anesthetic | Model | Methods | Results | Reference |
|---|---|---|---|---|
| Sevoflurane | Primary human CD3+ lymphocytes | Electrophoretic mobility shift assay (AP-1 DNA binding); Western blot (MAPK phosphorylation); Reporter gene assay (AP-1 activity); ELISA (cytokine release). | Sevoflurane is a specific inhibitor of AP-1 activation and transcriptional activity via altered p38 MAPK phosphorylation. | [10] |
| Isoflurane | Isoflurane showed no AP-1 inhibition. | |||
| Desflurane | Desflurane showed no AP-1 inhibition. | |||
| Sevoflurane | Human NK cell subpopulations (PBMC-derived) | Flow cytometry (NK subsets: CD56^dimCD16^bright, etc.), perforin/GrzB expression. | Reduced cytotoxic NK subset (CD56^dimCD16^bright) by −16.1%; Reduced granzyme B (GrzB) secretion. | [11] |
| Propofol | Reduced cytotoxic NK subset (CD56^dimCD16^bright) by −3.58%; No difference in GrzB secretion compared to sevoflurane. | |||
| Sevoflurane | Human breast cancer cell lines (MCF-7, MDA-MB-453, HCC-70) co-cultured with NK cells | qPCR & flow cytometry (NKG2D ligands); Western blot (MMP-1/2); ELISA (soluble ligands); Cytotoxicity assays. | Downregulated surface expression of MICA and MICB—decreasing identification from NK cells and CD8+ via NKG2D. | [12] |
| Sevoflurane | Human PMNs (whole blood) | In vitro exposure (2.3–4.6%); chemiluminescence (ROS); ELISA (MPO, elastase); SIEFED (active MPO). | Inhibited neutrophil activation after LPS stimulation (decrease in MPO and elastase); No significant change in ROS. | [13] |
| Isoflurane | Mouse RAW264.7 macrophages and human PBMCs (LPS-stimulated) | Western blot & immunohistochemistry (NF-κB: p-IKKβ, p-IκBβ, p-p65); Cytokine assays (TNF-α, IL-1β, IL-6, HMGB1). | Reduction in the secretion of TNF-α and IL-1β; NF-κB activation suppression. | [14] |
| Isoflurane | Murine Kupffer cells (zymosan-stimulated) | Western blot (COX-2, p38 MAPK); Radioimmunoassay (PGE2); ELISA (cytokines, chemokines); EMSA (NF-κB). | Reduction in TNF-α, IL-1β, and IL-6; Suppressed ROS-induced activation of p38 and NF-κB signaling pathways; Decreased p38 phosphorylation, reduced IκBα degradation, and limited NF-κB nuclear translocation. | [15] |
| Halothane | Dogs (liver & plasma) biopsy-based model | 1% halothane under normoxia or hypoxia; serial liver biopsies & plasma at 0–60 min; assays: GSH, vitamin E, vitamin C, MDA, SOD. | ↓ GSH, ↓ Vit E, ↑ MDA (lipid peroxidation), ↓ hepatic SOD *. Effects most pronounced under hypoxia, but depletion evident even in normoxia. | [16] |
| Halothane | Hepatocytes & immune cells (murine HILI model) | Hepatocyte stress assays (oxidative stress: GSH, MDA, SOD); WT vs. CD1d−/− mice (NKT deficiency). | NKT-deficient mice were resistant, showing NKT-dependent neutrophil recruitment following halothane-induced liver injury. | [17] |
| Sevoflurane | Jurkat T-cells | 2.5–8% exposure; Western blot for p38, ASK1, MKK3/6, ATF-2; caspase-3 activity assay; Annexin-V/PI flow cytometry | Inhibition of NF-κB, AP-1, and NFAT; Activation of p38, MAPK. | [18] |
| Isoflurane | ||||
| Desflurane | No suppression of DNA-binding activity of NF-κB, AP-1, NFAT, or SP-1; No p38 MAPK pathway activation; No apoptosis induction. | |||
| Desflurane | Human neutrophils ± MC-38 colon cancer cells | ELISA & zymography (MMP-9); Flow cytometry (CXCR2, ERK1/2); Matrigel invasion assay | Downregulated the IL-8 induced Akt–MMP-9 signaling axis. | [19] |
| Sevoflurane | Downregulated IL-8 induced Akt–MMP-9 signaling axis. | |||
| Propofol | Human macrophages (M1/M2 polarization) | Polarization assays; ELISA (IL-6, IL-1β, TNF-α, IL-10, TGF-β); qPCR (CD206); siRNA (Nrf2); Immunofluorescence (Nrf2). | Suppression of IL-1β and IL-6 in LPS-stimulated M1 macrophages. | [20] |
