Trends and Challenges in Noninvasive Hemodynamic Monitoring of Neonates Following Cardiac Surgery: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Indirect Hemodynamic Monitoring
3.1. Blood Pressure
3.2. Heart Rate
3.3. Urine Output
3.4. Capillary Refill Time
3.5. Central–Peripheral Temperature Difference
3.6. Lactate
3.7. Venous Oxygen Saturation
3.8. Vasoactive–Inotropic Score
3.9. Low Cardiac Output Syndrome Score
4. Direct Hemodynamic Monitoring
4.1. Echocardiography
4.2. Cardiac Magnetic Resonance Imaging
4.3. Transcutaneous Doppler
4.4. Near-Infrared Spectroscopy
4.5. Thoracic Electrical Biosensing Technology
4.6. Microcirculatory Monitoring Devices
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PubMed | Scopus |
---|---|
((“neonate”[All Fields] OR “newborn”[All Fields] OR “infant”[All Fields]) AND (“congenital heart disease”[All Fields] OR “heart disease”[All Fields] OR “CHD”[All Fields]) AND (“hemodynamic”[All Fields] OR “hemodynamics”[All Fields]) AND (“monitoring”[All Fields] OR “monitor”[All Fields])) | TITLE-ABS-KEY ((((neonate OR newborn OR infant) AND (“congenital heart disease” OR “heart disease” OR CHD) AND (hemodynamic OR hemodynamics) AND monitoring OR monitor)))) |
Database | References | References After Title and Abstract Screening |
---|---|---|
PubMed | 56 | 29 |
Scopus | 189 | 53 |
Manual search | 13 | 13 |
Total articles | 167 | 75 (after duplicates’ removal and adjunct of articles from manual search) |
References
- de Boode, W.P. Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum. Dev. 2010, 86, 137–141. [Google Scholar] [CrossRef]
- Bridier, A.; Shcherbakova, M.; Kawaguchi, A.; Poirier, N.; Said, C.; Noumeir, R.; Jouvet, P. Hemodynamic assessment in children after cardiac surgery: A pilot study on the value of infrared thermography. Front. Pediatr. 2023, 11, 1083962. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Fu, C.; Bai, G.; Cuan, L.; Tang, X.; Jin, C.; Jin, H.; Zhu, J.; Xie, C. Risk factors of postoperative low cardiac output syndrome in children with congenital heart disease: A systematic review and meta-analysis. Front. Pediatr. 2023, 10, 954427. [Google Scholar] [CrossRef]
- Wernovsky, G.; Wypij, D.; Jonas, R.A.; Mayer, J.E.; Hanley, F.L.; Hickey, P.R.; Walsh, A.Z.; Chang, A.C.; Castañeda, A.R.; Newburger, J.W.; et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 1995, 92, 2226–2235. [Google Scholar] [CrossRef]
- Hoffman, T.M.; Wernovsky, G.; Atz, A.M.; Bailey, J.M.; Akbary, A.; Kocsis, J.F.; Nelson, D.P.; Chang, A.C.; Kulik, T.J.; Spray, T.L.; et al. Prophylactic Intravenous Use of Milrinone After Cardiac Operation in Pediatrics (PRIMACORP) study. Am. Heart J. 2002, 143, 15–21. [Google Scholar] [CrossRef]
- Gaies, M.; Pasquali, S.K.; Donohue, J.E.; Dimick, J.B.; Limbach, S.; Burnham, N.; Ravishankar, C.; Ohye, R.G.; Gaynor, J.W.; Mascio, C.E. Seminal Postoperative Complications and Mode of Death After Pediatric Cardiac Surgical Procedures. Ann. Thorac. Surg. 2016, 102, 628–635. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Kelly-Geyer, J.F.; Moynihan, K.; Schoonen, A. Definitions of low cardiac output syndrome after cardiac surgery and their effect on the incidence of intraoperative LCOS: A literature review and cohort study. Front. Cardiovasc. Med. 2022, 9, 926957. [Google Scholar] [CrossRef]
- Vuylsteke, A.; Hepburn, L.; Bartakke, A. The Royal College of Anaesthetists. Chapter 18: Guidelines for the Provision of Anaesthesia Services for Cardiac and Thoracic Procedures. Available online: https://www.rcoa.ac.uk/gpas/chapter-18#glossary (accessed on 12 July 2025).
