Innate Immune Signaling in Gliomas: Regulatory Mechanisms and Targeting Potential in Tumor Progression
Abstract
1. Introduction
2. Main Functions of Innate Immune Receptors and Their Roles in Glioma Development
2.1. Toll-like Receptors (TLRs)
2.2. NOD-like Receptors (NLRs)
2.3. RIG-I-like Receptors
2.4. STING Pathway (cGAS-STING)
2.5. Scavenger Receptors
2.6. C-Type Lectin Receptors (CLRs)
Receptor | Tumor Cell Mechanisms | Immune Cell Mechanisms | References |
---|---|---|---|
TLR2 | Drives tumor proliferation and invasion via NF-κB | Drives tumor progression via NF-κB, IL-6, TNF-α pathway, cytokine release | [17,29] |
TLR3 | Induces apoptosis via type I IFN but secondary pathway with TLR4 can bias toward pro-tumor | [27,28,29,30] | |
TLR4 | Drives tumor proliferation and invasion via NF-κB, IL-6, TNF-α pathway, especially in absence of PTEN | Drives tumor progression via NF-κB, IL-6, TNF-α pathway, cytokine release | [17,35,36,37,38,39] |
TLR7 | Drives tumor progression via IL-10 but agonists shown to have anti-tumor potential | [17,28,40,41] | |
TLR9 | Drives tumor proliferation and invasion via CCL2, CCL5 and MMP-1, MMP-9 | Linked to various chemokines CCL2, CCL5 and MMP-1, MMP-9 | [43,44,45] |
NLR | Incudes pytoptosis via IL-1β, IL-18 from inflammasomes | Drives tumor progression as NLRP3 can trigger PTEN/AKT, NF-κB | [47,48,49,50,51,53] |
RLR | RIG-I/MDA5 activation induces IFN production and apoptosis | Induces pathways which induce cytokine release and type I IFN expression | [54,55,56,57] |
STING | Drives apoptosis through IFNs but can suppress both cGAS and STING expression | Drives apoptosis through type I IFNs, CD8+ T cell proliferation | [62,63,64,65,66,67,68,69,70,71,72,73] |
Scavenger receptors | Binds AGEs and RAGEs to drive inflammation | Drives tumor progression when CXCL16-CXCR6 fuels lipid metabolism in tumor cells and TAMs but can induce apoptosis when CXCL16-CXCR6 recruits effector T cells | [74,75,76,77,78,79,80,81,82,86,87,88] |
CLRs | Drives tumor progression as CLRs are used to include tolerogenic signals, creating an immunosuppressive TME | Dampen anti-tumor immunity via Tregs and MDSCs | [83,84,85] |
3. Cross-Talk of Innate Immune Receptors with Tumor Microenvironment
3.1. Tumor-Associated Macrophages (TAMs)
3.2. Myeloid-Derived Suppressor Cells (MDSCs)
3.3. Monocytes
3.4. Natural Killer Cells
3.5. Neutrophils
3.6. Cytokine Networks
4. Challenges and Therapeutic Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linares, C.A.; Varghese, A.; Ghose, A.; Shinde, S.D.; Adeleke, S.; Sanchez, E.; Sheriff, M.; Chargari, C.; Rassy, E.; Boussios, S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int. J. Mol. Sci. 2023, 24, 13215. [Google Scholar] [CrossRef]
- Kanderi, T.; Munakomi, S.; Gupta, V. Glioblastoma Multiforme; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Ohgaki, H.; Kleihues, P. Genetic Profile of Astrocytic and Oligodendroglial Gliomas. Brain Tumor Pathol. 2011, 28, 177–183. [Google Scholar] [CrossRef]
- Komori, T. Pathology and Genetics of Diffuse Gliomas in Adults. Neurol. Med. Chir. 2015, 55, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Bender, S.; Jones, D.T.W.; Lichter, P.; Grill, J.; Becher, O.; Hawkins, C.; Majewski, J.; Jones, C.; Costello, J.F.; et al. Paediatric and Adult Glioblastoma: Multiform (Epi)Genomic Culprits Emerge. Nat. Rev. Cancer 2014, 14, 92–107. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology 2013, 15, ii1–ii56. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, I.; Cockburn, M.; Cozen, W.; Wang, Y.; Preston-Martin, S. A Population-based Description of Glioblastoma Multiforme in Los Angeles County, 1974–1999. Cancer 2005, 104, 2798–2806. [Google Scholar] [CrossRef] [PubMed]