| Propofol | Human/murine CD8+ T cells | Metabolic assays (glycolysis); Flow cytometry (effector differentiation); Cytokine assays; Cytotoxicity assays. | Suppressed glycolysis in activated CD8+ T cells; Reduced cytokine release (IL-2, IFN-γ, TNF-α); Reduced cytotoxic antitumor activity; Impaired differentiation of T cells. | [21] |
| Propofol | Murine CD4+ T cells | Proliferation (IL-2); Survival (IL-7) assays. | Suppression of T cell–dependent antibody responses; Inhibition of IL-7-mediated survival of naïve CD4+ T cells. | [22] |
| Anesthetic | Model | Methods | Result | Reference |
|---|---|---|---|---|
| Sevoflurane vs. Propofol | Rats (wound healing model) | Tissue perfusion, wound closure rate | Sevoflurane short-term increased perfusion; long-term delayed healing. | [38] |
| Propofol | Rats (CLP sepsis model) | IL-6 levels, vascular permeability, survival | Increased mortality; increased IL-6, vascular dysfunction | [39] |
| Sevoflurane vs. Propofol | Septic Rats (immune cells ex vivo) | IL-10, TGF-β release, neutrophil phagocytosis | Sevoflurane increased anti-inflammatory cytokines & phagocytosis | [40] |
| Sevoflurane | Septic mice (CLP model) | Survival; bacterial load, IL-1β, TNF-α, IL-6 levels | Increased survival; Decreased bacterial load and cytokines. | [41] |
| Ketamine/Xylazine vs. Halothane | Mice (influenza A infection) | Viral load; lung histopathology | Ketamine increased viral load and worsened pathology. | [42] |
| Volatile Anesthesia | Horses (BAL samples) | LPS stimulation; TNF-α, IL-6 production. | Decreased pulmonary cytokine response. | [43] |
| Propofol | Mice (Listeria infection) | Bacterial burden; histopathology; survival | Increased bacterial load and mortality. | [44] |
| Anesthetic | Patient Population | Outcome | Result | Reference |
|---|---|---|---|---|
| Etomidate vs. Propofol | Cardiac surgery patients | Pneumonia, sepsis incidence | Etomidate increased pneumonia and sepsis | [45] |
| Sevoflurane vs. Propofol | Esophagectomy patients | Pneumonia incidence | No significant difference | [46] |
| Dexmedetomidine vs. Propofol | Coronary artery bypass graft surgery patients | Pulmonary and wound infection rates. | DEX reduces infection rates | [47] |
| Volatile vs. Propofol | Colorectal surgery patients | SSI incidence | SSI higher with volatiles vs. propofol | [48] |
| Sevoflurane vs. Propofol | Gastrointestinal surgery patients | SSI incidence | SSI higher with Propofol vs. sevoflurane | [49] |
| Sevoflurane vs. Desflurane | Pancreaticoduodenectomy patients | SSI incidence | Lower SSI with desflurane | [50] |
| Sevoflurane vs. Propofol | Total knee arthroplasty patients | Joint infection incidence | No significant difference | [51] |
| Sevoflurane (dose effect) | Pediatric intestinal surgery patients | SSI incidence | High dose sevoflurane—higher SSI | [52] |
| Volatile vs. Propofol | Esophagectomy patients | Pulmonary infection outcomes | Volatile decreased pulmonary infections (higher IL-10, lower IL-6 and TNF-α. | [53] |
| Multiple anesthetics | Various surgical procedures | C-reactive protein, IL-6 levels | Propofol total intravenous anesthesia decreased C-reactive protein levels, volatiles had no effect. | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, T.P.L.; Jazzar, L.; Watts, P.; Lehmann, C. Impact of General Anesthetics on Postoperative Infections—A Narrative Review. Life 2025, 15, 1662. https://doi.org/10.3390/life15111662
Butt TPL, Jazzar L, Watts P, Lehmann C. Impact of General Anesthetics on Postoperative Infections—A Narrative Review. Life. 2025; 15(11):1662. https://doi.org/10.3390/life15111662
Chicago/Turabian StyleButt, Taylor P. L., Lynn Jazzar, Palak Watts, and Christian Lehmann. 2025. "Impact of General Anesthetics on Postoperative Infections—A Narrative Review" Life 15, no. 11: 1662. https://doi.org/10.3390/life15111662
APA StyleButt, T. P. L., Jazzar, L., Watts, P., & Lehmann, C. (2025). Impact of General Anesthetics on Postoperative Infections—A Narrative Review. Life, 15(11), 1662. https://doi.org/10.3390/life15111662