- Menger, J.; Edlinger-Stanger, M.; Dworschak, M.; Steinlechner, B. Postoperative management of patients undergoing cardiac surgery in Austria: A national survey on current clinical practice in hemodynamic monitoring and postoperative management. Wien. Klin. Wochenschr. 2018, 130, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Tibby, S.M.; Hatherill, M.; Marsh, M.J.; Murdoch, I.A. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch. Dis. Child. 1997, 77, 516–518. [Google Scholar] [CrossRef]
- Batton, B. Neonatal Blood Pressure Standards: What Is “Normal”? Clin. Perinatol. 2020, 47, 469–485. [Google Scholar] [CrossRef]
- Singh, Y.; Villaescusa, J.U.; da Cruz, E.M.; Tibby, S.M.; Bottari, G.; Saxena, R.; Guillén, M.; Herce, J.L.; Di Nardo, M.; Cecchetti, C.; et al. Recommendations for hemodynamic monitoring for critically ill children—Expert consensus statement issued by the cardiovascular dynamics section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit. Care 2020, 24, 620. [Google Scholar] [CrossRef]
- Woodman, H.M.; Lee, C.; Ahmed, A.N.; Malik, B.A.; Mellor, S.; Brown, L.J.; Gentle, L.; Harky, A. Cardiac output monitoring in paediatric cardiac surgery: A review. Cardiol. Young 2021, 31, 23–30. [Google Scholar] [CrossRef]
- Kumar, A.; Joshi, R.K. Hemodynamic monitoring in pediatric cardiac critical care. J. Pediatr. Crit. Care 2025, 12, 125–133. [Google Scholar] [CrossRef]
- Schiefenhövel, F.; Trauzeddel, R.F.; Sander, M.; Heringlake, M.; Groesdonk, H.V.; Grubitzsch, H.; Kruppa, J.; Berger, C.; Treskatsch, S.; Balzer, F. High central venous pressure after cardiac surgery might depict hemodynamic deterioration associated with increased morbidity and mortality. J. Clin. Med. 2021, 10, 3945. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Cavallazzi, R. Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense. Crit. Care Med. 2013, 41, 1774–1781. [Google Scholar] [CrossRef]
- Özeren, M.; Lu, O.H.; Makharoblidze, K.; AnkaralI, H. Heart Rate Variability in Children with Congenital Heart Disease Before and After Open Heart Surgery. J. Hong Kong Coll. Cardiol. 2009, 17, 3. [Google Scholar] [CrossRef]
- Karunanithi, Z.; Jegatheeswaran, A.; Goodfellow, S.D.; Dixon, W.; Hjortdal, V.E.; Eytan, D.; Mazwi, M.L. Heart rate variability is markedly abnormal following surgical repair of atrial and ventricular septal defects in pediatric patients. Int. J. Cardiol. Congenit. Heart Dis. 2022, 7, 100333. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N. Introduction Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Goldstein, S.L. Urine Output Assessment in Acute Kidney Injury: The Cheapest and Most Impactful Biomarker. Front. Pediatr. 2020, 7, 565. [Google Scholar] [CrossRef]
- Alten, J.A.; Cooper, D.S.; Blinder, J.J.; Selewski, D.T.; Tabbutt, S.; Sasaki, J.; Gaies, M.G.; Bertrandt, R.A.; Smith, A.H.; Reichle, G.; et al. Epidemiology of Acute Kidney Injury After Neonatal Cardiac Surgery: A Report From the Multicenter Neonatal and Pediatric Heart and Renal Outcomes Network. Crit. Care Med. 2021, 49, e941–e951. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Hur, M.; Kim, E.; Kim, W.H.; Park, J.B.; Kim, Y.; Yang, J.H.; Jun, T.G.; Kim, C.S. Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: A retrospective observational study. PLoS ONE 2016, 11, e0166328. [Google Scholar] [CrossRef]
- Pinsky, M.R.; Cecconi, M.; Chew, M.S.; De Backer, D.; Douglas, I.; Edwards, M.; Hamzaoui, O.; Hernandez, G.; Martin, G.; Monnet, X.; et al. Effective hemodynamic monitoring. Crit. Care 2022, 26, 294. [Google Scholar] [CrossRef] [PubMed]