- Jezierzański, M.; Nafalska, N.; Stopyra, M.; Furgoł, T.; Miciak, M.; Kabut, J.; Gisterek-Grocholska, I. Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme—A Literature Review and Clinical Outcomes. Curr. Oncol. 2024, 31, 3994–4002. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, J.K.W.; Broekman, M.L.D.; De Vleeschouwer, S.; Schucht, P.; Nahed, B.V.; Berger, M.S.; Vincent, A.J.P.E. Safe Surgery for Glioblastoma: Recent Advances and Modern Challenges. Neuro-Oncol. Pract. 2022, 9, 364–379. [Google Scholar] [CrossRef]
- Jaoude, D.A.; Moore, J.A.; Moore, M.B.; Twumasi-Ankrah, P.; Ablah, E.; Moore, D.F. Glioblastoma and Increased Survival with Longer Chemotherapy Duration. Kans. J. Med. 2019, 12, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Damodharan, S.; Lara-Velazquez, M.; Williamsen, B.C.; Helgager, J.; Dey, M. Diffuse Intrinsic Pontine Glioma: Molecular Landscape, Evolving Treatment Strategies and Emerging Clinical Trials. J. Pers. Med. 2022, 12, 840. [Google Scholar] [CrossRef]
- Shergalis, A.; Bankhead, A.; Luesakul, U.; Muangsin, N.; Neamati, N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol. Rev. 2018, 70, 412–445. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Wang, K.; Huang, H.; Zhan, Q.; Ding, H.; Li, Y. Toll-like Receptors in Health and Disease. MedComm 2024, 5, e549. [Google Scholar] [CrossRef] [PubMed]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Xun, Y.; Yang, H.; Kaminska, B.; You, H. Toll-like Receptors and Toll-like Receptor-Targeted Immunotherapy against Glioma. J. Hematol. Oncol. 2021, 14, 176. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef]
- Celhar, T.; Magalhães, R.; Fairhurst, A.-M. TLR7 and TLR9 in SLE: When Sensing Self Goes Wrong. Immunol. Res. 2012, 53, 58–77. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Qian, J.; Luo, F.; Yang, J.; Liu, J.; Liu, R.; Wang, L.; Wang, C.; Deng, Y.; Lu, Z.; Wang, Y.; et al. TLR2 Promotes Glioma Immune Evasion by Downregulating MHC Class II Molecules in Microglia. Cancer Immunol. Res. 2018, 6, 1220–1233. [Google Scholar] [CrossRef]
- Broad, A.; Kirby, J.A.; Jones, D.E.J. Toll-like receptor interactions: Tolerance of MyD88-dependent cytokines but enhancement of MyD88-independent interferon-β production. Immunology 2007, 120, 103–111. [Google Scholar] [CrossRef]
- Pereira, M.; Gazzinelli, R.T. Regulation of Innate Immune Signaling by IRAK Proteins. Front. Immunol. 2023, 14, 1133354. [Google Scholar] [CrossRef]
- Walsh, M.C.; Lee, J.; Choi, Y. Tumor Necrosis Factor Receptor- Associated Factor 6 (TRAF6) Regulation of Development, Function, and Homeostasis of the Immune System. Immunol. Rev. 2015, 266, 72–92. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, M.-S.; Kim, H.-A.; Jung, B.-I.; Yang, J.; Narasimhan, P.; Kim, G.S.; Jung, J.E.; Park, E.-H.; Chan, P.H. Oxidative Stress Increases Phosphorylation of IκB Kinase-α by Enhancing NF-ΚB-Inducing Kinase after Transient Focal Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2010, 30, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Macartney, T.; Peggie, M.; Cohen, P. Interleukin-1 and TRAF6-Dependent Activation of TAK1 in the Absence of TAB2 and TAB3. Biochem. J. 2017, 474, 2235–2248. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, J.; Zhao, Y.; Ma, X.; Yi, H. Toll-like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses. J. Zhejiang Univ. Sci. B 2021, 22, 609–632. [Google Scholar] [CrossRef]
- Litak, J.; Grochowski, C.; Litak, J.; Osuchowska, I.; Gosik, K.; Radzikowska, E.; Kamieniak, P.; Rolinski, J. TLR-4 Signaling vs. Immune Checkpoints, MiRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme—Future Perspectives. Int. J. Mol. Sci. 2020, 21, 3114. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Fu, Y. The Critical Role of Toll-like Receptor-Mediated Signaling in Cancer Immunotherapy. Med. Drug Discov. 2022, 14, 100122. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Zhang, N.; Xian, Y.; Tang, Y.; Ye, J.; Reza, F.; He, G.; Wen, X.; Jiang, X. The Multiple Roles of Interferon Regulatory Factor Family in Health and Disease. Signal Transduct. Target. Ther. 2024, 9, 282. [Google Scholar] [CrossRef]
