Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review
Abstract
1. Introduction
2. Vitamin D and the Immune System
2.1. Vitamin D Physiology
2.2. Implications of Vitamin D in Immunomodulation
2.3. Vitamin D Immunomodulation in SLE Patients
2.4. Epigenetic Dysregulations in Vitamin D-Deficient SLE Patients
3. Research Methods
4. SLE Disease Activity and Hypovitaminosis D
5. Lupus Nephritis and Hypovitaminosis D
6. Cardiovascular Involvement and Hypovitaminosis D in SLE
7. Neurolupus and Hypovitaminosis D
8. Risk of Infections in SLE and Hypovitaminosis D
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piga, M.; Tselios, K.; Viveiros, L.; Chessa, E.; Neves, A.; Urowitz, M.B.; Isenberg, D. Clinical Patterns of Disease: From Early Systemic Lupus Erythematosus to Late-Onset Disease. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101938. [Google Scholar] [CrossRef]
- Zucchi, D.; Silvagni, E.; Elefante, E.; Signorini, V.; Cardelli, C.; Trentin, F.; Schilirò, D.; Cascarano, G.; Valevich, A.; Bortoluzzi, A.; et al. Systemic Lupus Erythematosus: One Year in Review 2023. Clin. Exp. Rheumatol. 2023, 41, 997–1008. [Google Scholar] [CrossRef]
- Narváez, J. Systemic Lupus Erythematosus 2020. Med. Clin. 2020, 155, 494–501. [Google Scholar] [CrossRef]
- Dai, X.; Fan, Y.; Zhao, X. Systemic Lupus Erythematosus: Updated Insights on the Pathogenesis, Diagnosis, Prevention and Therapeutics. Signal Transduct. Target. Ther. 2025, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Bossuyt, X.; De Langhe, E.; Borghi, M.O.; Meroni, P.L. Understanding and Interpreting Antinuclear Antibody Tests in Systemic Rheumatic Diseases. Nat. Rev. Rheumatol. 2020, 16, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S. Antinuclear Antibody Testing-Misunderstood or Misbegotten? Nat. Rev. Rheumatol. 2017, 13, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Kleer, J.S.; Rabatscher, P.A.; Weiss, J.; Leonardi, J.; Vogt, S.B.; Kieninger-Gräfitsch, A.; Chizzolini, C.; Huynh-Do, U.; Ribi, C.; Trendelenburg, M. Epitope-Specific Anti-C1q Autoantibodies in Systemic Lupus Erythematosus. Front. Immunol. 2022, 12, 761395. [Google Scholar] [CrossRef]
- Alsalman, A.; Albalawi, T.; Albalwi, F.; Albirdisi, M. Association of Anti-Smith, Anti-Ro, and Anti-Ribonucleoprotein Combination with Accelerated Development of Lupus Nephritis in Systemic Lupus Erythematosus Patients in Saudi Arabia. Cureus 2024, 16, e75917. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Anti-DNA Antibodies-Quintessential Biomarkers of SLE. Nat. Rev. Rheumatol. 2016, 12, 102–110. [Google Scholar] [CrossRef]
- Al-Mughales, J.A. Anti-Nuclear Antibodies Patterns in Patients with Systemic Lupus Erythematosus and Their Correlation with Other Diagnostic Immunological Parameters. Front. Immunol. 2022, 13, 850759. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Chen, L.; Lin, S. High Titers of Antinuclear Antibody and the Presence of Multiple Autoantibodies Are Highly Suggestive of Systemic Lupus Erythematosus. Sci. Rep. 2022, 12, 1687. [Google Scholar] [CrossRef]
- Pisetsky, D.S.; Lipsky, P.E. New Insights into the Role of Antinuclear Antibodies in Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2020, 16, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Bryant, K.; O’Neill, S.G. Vitamin D in SLE: A Role in Pathogenesis and Fatigue? A Review of the Literature. Lupus 2018, 27, 2003–2011. [Google Scholar] [CrossRef]
- Cutolo, M.; Smith, V.; Paolino, S.; Gotelli, E. Involvement of the Secosteroid Vitamin D in Autoimmune Rheumatic Diseases and COVID-19. Nat. Rev. Rheumatol. 2023, 19, 265–287. [Google Scholar] [CrossRef]