- Hernández, G.; Castro, R.; Bakker, J. Capillary refill time: The missing link between macrocirculation and microcirculation in septic shock? J. Thorac. Dis. 2020, 12, 1127–1129. [Google Scholar] [CrossRef]
- Schey, B.M.; Williams, D.Y.; Bucknall, T. Skin temperature and core-peripheral temperature gradient as markers of hemodynamic status in critically ill patients: A Review. Heart Lung J. Acute Crit. Care 2010, 39, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, A.; Bouisse, C.; Mottard, N.; Thiollière, F.; Anselin, S.; Piriou, V.; Allaouchiche, B. Mottling score and skin temperature in septic shock: Relation and impact on prognosis in ICU. PLoS ONE 2018, 13, e0202329. [Google Scholar] [CrossRef]
- Murdoch, I.A.; Qureshi, S.A.; Mitchell, A.; Huggon, I.C. Core-peripheral temperature gradient in children: Does it reflect clinically important changes in circulatory haemodynamics? Acta Paediatr. 1993, 82, 773–776. [Google Scholar] [CrossRef]
- Duke, T.; South, M.; Karl, T.R. Early markers of major adverse events in children after cardiac operations. J. Thorac. Cardiovasc. Surg. 1997, 114, 1042–1052. [Google Scholar] [CrossRef]
- Tibby, S.M.; Hatherill, M.; Murdoch, I.A. Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch. Dis. Child. 1999, 80, 163–166. [Google Scholar] [CrossRef]
- Ulate, K.P.; Yanay, O.; Jeffries, H.; Baden, H.; Di Gennaro, J.L.; Zimmerman, J. An Elevated Low Cardiac Output Syndrome Score Is Associated With Morbidity in Infants After Congenital Heart Surgery. Pediatr. Crit. Care Med. 2017, 18, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Alexi-Meskhishvili, V.; Popov, S.A.; Nikoljuk, A.P. Evaluation of Hemodynamics in Infants and Small Babies after Open Heart Surgery. Thorac. Cardiovasc. Surg. 1984, 32, 4–9. [Google Scholar] [CrossRef]
- Roeleveld, P.P.; de Klerk, J.C.A. The Perspective of the Intensivist on Inotropes and Postoperative Care Following Pediatric Heart Surgery: An International Survey and Systematic Review of the Literature. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 10–21. [Google Scholar] [CrossRef]
- Aslan, N.; Yildizdaş, D.; Göçen, U.; Erdem, S.; Demir, F.; Yöntem, A.; Horoz, Ö.Ö.; Sertdemir, Y. Low cardiac output syndrome score to evaluate postoperative cardiac surgery patients in a pediatric intensive care unit. Tur. Kardiyol. Dern. Ars. 2020, 48, 504–513. [Google Scholar]
- Charpie, J.R.; Dekeon, M.K.; Goldberg, C.S.; Mosca, R.S.; Bove, E.L.; Kulik, T.J. Serial blood lactate measurements predict early outcome after neonatal repair or palliation for complex congenital heart disease. J. Thorac. Cardiovasc. Surg. 2000, 120, 73–80. [Google Scholar] [CrossRef]
- Jansen, T.C.; Van Bommel, J.; Schoonderbeek, F.J.; Sleeswijk Visser, S.J.; Van Der Klooster, J.M.; Lima, A.P.; Willemsen, S.P.; Bakker, J. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 752–761. [Google Scholar] [CrossRef]
- Kattan, E.; Hernández, G.; Ospina-Tascón, G.; Valenzuela, E.D.; Bakker, J.; Castro, R. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: A post hoc analysis of the ANDROMEDA-SHOCK study. Ann. Intensive Care 2020, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; de Backer, D.; Hernandez, G. Lactate-guided resuscitation saves lives: We are not sure. Intensive Care Med. 2016, 42, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Isgrò, G.; Carlucci, C.; De, T.; Torre, L.; Enginoli, S.; Frigiola, A. Central venous oxygen saturation and blood lactate levels during cardiopulmonary bypass are associated with outcome after pediatric cardiac surgery. Crit. Care 2010, 14, R149. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.M.; Araujo, D.D.; Dantas, G.M.; Cunha, L.C.C.; Zeferino, S.P.; Galas, F.B. Goal-directed therapy with continuous SvcO2 monitoring in pediatric cardiac surgery: The PediaSat single-center randomized trial. Braz. J. Anesthesiol. (Engl. Ed.) 2025, 75, 844614. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Hernández, G.; Cecconi, M. Understanding the venous–arterial CO2 to arterial–venous O2 content difference ratio. Intensive Care Med. 2016, 42, 1801–1804. [Google Scholar] [CrossRef]