- Vinnakota, K.; Hu, F.; Ku, M.-C.; Georgieva, P.B.; Szulzewsky, F.; Pohlmann, A.; Waiczies, S.; Waiczies, H.; Niendorf, T.; Lehnardt, S.; et al. Toll-like Receptor 2 Mediates Microglia/Brain Macrophage MT1-MMP Expression and Glioma Expansion. Neuro-Oncology 2013, 15, 1457–1468. [Google Scholar] [CrossRef]
- Li, C.; Ma, L.; Liu, Y.; Li, Z.; Wang, Q.; Chen, Z.; Geng, X.; Han, X.; Sun, J.; Li, Z. TLR2 Promotes Development and Progression of Human Glioma via Enhancing Autophagy. Gene 2019, 700, 52–59. [Google Scholar] [CrossRef]
- Sarkaria, J.N.; Hu, L.S.; Parney, I.F.; Pafundi, D.H.; Brinkmann, D.H.; Laack, N.N.; Giannini, C.; Burns, T.C.; Kizilbash, S.H.; Laramy, J.K.; et al. Is the Blood–Brain Barrier Really Disrupted in All Glioblastomas? A Critical Assessment of Existing Clinical Data. Neuro-Oncology 2018, 20, 184–191. [Google Scholar] [CrossRef]
- Tao, J.-C.; Yu, D.; Shao, W.; Zhou, D.-R.; Wang, Y.; Hou, S.-Q.; Deng, K.; Lin, N. Interactions between Microglia and Glioma in Tumor Microenvironment. Front. Oncol. 2023, 13, 1236268. [Google Scholar] [CrossRef]
- Yin, H.; Tan, Y.; Wu, X.; Yan, H.; Liu, F.; Yao, Y.; Jiang, J.; Wan, Q.; Li, L. Association between TLR4 and PTEN Involved in LPS-TLR4 Signaling Response. BioMed Res. Int. 2016, 2016, 6083178. [Google Scholar] [CrossRef]
- Rughetti, A.; Bharti, S.; Savai, R.; Barmpoutsi, S.; Weigert, A.; Atre, R.; Siddiqi, F.; Sharma, R.; Khabiya, R.; Hirani, N.; et al. Imperative Role of Adaptor Proteins in Macrophage Toll-like Receptor Signaling Pathways. Future Sci. OA 2024, 10, 2387961. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. TLR Signaling Pathways. Semin. Immunol. 2004, 16, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-ΚB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.R.; Park, B.S.; Kim, S.Y.; Gu, A.; Kim, D.H.; Lee, J.-S.; Kim, I.S. Cytokine Secreted by S100A9 via TLR4 in Monocytes Delays Neutrophil Apoptosis by Inhibition of Caspase 9/3 Pathway. Cytokine 2016, 86, 53–63. [Google Scholar] [CrossRef]
- Vukmanovic, S.; Blanco, F.C.; Salem, A.K.; Sandler, A.D.; Behlke, M.; Elliott, S.T.; Rose, S.D.; Snyder, J.; Walk, R.M.; Jacobi, A.M. T-Cell Activation Is Enhanced by Targeting IL-10 Cytokine Production in Toll-like Receptor- Stimulated Macrophages. Immunotargets Ther. 2012, 1, 13–23. [Google Scholar] [CrossRef]
- Hu, A.; Sun, L.; Lin, H.; Liao, Y.; Yang, H.; Mao, Y. Harnessing Innate Immune Pathways for Therapeutic Advancement in Cancer. Signal Transduct. Target. Ther. 2024, 9, 68. [Google Scholar] [CrossRef]
- Lai, G.; Wu, H.; Yang, K.; Hu, K.; Zhou, Y.; Chen, X.; Fu, F.; Li, J.; Xie, G.; Wang, H.-F.; et al. Progress of Nanoparticle Drug Delivery System for the Treatment of Glioma. Front. Bioeng. Biotechnol. 2024, 12, 1403511. [Google Scholar] [CrossRef]
- Fehri, E.; Ennaifer, E.; Bel Haj Rhouma, R.; Ardhaoui, M.; Boubaker, S. TLR9 and Glioma: Friends or Foes? Cells 2022, 12, 152. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Muniz-Bongers, L.R.; McClain, C.B.; Saxena, M.; Bongers, G.; Merad, M.; Bhardwaj, N. MMP2 and TLRs Modulate Immune Responses in the Tumor Microenvironment. JCI Insight 2021, 6, e144913. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Lan, Y.; Liu, X.; Li, W. Glioma-Associated Macrophages: Unraveling Their Dual Role in the Microenvironment and Therapeutic Implications. Curr. Med. 2024, 3, 4. [Google Scholar] [CrossRef]
- Grabiec, M.; Sobstyl, M.; Skirecki, T. Nod-like Receptors: The Relevant Elements of Glioblastoma’s Prognostic Puzzle. Pharmacol. Res. 2024, 208, 107411. [Google Scholar] [CrossRef]
- Sundaram, B.; Tweedell, R.E.; Prasanth Kumar, S.; Kanneganti, T.-D. The NLR Family of Innate Immune and Cell Death Sensors. Immunity 2024, 57, 674–699. [Google Scholar] [CrossRef]