- Schneider, L.; Dos Santos, A.S.P.; Santos, M.; Da Silva Chakr, R.M.; Monticielo, O.A. Vitamin D and Systemic Lupus Erythematosus: State of the Art. Clin. Rheumatol. 2014, 33, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Argano, C.; Mirarchi, L.; Amodeo, S.; Orlando, V.; Torres, A.; Corrao, S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int. J. Mol. Sci. 2023, 24, 15485. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Lee, H.C. Vitamin D and Health-The Missing Vitamin in Humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif. Tissue Int. 2023, 112, 158–177. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef]
- Sutton, A.L.M.; MacDonald, P.N. Vitamin D: More Than a “Bone-a-Fide” Hormone. Mol. Endocrinol. 2003, 17, 777–791. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bae, S.C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between Vitamin D Receptor Polymorphisms and Susceptibility to Rheumatoid Arthritis and Systemic Lupus Erythematosus: A Meta-Analysis. Mol. Biol. Rep. 2011, 38, 3643–3651. [Google Scholar] [CrossRef]
- Matías-Guíu, J.; Oreja-Guevara, C.; Matias-Guiu, J.A.; Gomez-Pinedo, U. Vitamin D and Remyelination in Multiple Sclerosis. Neurologia 2018, 33, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.R.; Li, D.; Jeffery, L.E.; Raza, K.; Hewison, M. Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcif. Tissue Int. 2020, 106, 58–75. [Google Scholar] [CrossRef]
- Manousaki, D.; Harroud, A.; Mitchell, R.E.; Ross, S.; Forgetta, V.; Timpson, N.J.; Smith, G.D.; Polychronakos, C.; Richards, J.B. Vitamin D Levels and Risk of Type 1 Diabetes: A Mendelian Randomization Study. PLoS Med. 2021, 18, e1003536. [Google Scholar] [CrossRef]
- Rebelos, E.; Tentolouris, N.; Jude, E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023, 83, 665–685. [Google Scholar] [CrossRef]
- Pike, J.W.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815–843. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Non-Musculoskeletal Benefits of Vitamin D. J. Steroid Biochem. Mol. Biol. 2018, 175, 60–81. [Google Scholar] [CrossRef]
- Wintermeyer, E.; Ihle, C.; Ehnert, S.; Stöckle, U.; Ochs, G.; de Zwart, P.; Flesch, I.; Bahrs, C.; Nussler, A.K. Crucial Role of Vitamin D in the Musculoskeletal System. Nutrients 2016, 8, 319. [Google Scholar] [CrossRef]
- Steingrimsdottir, L.; Gunnarsson, O.; Indridason, O.S.; Franzson, L.; Sigurdsson, G. Relationship between Serum Parathyroid Hormone Levels, Vitamin D Sufficiency, and Calcium Intake. JAMA 2005, 294, 2336–2341. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Endocrinol. Metab. Clin. N. Am. 2010, 39, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Mak, A. The Impact of Vitamin D on the Immunopathophysiology, Disease Activity, and Extra-Musculoskeletal Manifestations of Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2018, 19, 2355. [Google Scholar] [CrossRef]
- Kaufmann, M.; Lee, S.M.; Pike, J.W.; Jones, G. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice. Endocrinology 2015, 156, 4388–4397. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’Amelio, P.; Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Gennari, L.; Merlotti, D.; De Paola, V.; Martini, G.; Nuti, R. Update on the Pharmacogenetics of the Vitamin D Receptor and Osteoporosis. Pharmacogenomics 2009, 10, 417–433. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D: Production, Metabolism, and Mechanism of Action. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar] [PubMed]