- Taiana, M.; Tomasella, I.; Russo, A.; Lerose, A.; Ceola Graziadei, M.; Corubolo, L.; Rama, J.; Schweiger, V.; Vignola, A.; Polati, E.; et al. Analysis of P(v-a)CO2/C(a-v)O2 Ratio and Other Perfusion Markers in a Population of 98 Pediatric Patients Undergoing Cardiac Surgery. J. Clin. Med. 2023, 12, 5700. [Google Scholar] [CrossRef]
- Tandon, A.; Bhattacharya, S.; Morca, A.; Inan, O.T.; Munther, D.S.; Ryan, S.D.; Latifi, S.Q.; Lu, N.; Lasa, J.J.; Marino, B.S.; et al. Non-invasive Cardiac Output Monitoring in Congenital Heart Disease. Curr. Treat. Options Pediatr. 2023, 9, 247–259. [Google Scholar] [CrossRef]
- Gaies, M.G.; Gurney, J.G.; Yen, A.H.; Napoli, M.L.; Gajarski, R.J.; Ohye, R.G.; Charpie, J.R.; Hirsch, J.C. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr. Crit. Care Med. 2010, 11, 234–238. [Google Scholar] [CrossRef]
- Miletic, K.G.; Spiering, T.J.; Delius, R.E.; Walters, H.L.; Mastropietro, C.W. Use of a novel vasoactive-ventilation-renal score to predict outcomes after paediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Akunuri, S.; Jain, A.; Mazahir, R.; Hegde, R. Vasoactive-ventilation-renal score in predicting outcome postcardiac surgery in children. Int. J. Crit. Illn. Inj. Sci. 2018, 8, 143–148. [Google Scholar]
- Jacobs, J.P.; O’Brien, S.M.; Pasquali, S.K.; Jacobs, M.L.; Lacour-Gayet, F.G.; Tchervenkov, C.I.; Austin, E.H.; Pizarro, C.; Pourmoghadam, K.K.; Scholl, F.G.; et al. Variation in outcomes for risk-stratified pediatric cardiac surgical operations: An analysis of the STS congenital heart surgery database. In Annals of Thoracic Surgery; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 94, pp. 564–572. [Google Scholar]
- Zubarioglu, A.U.; Yıldırım, Ö.; Zeybek, C.; Balaban, İ.; Yazıcıoglu, V.; Aliyev, B. Validation of the Vasoactive-Ventilation-Renal Score for Neonatal Heart Surgery. Cureus 2021, 13, e15110. [Google Scholar] [CrossRef]
- Belletti, A.; Lerose, C.C.; Zangrillo, A.; Landoni, G. Vasoactive-Inotropic Score: Evolution, Clinical Utility, and Pitfalls. J. Cardiothorac. Vasc. Anesth. 2021, 35, 3067–3077. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Hajjar, L.; Monnet, X. Monitoring cardiac output. Intensive Care Med. 2024, 50(11), 1912–1915. [Google Scholar] [CrossRef]
- Singh, Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front. Pediatr. 2017, 5, 201. [Google Scholar] [CrossRef]
- Bischoff, A.R.; Bhombal, S.; Altman, C.A.; Fraga, M.V.; Punn, R.; Rohatgi, R.K.; Lopez, L.; McNamara, P.J. Targeted Neonatal Echocardiography in Patients With Hemodynamic Instability. Pediatrics 2022, 150, e2022056415I. [Google Scholar] [CrossRef]
- Pees, C.; Glagau, E.; Hauser, J.; Michel-Behnke, I. Reference values of aortic flow velocity integral in 1193 healthy infants, children, and adolescents to quickly estimate cardiac stroke volume. Pediatr. Cardiol. 2013, 34, 1194–1200. [Google Scholar] [CrossRef]
- Tissot, C.; Singh, Y.; Sekarski, N. Echocardiographic evaluation of ventricular function-for the neonatologist and pediatric intensivist. Front. Pediatr. 2018, 6, 79. [Google Scholar] [CrossRef]
- de Boode, W.P. Advanced Hemodynamic Monitoring in the Neonatal Intensive Care Unit. Clin. Perinatol. 2020, 47, 423–434. [Google Scholar] [CrossRef]