- Davis, B.K.; Wen, H.; Ting, J.P.-Y. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu. Rev. Immunol. 2011, 29, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Almeida-da-Silva, C.L.C.; Savio, L.E.B.; Coutinho-Silva, R.; Ojcius, D.M. The Role of NOD-like Receptors in Innate Immunity. Front. Immunol. 2023, 14, 1122586. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Park, J.; Moon, J.-S.; Lim, J. Dysregulation of Inflammasome Activation in Glioma. Cell Commun. Signal. 2023, 21, 239. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Lu, B.; Gao, B.; Shi, Y.; Xu, J.; Yang, R.; Xu, B.; Ding, P. NLRP3 Promotes Glioma Cell Proliferation and Inva-sion via the Interleukin-1β/NF-ΚB P65 Signals. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019, 27, 557–564. [Google Scholar] [CrossRef]
- Sim, J.; Ahn, J.W.; Park, J.; Kim, Y.J.; Jeong, J.Y.; Lee, J.M.; Cho, K.; Ahn, H.J.; Sung, K.S.; Moon, J.S.; et al. Non-canonical NLRC4 inflammasomes in astrocytes contribute to glioma malignancy. Inflamm. Res. 2023, 72, 813–827. [Google Scholar] [CrossRef]
- Saito, T.; Gale, M. Differential Recognition of Double-Stranded RNA by RIG-I–like Receptors in Antiviral Immunity. J. Exp. Med. 2008, 205, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Bufalieri, F.; Basili, I.; Di Marcotullio, L.; Infante, P. Harnessing the Activation of RIG-I Like Receptors to Inhibit Glioblastoma Tumorigenesis. Front. Mol. Neurosci. 2021, 14, 710171. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Wang, W.; Xu, L.; Su, J.; Peppelenbosch, M.P.; Pan, Q. Transcriptional Regulation of Antiviral Interferon-Stimulated Genes. Trends Microbiol. 2017, 25, 573–584. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, L.; Chen, Z.J. Regulation and Function of the CGAS–STING Pathway of Cytosolic DNA Sensing. Nat. Immunol. 2016, 17, 1142–1149. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The CGAS–STING Pathway as a Therapeutic Target in Inflammatory Diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.-T.; Grishin, N.V.; et al. Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation. Science 2015, 347, aaa2630. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, S.; Tan, F. The cGAS/STING Pathway—A New Potential Biotherapeutic Target for Gastric Cancer? J. Pers. Med. 2024, 14, 736. [Google Scholar] [CrossRef]
- Ohkuri, T.; Ghosh, A.; Kosaka, A.; Zhu, J.; Ikeura, M.; David, M.; Watkins, S.C.; Sarkar, S.N.; Okada, H. STING Contributes to Antiglioma Immunity via Triggering Type I IFN Signals in the Tumor Microenvironment. Cancer Immunol. Res. 2014, 2, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, W.; Guo, H.; Wang, L.; Wu, H.; Ding, L.; Yang, B. Strategies Involving STING Pathway Activation for Cancer Immunotherapy: Mechanism and Agonists. Biochem. Pharmacol. 2023, 213, 115596. [Google Scholar] [CrossRef]
- Mauldin, I.S.; Jo, J.; Wages, N.A.; Yogendran, L.V.; Mahmutovic, A.; Young, S.J.; Lopes, M.B.; Slingluff, C.L.; Erickson, L.D.; Fadul, C.E. Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma. Cells 2021, 10, 3378. [Google Scholar] [CrossRef]
- Joseph, J.V.; Blaavand, M.S.; Cai, H.; Vernejoul, F.; Knopper, R.W.; Lindhardt, T.B.; Skipper, K.A.; Axelgaard, E.; Reinert, L.; Mikkelsen, J.G.; et al. STING Activation Counters Glioblastoma by Vascular Alteration and Immune Surveillance. Cancer Lett. 2023, 579, 216480. [Google Scholar] [CrossRef]
- Najem, H.; Lea, S.T.; Tripathi, S.; Hurley, L.; Chen, C.-H.; William, I.; Sooreshjani, M.; Bowie, M.; Hartley, G.; Dussold, C.; et al. STING Agonist 8803 Reprograms the Immune Microenvironment and Increases Survival in Preclinical Models of Glioblastoma. J. Clin. Investig. 2024, 134, e175033. [Google Scholar] [CrossRef]
- Jang, S.C.; Economides, K.D.; Moniz, R.J.; Sia, C.L.; Lewis, N.; McCoy, C.; Zi, T.; Zhang, K.; Harrison, R.A.; Lim, J.; et al. ExoSTING, an Extracellular Vesicle Loaded with STING Agonists, Promotes Tumor Immune Surveillance. Commun. Biol. 2021, 4, 497. [Google Scholar] [CrossRef]
- Konno, H.; Yamauchi, S.; Berglund, A.; Putney, R.M.; Mulé, J.J.; Barber, G.N. Suppression of STING Signaling through Epigenetic Silencing and Missense Mutation Impedes DNA Damage Mediated Cytokine Production. Oncogene 2018, 37, 2037–2051. [Google Scholar] [CrossRef]