- Cianciolo, G.; Cappuccilli, M.; Tondolo, F.; Gasperoni, L.; Zappulo, F.; Barbuto, S.; Iacovella, F.; Conte, D.; Capelli, I.; Manna, G. La Vitamin D Effects on Bone Homeostasis and Cardiovascular System in Patients with Chronic Kidney Disease and Renal Transplant Recipients. Nutrients 2021, 13, 1453. [Google Scholar] [CrossRef]
- Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients 2017, 9, 328. [Google Scholar] [CrossRef]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef]
- Sangha, A.; Quon, M.; Pfeffer, G.; Orton, S.M. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023, 15, 2978. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Meng, X. Vitamin D and Neurodegenerative Diseases. Heliyon 2023, 9, e12877. [Google Scholar] [CrossRef]
- Menéndez, S.G.; Manucha, W. Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health. Curr. Pharm. Des. 2024, 30, 323–332. [Google Scholar] [CrossRef]
- Jeon, S.M.; Shin, E.A. Exploring Vitamin D Metabolism and Function in Cancer. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; Von Andrian, U.H. Vitamin Effects on the Immune System: Vitamins A and D Take Centre Stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2015, 96, 365–408. [Google Scholar] [CrossRef]
- Bikle, D.; Christakos, S. New Aspects of Vitamin D Metabolism and Action-Addressing the Skin as Source and Target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef]
- Kongsbak, M.; Von Essen, M.R.; Boding, L.; Levring, T.B.; Schjerling, P.; Lauritsen, J.P.H.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Geisler, C. Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells. PLoS ONE 2014, 9, e96695. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. An Update on Vitamin D and Human Immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef]
- Fisher, S.A.; Rahimzadeh, M.; Brierley, C.; Gration, B.; Doree, C.; Kimber, C.E.; Cajide, A.P.; Lamikanra, A.A.; Roberts, D.J. The Role of Vitamin D in Increasing Circulating T Regulatory Cell Numbers and Modulating T Regulatory Cell Phenotypes in Patients with Inflammatory Disease or in Healthy Volunteers: A Systematic Review. PLoS ONE 2019, 14, e0222313. [Google Scholar] [CrossRef]
- Bscheider, M.; Butcher, E.C. Vitamin D Immunoregulation through Dendritic Cells. Immunology 2016, 148, 227–236. [Google Scholar] [CrossRef]
- Rolf, L.; Muris, A.H.; Hupperts, R.; Damoiseaux, J. Vitamin D Effects on B Cell Function in Autoimmunity. Ann. N. Y. Acad. Sci. 2014, 1317, 84–91. [Google Scholar] [CrossRef]
- Liang, S.; Cai, J.; Li, Y.; Yang, R. 1,25-Dihydroxy-Vitamin D3 Induces Macrophage Polarization to M2 by Upregulating T-cell Ig-mucin-3 Expression. Mol. Med. Rep. 2019, 49, 3707–3713. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D Regulation of T Cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef]
- Ota, K.; Dambaeva, S.; Kim, M.W.I.; Han, A.R.; Fukui, A.; Gilman-Sachs, A.; Beaman, K.; Kwak-Kim, J. 1,25-Dihydroxy-Vitamin D3 Regulates NK-Cell Cytotoxicity, Cytokine Secretion, and Degranulation in Women with Recurrent Pregnancy Losses. Eur. J. Immunol. 2015, 45, 3188–3199. [Google Scholar] [CrossRef]
- Cyprian, F.; Lefkou, E.; Varoudi, K.; Girardi, G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front. Immunol. 2019, 10, 2739. [Google Scholar] [CrossRef]
- Selvaraj, P. Vitamin D, Vitamin D Receptor, and Cathelicidin in the Treatment of Tuberculosis. Vitam. Horm. 2011, 86, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Kongsbak, M.; Levring, T.B.; Geisler, C.; von Essen, M.R. The Vitamin D Receptor and T Cell Function. Front. Immunol. 2013, 4, 148. [Google Scholar] [CrossRef]