- Cecconi, M.; Rhodes, A.; Poloniecki, J.; Della Rocca, G.; Grounds, R.M. Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies--with specific reference to the measurement of cardiac output. Crit. Care 2009, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Ficial, B.; Finnemore, A.E.; Cox, D.J.; Broadhouse, K.M.; Price, A.N.; Durighel, G.; Ekitzidou, G.; Hajnal, J.V.; Edwards, A.D.; Groves, A.M. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J. Am. Soc. Echocardiogr. 2013, 26, 1365–1371. [Google Scholar] [CrossRef]
- Ricci, Z.; Iacobelli, R.; Romagnoli, S. The Gold Standard of Pediatric Hemodynamic Monitoring: Not All That Glitters Is Gold. Anesth. Analg. 2023, 136, E26–E27. [Google Scholar] [CrossRef] [PubMed]
- Chew, M.S.; Poelaert, J. Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-Year review of the literature. Intensive Care Med. 2003, 29, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Gürdoğan, M.; Ustabaşıoğlu, F.E.; Kula, O.; Korkmaz, S. Cardiac magnetic resonance imaging and transthoracic echocardiography: Investigation of concordance between the two methods for measurement of the cardiac chamber. Medicina 2019, 55, 260. [Google Scholar] [CrossRef]
- Sumbel, L.; Nagaraju, L.; Ogbeifun, H.; Agarwal, A.; Bhalala, U. Comparing cardiac output measurements using electrical cardiometry versus phase contrast cardiac magnetic resonance imaging. Prog. Pediatr. Cardiol. 2022, 66, 101551. [Google Scholar] [CrossRef]
- Menif, K.; Ayari, A.; Louati, A.; Hassine, S.I.H.; Bouziri, A.; Borgi, A. Agreement of cardiac index measurements between ultrasonic cardiac output monitor and transthoracic echocardiography in neonates. Tunis. Medicale 2024, 102, 565–570. [Google Scholar] [CrossRef]
- Leth-Olsen, M.; Døhlen, G.; Torp, H.; Nyrnes, S.A. Cerebral blood flow dynamics during cardiac surgery in infants. Pediatr. Res. 2025, 97, 625–633. [Google Scholar] [CrossRef]
- Leth-Olsen, M.; Døhlen, G.; Torp, H.; Nyrnes, S.A. Instant Detection of Cerebral Blood Flow Changes in Infants with Congenital Heart Disease during Transcatheter Interventions. J. Clin. Med. 2024, 13, 3115. [Google Scholar] [CrossRef]
- Aslan, N.; Yildizdas, D. Low Cardiac Output Syndrome after Cardiac Surgery: A Life-Threatening Condition from the Perspective of Pediatric Intensivists. Turk. Kardiyol. Dern. Ars. 2022, 50, 284–292. [Google Scholar] [CrossRef]
- Weber, F.; Scoones, G.P. A practical approach to cerebral near-infrared spectroscopy (NIRS) directed hemodynamic management in noncardiac pediatric anesthesia. Pediatr. Anesth. 2019, 29, 993–1001. [Google Scholar] [CrossRef]
- Aly, S.A.; Zurakowski, D.; Glass, P.; Skurow-Todd, K.; Jonas, R.A.; Donofrio, M.T. Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenit. Heart Dis. 2017, 12, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.M.; Ghanayem, N.S.; Scott, J.P.; Tweddell, J.S.; Mitchell, M.E.; Mussatto, K.A. Postoperative Cerebral and Somatic Near-Infrared Spectroscopy Saturations and Outcome in Hypoplastic Left Heart Syndrome. Ann. Thorac. Surg. 2017, 103, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Alderliesten, T.; Dix, L.; Baerts, W.; Caicedo, A.; Van Huffel, S.; Naulaers, G.; Groenendaal, F.; Van Bel, F.; Lemmers, P. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr. Res. 2016, 79, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Baerts, W.; Alderliesten, T.; Derks, J.; Lemmers, P.; van Bel, F. Growth restriction and gender influence cerebral oxygenation in preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F156–F161. [Google Scholar] [CrossRef] [PubMed]