- Low, J.T.; Chandramohan, V.; Bowie, M.L.; Brown, M.C.; Waitkus, M.S.; Briley, A.; Stevenson, K.; Fuller, R.; Reitman, Z.J.; Muscat, A.M.; et al. Epigenetic STING Silencing Is Developmentally Conserved in Gliomas and Can Be Rescued by Methyltransferase Inhibition. Cancer Cell 2022, 40, 439–440. [Google Scholar] [CrossRef]
- Low, J.T.; Brown, M.C.; Reitman, Z.J.; Bernstock, J.D.; Markert, J.M.; Friedman, G.K.; Waitkus, M.S.; Bowie, M.L.; Ashley, D.M. Understanding and Therapeutically Exploiting CGAS/STING Signaling in Glioblastoma. J. Clin. Investig. 2024, 134, e163452. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, S.; Ivanova, E.; Guo, S.; Yoshida, R.; Campisi, M.; Sundararaman, S.K.; Tange, S.; Mitsuishi, Y.; Thai, T.C.; Masuda, S.; et al. Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer. Cancer Discov. 2019, 9, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Najem, H.; Mahajan, A.S.; Zhang, P.; Low, J.T.; Stegh, A.H.; Curran, M.A.; Ashley, D.M.; James, C.D.; Heimberger, A.B. CGAS-STING Pathway Targeted Therapies and Their Applications in the Treatment of High-Grade Glioma. F1000Research 2022, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Piperi, C.; Adamopoulos, C.; Papavassiliou, A.G. Pivotal Role of High-Mobility Group Box 1 (HMGB1) Signaling Pathways in Glioma Development and Progression. J. Mol. Med. 2016, 94, 867–874. [Google Scholar] [CrossRef]
- Bayarsaikhan, G.; Bayarsaikhan, D.; Lee, J.; Lee, B. Targeting Scavenger Receptors in Inflammatory Disorders and Oxidative Stress. Antioxidants 2022, 11, 936. [Google Scholar] [CrossRef]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef] [PubMed]
- Hudson, B.I.; Lippman, M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018, 69, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, E.; Iamshchikov, P.; Larionova, I.; Kzhyshkowska, J. Macrophage Scavenger Receptors: Tumor Support and Tumor Inhibition. Front. Oncol. 2023, 12, 1096897. [Google Scholar] [CrossRef] [PubMed]
- Lepore, F.; D’Alessandro, G.; Antonangeli, F.; Santoro, A.; Esposito, V.; Limatola, C.; Trettel, F. CXCL16/CXCR6 Axis Drives Microglia/Macrophages Phenotype in Physiological Conditions and Plays a Crucial Role in Glioma. Front. Immunol. 2018, 9, 2750. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Balasubramaniam, V.R.M.T.; Othman, I.; Shaikh, M.F. Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signalling. Eur. J. Pharmacol. 2019, 858, 172487. [Google Scholar] [CrossRef]
- He, C.; Sun, S.; Zhang, Y.; Xie, F.; Li, S. The Role of Irreversible Electroporation in Promoting M1 Macrophage Polarization via Regulating the HMGB1-RAGE-MAPK Axis in Pancreatic Cancer. Oncoimmunology 2021, 10, 1897295. [Google Scholar] [CrossRef]
- Li, Z.; Fu, W.-J.; Chen, X.-Q.; Wang, S.; Deng, R.-S.; Tang, X.-P.; Yang, K.-D.; Niu, Q.; Zhou, H.; Li, Q.-R.; et al. Autophagy-Based Unconventional Secretion of HMGB1 in Glioblastoma Promotes Chemosensitivity to Temozolomide through Macrophage M1-like Polarization. J. Exp. Clin. Cancer Res. 2022, 41, 74. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.H.; Gringhuis, S.I. Signalling through C-Type Lectin Receptors: Shaping Immune Responses. Nat. Rev. Immunol. 2009, 9, 465–479. [Google Scholar] [CrossRef]
- Yan, H.; Kamiya, T.; Suabjakyong, P.; Tsuji, N.M. Targeting C-Type Lectin Receptors for Cancer Immunity. Front. Immunol. 2015, 6, 408. [Google Scholar] [CrossRef]
- Li, Q. The Multiple Roles of C-Type Lectin Receptors in Cancer. Front. Oncol. 2023, 13, 1301473. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, X.; Luo, J. Combination of Tumor Antigen Drainage and Immune Activation to Promote a Cancer-Immunity Cycle against Glioblastoma. Cell. Mol. Life Sci. 2024, 81, 275. [Google Scholar] [CrossRef]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The Cancer-Immunity Cycle: Indication, Genotype, and Immunotype. Immunity 2023, 56, 2188–2205. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Dusoswa, S.A.; Verhoeff, J.; Abels, E.; Méndez-Huergo, S.P.; Croci, D.O.; Kuijper, L.H.; de Miguel, E.; Wouters, V.M.C.J.; Best, M.G.; Rodriguez, E.; et al. Glioblastomas Exploit Truncated O—Linked Glycans for Local and Distant Immune Modulation via the Macrophage Galactose-Type Lectin. Proc. Natl. Acad. Sci. USA 2020, 117, 3693–3703. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, E.J.; Parker, A.E.; O’Neill, L.A.J. Targeting Toll-like Receptors: Emerging Therapeutics? Nat. Rev. Drug Discov. 2010, 9, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Guarda, G.; Zenger, M.; Yazdi, A.S.; Schroder, K.; Ferrero, I.; Menu, P.; Tardivel, A.; Mattmann, C.; Tschopp, J. Differential Expression of NLRP3 among Hematopoietic Cells. J. Immunol. 2011, 186, 2529–2534. [Google Scholar] [CrossRef]
- Shao, B.-Z.; Xu, Z.-Q.; Han, B.-Z.; Su, D.-F.; Liu, C. NLRP3 Inflammasome and Its Inhibitors: A Review. Front. Pharmacol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Mulazzani, E.; Wagner, D.; Havla, J.; Schlüter, M.; Meinl, I.; Gerdes, L.-A.; Kümpfel, T. Neurological Phenotypes in Patients with NLRP3-, MEFV-, and TNFRSF1A Low-Penetrance Variants. J. Neuroinflamm. 2020, 17, 196. [Google Scholar] [CrossRef]
- Jia, J.; Fu, J.; Tang, H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front. Microbiol. 2021, 12, 804511. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Wu, L.; Wang, X.; Liu, Z. The Anticancer Functions of RIG-I–like Receptors, RIG-I and MDA5, and Their Applications in Cancer Therapy. Transl. Res. 2017, 190, 51–60. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Wang, J.; Chen, J.; Guo, Z.; Liu, Y.; Hua, H. Exploiting RIG-I-like Receptor Pathway for Cancer Immunotherapy. J. Hematol. Oncol. 2023, 16, 8. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Ren, J.; Chen, Q.; Chen, Z.J. CGAS Is Essential for Cellular Senescence. Proc. Natl. Acad. Sci. USA 2017, 114, E4612–E4620. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, Z.J. The CGAS–CGAMP–STING Pathway Connects DNA Damage to Inflammation, Senescence, and Cancer. J. Exp. Med. 2018, 215, 1287–1299. [Google Scholar] [CrossRef]
- Cambi, A.; Figdor, C.G. Dual Function of C-Type Lectin-like Receptors in the Immune System. Curr. Opin. Cell Biol. 2003, 15, 539–546. [Google Scholar] [CrossRef]
- Osorio, F.; Reis e Sousa, C. Myeloid C-Type Lectin Receptors in Pathogen Recognition and Host Defense. Immunity 2011, 34, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Sancho, D.; Reis e Sousa, C. Signaling by Myeloid C-Type Lectin Receptors in Immunity and Homeostasis. Annu. Rev. Immunol. 2012, 30, 491–529. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Wang, Y.; Zeng, Y.; Xiao, A.; Tong, A.; Xu, J. Tumor-Associated Macrophage-Related Strategies for Glioma Immunotherapy. NPJ Precis. Oncol. 2023, 7, 78. [Google Scholar] [CrossRef]
- Kennedy, B.C.; Showers, C.R.; Anderson, D.E.; Anderson, L.; Canoll, P.; Bruce, J.N.; Anderson, R.C.E. Tumor-Associated Macrophages in Glioma: Friend or Foe? J. Oncol. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, N.; Xu, C. Glioma-Associated Microglia/Macrophages (GAMs) in Glioblastoma: Immune Function in the Tumor Microenvironment and Implications for Immunotherapy. Front. Immunol. 2023, 14, 1123853. [Google Scholar] [CrossRef]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 Macrophages and Their Overlaps—Myth or Reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
- Andersen, R.S.; Anand, A.; Harwood, D.S.L.; Kristensen, B.W. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers 2021, 13, 4255. [Google Scholar] [CrossRef] [PubMed]
- Tamai, S.; Ichinose, T.; Tsutsui, T.; Tanaka, S.; Garaeva, F.; Sabit, H.; Nakada, M. Tumor Microenvironment in Glioma Invasion. Brain Sci. 2022, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.; Dang, W.; Cao, M.; Xiao, J.; Lv, S.; Jiang, W.; Yao, X.; Lu, H.; Miao, J.; et al. CCL8 Secreted by Tumor-Associated Macrophages Promotes Invasion and Stemness of Glioblastoma Cells via ERK1/2 Signaling. Lab. Investig. 2020, 100, 619–629. [Google Scholar] [CrossRef]