- Narula, J.; Chauhan, S.; Ramakrishnan, S.; Gupta, S.K. Electrical Cardiometry: A Reliable Solution to Cardiac Output Estimation in Children With Structural Heart Disease. J. Cardiothorac. Vasc. Anesth. 2017, 31, 912–917. [Google Scholar] [CrossRef]
- Li, F.; Dong, W. Research Progress of Noninvasive Cardiac Output Monitor (NICOTM) and Hemodynamic Monitor in Neonates. Clin. Exp. Obstet. Gynecol. 2023, 50, 211. [Google Scholar] [CrossRef]
- Grollmuss, O.; Gonzalez, P. Non-invasive cardiac output measurement in low and very low birth weight infants: A method comparison. Front. Pediatr. 2014, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Drabu, B.; Soleymani, S.; Seri, I. Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: A comparison with echocardiography. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F340–F343. [Google Scholar] [CrossRef] [PubMed]
- Holtby, H.; Skowno, J.J.; Kor, D.J.; Flick, R.P.; Uezono, S. New technologies in pediatric anesthesia. Paediatr. Anaesth. 2012, 22, 952–961. [Google Scholar] [CrossRef]
- Ibrahim, H.; Eldin, M.M.; Kamel, W.; Salah, E.D.; El Din, A.E.; Bakry, N. Post-Operative Haemodynamic Monitoring of Patients undergoing Corrective Open Heart Surgery for Structural Heart Defects. Int. J. Child. Health Nutr. 2025, 14, 46–58. [Google Scholar] [CrossRef]
- Sumbel, L.; Wats, A.; Salameh, M.; Appachi, E.; Bhalala, U. Thoracic Fluid Content (TFC) Measurement Using Impedance Cardiography Predicts Outcomes in Critically Ill Children. Front. Pediatr. 2021, 8, 564902. [Google Scholar] [CrossRef]
- Awadhare, P.; Patel, R.; McCallin, T.; Mainali, K.; Jackson, K.; Starke, H.; Bhalala, U. Non-invasive Cardiac Output Monitoring and Assessment of Fluid Responsiveness in Children With Shock in the Emergency Department. Front. Pediatr. 2022, 10, 857106. [Google Scholar] [CrossRef]
- Fathy, S.; Hasanin, A.M.; Raafat, M.; Mostafa, M.M.A.; Fetouh, A.M.; Elsayed, M.; Badr, E.M.; Kamal, H.M.; Fouad, A.Z. Thoracic fluid content: A novel parameter for predicting failed weaning from mechanical ventilation. J. Intensive Care 2020, 8, 20. [Google Scholar] [CrossRef]
- Wilken, M.; Oh, J.; Pinnschmidt, H.O.; Singer, D.; Blohm, M.E. Effect of hemodialysis on impedance cardiography (electrical velocimetry) parameters in children. Pediatr. Nephrol. 2020, 35, 669–676. [Google Scholar] [CrossRef]
- Martini, S.; Gatelli, I.F.; Vitelli, O.; Vitali, F.; De Rienzo, F.; Parladori, R.; Corvaglia, L.; Martinelli, S. Impact of patent ductus arteriosus on non-invasive assessments of lung fluids in very preterm infants during the transitional period. Eur. J. Pediatr. 2023, 182, 4247–4251. [Google Scholar] [CrossRef] [PubMed]
- van Wyk, L.; Austin, T.; Barzilay, B.; Bravo, M.C.; Breindahl, M.; Czernik, C.; Dempsey, E.; de Boode, W.P.; de Vries, W.; Eriksen, B.H.; et al. A recommendation for the use of electrical biosensing technology in neonatology. Pediatr. Res. 2024, 97, 510–523. [Google Scholar] [CrossRef]
- Erdem, Ö.; Ince, C.; Tibboel, D.; Kuiper, J.W. Assessing the microcirculation with handheld vital microscopy in critically ill neonates and children: Evolution of the technique and its potential for critical care. Front. Pediatr. 2019, 7, 273. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Urbano, J.; Solana, M.J.; Hervías, M.; Pita, A.; Pérez, R.; Álvarez, R.; Teigell, E.; Gil-Jaurena, J.M.; Zamorano, J.; et al. Microcirculatory differences in children with congenital heart disease according to cyanosis and age. Front. Pediatr. 2019, 7, 264. [Google Scholar] [CrossRef]
- Erdem, Ö.; de Graaff, J.C.; Hilty, M.P.; Kraemer, U.S.; de Liefde, I.I.; van Rosmalen, J.; Ince, C.; Tibboel, D.; Kuiper, J.W. Microcirculatory Monitoring in Children with Congenital Heart Disease Before and After Cardiac Surgery. J. Cardiovasc. Transl. Res. 2023, 16, 1333–1342. [Google Scholar] [CrossRef]