- Zhang, J.; Sarkar, S.; Cua, R.; Zhou, Y.; Hader, W.; Yong, V.W. A Dialog between Glioma and Microglia That Promotes Tumor Invasiveness through the CCL2/CCR2/Interleukin-6 Axis. Carcinogenesis 2012, 33, 312–319. [Google Scholar] [CrossRef]
- Rodrigues, J.C.; Gonzalez, G.C.; Zhang, L.; Ibrahim, G.; Kelly, J.J.; Gustafson, M.P.; Lin, Y.; Dietz, A.B.; Forsyth, P.A.; Yong, V.W.; et al. Normal Human Monocytes Exposed to Glioma Cells Acquire Myeloid-Derived Suppressor Cell-like Properties. Neuro-Oncology 2010, 12, 351–365. [Google Scholar] [CrossRef]
- Piperi, C.; Papavassiliou, K.A.; Papavassiliou, A.G. Pivotal Role of STAT3 in Shaping Glioblastoma Immune Microenvironment. Cells 2019, 8, 1398. [Google Scholar] [CrossRef]
- Mi, Y.; Guo, N.; Luan, J.; Cheng, J.; Hu, Z.; Jiang, P.; Jin, W.; Gao, X. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Front. Immunol. 2020, 11, 737. [Google Scholar] [CrossRef] [PubMed]
- Gieryng, A.; Kaminska, B. Myeloid-Derived Suppressor Cells in Gliomas. Współczesna Onkol. 2016, 5, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, B.; Rayman, P.; Ireland, J.; Ko, J.; Rini, B.; Borden, E.C.; Garcia, J.; Vogelbaum, M.A.; Finke, J. Myeloid-Derived Suppressor Cell Accumulation and Function in Patients with Newly Diagnosed Glioblastoma. Neuro-Oncology 2011, 13, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Salemizadeh Parizi, M.; Salemizadeh Parizi, F.; Abdolhosseini, S.; Vanaei, S.; Manzouri, A.; Ebrahimzadeh, F. Myeloid-Derived Suppressor Cells (MDSCs) in Brain Cancer: Challenges and Therapeutic Strategies. Inflammopharmacology 2021, 29, 1613–1624. [Google Scholar] [CrossRef]
- Lehman, N.; Kowalska, W.; Zarobkiewicz, M.; Mazurek, M.; Mrozowska, K.; Bojarska-Junak, A.; Rola, R. Pro- vs. Anti-Inflammatory Features of Monocyte Subsets in Glioma Patients. Int. J. Mol. Sci. 2023, 24, 1879. [Google Scholar] [CrossRef]
- Szulzewsky, F.; Arora, S.; de Witte, L.; Ulas, T.; Markovic, D.; Schultze, J.L.; Holland, E.C.; Synowitz, M.; Wolf, S.A.; Kettenmann, H. Human Glioblastoma-associated Microglia/Monocytes Express a Distinct RNA Profile Compared to Human Control and Murine Samples. Glia 2016, 64, 1416–1436. [Google Scholar] [CrossRef]
- Zhang, N.; Dai, Z.; Wu, W.; Wang, Z.; Cao, H.; Zhang, Y.; Wang, Z.; Zhang, H.; Cheng, Q. The Predictive Value of Monocytes in Immune Microenvironment and Prognosis of Glioma Patients Based on Machine Learning. Front. Immunol. 2021, 12, 656541. [Google Scholar] [CrossRef]
- Prosniak, M.; Harshyne, L.A.; Andrews, D.W.; Kenyon, L.C.; Bedelbaeva, K.; Apanasovich, T.V.; Heber-Katz, E.; Curtis, M.T.; Cotzia, P.; Hooper, D.C. Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers. Clin. Cancer Res. 2013, 19, 3776–3786. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Hu, A.; Zhang, D.; Yang, H.; Mao, Y. Understanding the Immunosuppressive Microenvironment of Glioma: Mechanistic Insights and Clinical Perspectives. J. Hematol. Oncol. 2024, 17, 31. [Google Scholar] [CrossRef]
- Eisele, G.; Wischhusen, J.; Mittelbronn, M.; Meyermann, R.; Waldhauer, I.; Steinle, A.; Weller, M.; Friese, M.A. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006, 129, 2416–2425. [Google Scholar] [CrossRef]
- Lea, S.T.; Chen, C.H.; Wei, J.; William, I.; Lopez Del Castillo, I.; Curran, M.A. NLRP3 Inflammasome Activation Expands Immunosuppressive Myeloid Stroma and Antagonizes the Therapeutic Benefit of STING Activation in Glioblastoma. Cancer Res. Commun. 2025, 5, 960–972. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Niu, C.; Zhao, Y.; Wu, P. Neutrophils: New Critical Regulators of Glioma. Front. Immunol. 2022, 13, 927233. [Google Scholar] [CrossRef]
- Norollahi, S.E.; Babaei, K.; Rashidy-Pour, A.; Yousefi, B.; Baharlou, R.; Far, B.F.; Jalali, A.; Samadani, A.A. Role of the TLR signaling pathway in the pathogenesis of glioblastoma multiforme with an emphasis on immunotherapy. Biochem. Biophys. Rep. 2025, 43, 102149. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Ma, Z.; Zhou, J.; Ding, Z.; Yuan, G.; Pan, Y. Neutrophils in Glioma Microenvironment: From Immune Function to Immunotherapy. Front. Immunol. 2024, 15, 1393173. [Google Scholar] [CrossRef] [PubMed]
- Crivii, C.-B.; Boșca, A.B.; Melincovici, C.S.; Constantin, A.-M.; Mărginean, M.; Dronca, E.; Suflețel, R.; Gonciar, D.; Bungărdean, M.; Șovrea, A. Glioblastoma Microenvironment and Cellular Interactions. Cancers 2022, 14, 1092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Jiang, X.; Gu, Q.; Yao, J.; Wang, X.; Wu, J. Unveiling the Landscape of Cytokine Research in Glioma Immunotherapy: A Scientometrics Analysis. Front. Pharmacol. 2024, 14, 1333124. [Google Scholar] [CrossRef]
- Kosmopoulos, M.; Christofides, A.; Drekolias, D.; Zavras, P.D.; Gargalionis, A.N.; Piperi, C. Critical Role of IL-8 Targeting in Gliomas. Curr. Med. Chem. 2018, 25, 1954–1967. [Google Scholar] [CrossRef] [PubMed]
- Strepkos, D.; Markouli, M.; Klonou, A.; Piperi, C.; Papavassiliou, A.G. Insights in the Immunobiology of Glioblastoma. J. Mol. Med. 2020, 98, 1–10. [Google Scholar] [CrossRef]
- Christofides, A.; Kosmopoulos, M.; Piperi, C. Pathophysiological Mechanisms Regulated by Cytokines in Gliomas. Cytokine 2015, 71, 377–384. [Google Scholar] [CrossRef]
- Regmi, M.; Wang, Y.; Liu, W.; Dai, Y.; Liu, S.; Ma, K.; Lin, G.; Yang, J.; Liu, H.; Wu, J.; et al. From Glioma Gloom to Immune Bloom: Unveiling Novel Immunotherapeutic Paradigms-a Review. J. Exp. Clin. Cancer Res. 2024, 43, 47. [Google Scholar] [CrossRef]
- Yasinjan, F.; Xing, Y.; Geng, H.; Guo, R.; Yang, L.; Liu, Z.; Wang, H. Immunotherapy: A Promising Approach for Glioma Treatment. Front. Immunol. 2023, 14, 1255611. [Google Scholar] [CrossRef] [PubMed]
Receptor Type | Ligands/Triggers | Key Signalling Pathway(s) | Pro-Tumor Effects | Anti-Tumor Effects | Immune Evasion Mechanisms | References |
---|---|---|---|---|---|---|
TLRs | PAMPs, DAMPs | NF-κB, MAPK | IL-6, TNF-α | Apoptosis (via TLR3), IFN production | Downregulation, altered TLR expression | [14,16,17,18,29,90,91] |
NLRs | Intracellular DAMPs | Inflammasomes (NLRP3) | IL-1β secretion, immune suppression | Immune recruitment (Context dependent) | Chronic inflammation, TME shaping | [48,49,52,92,93,94] |
RLRs | Viral RNA | IRF3, type I IFNs | Some evasion mechanisms | Induces apoptosis, IFN signalling | Tumor-mediated signalling suppression | [54,55,56,95,96,97] |
STING | Cytosolic DNA | TBK1, IRF3 | Chronic activation → MDSCs, Treg | Type I IFNs, T cell activation | STING/cGAS downregulation | [58,59,62,66,70,72,98,99] |
Scavenger Receptors | AGEs, AOPPs, lipids | Numerous | Antigen clearance, immune suppression | - | Tolerogenic signalling, TME shaping | [75,78] |
CLRs | Pathogen Carbohydrates | SYK, RAF1 | Tolerogenic DCs, IL-10 production | Context-specific | Exploitation by tumors to dampen immunity | [83,84,85,100,101,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, E.; Jadidi, S.A.; Piperi, C. Innate Immune Signaling in Gliomas: Regulatory Mechanisms and Targeting Potential in Tumor Progression. Life 2025, 15, 1582. https://doi.org/10.3390/life15101582
Jung E, Jadidi SA, Piperi C. Innate Immune Signaling in Gliomas: Regulatory Mechanisms and Targeting Potential in Tumor Progression. Life. 2025; 15(10):1582. https://doi.org/10.3390/life15101582
Chicago/Turabian StyleJung, Edmund, Sara Al Jadidi, and Christina Piperi. 2025. "Innate Immune Signaling in Gliomas: Regulatory Mechanisms and Targeting Potential in Tumor Progression" Life 15, no. 10: 1582. https://doi.org/10.3390/life15101582
APA StyleJung, E., Jadidi, S. A., & Piperi, C. (2025). Innate Immune Signaling in Gliomas: Regulatory Mechanisms and Targeting Potential in Tumor Progression. Life, 15(10), 1582. https://doi.org/10.3390/life15101582