- Nussbaum, C.; Haberer, A.; Tiefenthaller, A.; Januszewska, K.; Chappell, D.; Brettner, F.; Mayer, P.; Dalla Pozza, R.; Genzel-Boroviczény, O. Perturbation of the microvascular glycocalyx and perfusion in infants after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2015, 150, 1474–1481.e1. [Google Scholar] [CrossRef]
- Scolletta, S.; Marianello, D.; Isgrò, G.; Dapoto, A.; Terranova, V.; Franchi, F.; Baryshnikova, E.; Carlucci, C.; Ranucci, M. Microcirculatory changes in children undergoing cardiac surgery: A prospective observational study. Br. J. Anaesth. 2016, 117, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Borzage, M.; Noori, S.; Seri, I. Neonatal hemodynamics: Monitoring, data acquisition and analysis. Expert Rev. Med. Devices 2012, 9, 501–511. [Google Scholar] [CrossRef] [PubMed]
Low Cardiac Output Syndrome Score (LCOSS) [30,33] | Vasoactive Inotropic Score (VIS) [48] | Ventilation Index (VI) | Vasoactive-Ventilation-Renal Score (VVR) [47] | |
---|---|---|---|---|
Parameters | heart rate (HR) urine output (UO) lactate level peripheral temperature * fluid bolus requirement vasoactive-inotrope requirement ** cerebral and renal oxygen saturation (ScO2) *** | dopamine dose (μg/kg/min) dobutamine dose (μg/kg/min) epinephrine dose (μg/kg/min) norepinephrine dose (μg/kg/min) milrinone dose (μg/kg/min) terlipressin dose (μg/min) vasopressin dose (U/kg/min) levosimendan dose (μg/kg/min) methylene blue dose (mg/kg/h) phenylephrine dose (μg/kg/min) enoximone dose (μg/kg/min) olprinone dose (μg/kg/min) angiotensin II dose (ng/kg/min) | ventilator respiratory rate (RR) peak inspiratory pressure (PIP) positive end-expiratory pressure (PEEP) arterial carbon dioxide pressure (PaCO2) | ventilation index (VI) vasoactive inotropic score (VIS) ΔCreatinine **** |
Formula | Assign 1 point for: HR > 20% for age-adjusted normal value UO < 1 mL/kg/h Lactate > 2 mmol/L Toe temperature < 30 °C OR CRT > 3 s * Fluid bolus requirement > 30 mL/kg/day Vasoactive-inotrope requirement > milrinone 0.5 μg/kg/min OR VIS > 5 ** Cerebral NIRS < 50% and renal NIRS < 75% *** | 10,000 × vasopressin dose + 100 × epinephrine dose + 100 × norepinephrine dose + 50 × levosimendan dose + 25 × olprinone dose + 20 × methylene blue dose + 10 × milrinone dose + 10 × phenylephrine dose + 10 × terlipressin dose + 0.25 × angiotensin II dose dobutamine dose + dopamine dose + enoximone dose | (RR × [PIP − PEEP] × PaCO2)/1000 | VI + VIS + (ΔCreatinine × 10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedelcu, C.; Ionescu, N.S.; Bizubac, A.M.; Filip, C.; Cirstoveanu, C. Trends and Challenges in Noninvasive Hemodynamic Monitoring of Neonates Following Cardiac Surgery: A Narrative Review. Life 2025, 15, 1621. https://doi.org/10.3390/life15101621
Nedelcu C, Ionescu NS, Bizubac AM, Filip C, Cirstoveanu C. Trends and Challenges in Noninvasive Hemodynamic Monitoring of Neonates Following Cardiac Surgery: A Narrative Review. Life. 2025; 15(10):1621. https://doi.org/10.3390/life15101621
Chicago/Turabian StyleNedelcu, Carmina, Nicolae Sebastian Ionescu, Ana Mihaela Bizubac, Cristina Filip, and Catalin Cirstoveanu. 2025. "Trends and Challenges in Noninvasive Hemodynamic Monitoring of Neonates Following Cardiac Surgery: A Narrative Review" Life 15, no. 10: 1621. https://doi.org/10.3390/life15101621
APA StyleNedelcu, C., Ionescu, N. S., Bizubac, A. M., Filip, C., & Cirstoveanu, C. (2025). Trends and Challenges in Noninvasive Hemodynamic Monitoring of Neonates Following Cardiac Surgery: A Narrative Review. Life, 15(10), 1621. https://doi.org/10.3390/life15101621