- Zhou, T.B.; Jiang, Z.P.; Lin, Z.J.; Su, N. Association of Vitamin D Receptor Gene Polymorphism with the Risk of Systemic Lupus Erythematosus. J. Recept. Signal Transduct. 2015, 35, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wan, Q.; Yang, S.; Zhao, S. Impact of Vitamin D Receptor Gene Polymorphism on Chronic Renal Failure Susceptibility. Ther. Apher. Dial. 2018, 22, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bruce, D.; Cantorna, M.T. Vitamin D Receptor Expression Controls Proliferation of Naïve CD8+ T Cells and Development of CD8 Mediated Gastrointestinal Inflammation. BMC Immunol. 2014, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Dyring-Andersen, B.; Bonefeld, C.M.; Bzorek, M.; Løvendorf, M.B.; Lauritsen, J.P.H.; Skov, L.; Geisler, C. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+IL-17+ T Cells in Psoriasis Lesions. Scand. J. Immunol. 2015, 82, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Ritterhouse, L.L.; Crowe, S.R.; Niewold, T.B.; Kamen, D.L.; Macwana, S.R.; Roberts, V.C.; Dedeke, A.B.; Harley, J.B.; Scofield, R.H.; Guthridge, J.M.; et al. Vitamin D Deficiency Is Associated with an Increased Autoimmune Response in Healthy Individuals and in Patients with Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2011, 70, 1569. [Google Scholar] [CrossRef] [PubMed]
- Treptow, S.; Grün, J.; Scholz, J.; Radbruch, A.; Heine, G.; Worm, M. 9-Cis Retinoic Acid and 1.25-Dihydroxyvitamin D3 Drive Differentiation into IgA+ Secreting Plasmablasts in Human Naïve B Cells. Eur. J. Immunol. 2021, 51, 125–137. [Google Scholar] [CrossRef]
- Iruretagoyena, M.; Hirigoyen, D.; Naves, R.; Burgos, P.I. Immune Response Modulation by Vitamin D: Role in Systemic Lupus Erythematosus. Front. Immunol. 2015, 6, 159233. [Google Scholar] [CrossRef]
- Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The Emerging Role of Epigenetics in Human Autoimmune Disorders. Clin. Epigenet. 2019, 11, 34. [Google Scholar] [CrossRef]
- Jeffries, M.A.; Sawalha, A.H. Epigenetics in Systemic Lupus Erythematosus: Leading the Way for Specific Therapeutic Agents. Int. J. Clin. Rheumtol. 2011, 6, 423. [Google Scholar] [CrossRef]
- Yang, S.K.; Liu, N.; Zhang, W.J.; Song, N.; Yang, J.P.; Zhang, H.; Gui, M. Impact of Vitamin D Receptor Gene Polymorphism on Systemic Lupus Erythematosus Susceptibility: A Pooled Analysis. Genet. Test. Mol. Biomark. 2022, 26, 228–238. [Google Scholar] [CrossRef]
- Mao, S.; Huang, S. Association between Vitamin D Receptor Gene BsmI, FokI, ApaI and TaqI Polymorphisms and the Risk of Systemic Lupus Erythematosus: A Meta-Analysis. Rheumatol. Int. 2014, 34, 381–388. [Google Scholar] [CrossRef]
- O’Regan, S.; Chesney, R.W.; Hamstra, A.; Eisman, J.A.; O’Gorman, A.M.; Deluca, H.F. Reduced Serum 1,25–(OH)2 Vitamin D3 Levels in Prednisone-Treated Adolescents with Systemic Lupus Erythematosus. Acta Paediatr. 1979, 68, 109–111. [Google Scholar] [CrossRef]
- Khairallah, M.K.; Makarem, Y.S.; Dahpy, M.A. Vitamin D in Active Systemic Lupus Erythematosus and Lupus Nephritis: A Forgotten Player. Egypt. J. Intern. Med. 2020, 32, 16. [Google Scholar] [CrossRef]
- Irfan, S.A.; Ali, A.A.; Shabbir, N.; Altaf, H.; Ahmed, A.; Kunnath, J.T.; Boorle, N.V.L.D.; Miguel, A.K.; Loh, C.C.; Gandrakota, N.; et al. Effects of Vitamin D on Systemic Lupus Erythematosus Disease Activity and Autoimmunity: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e25896. [Google Scholar] [CrossRef]
- Fiblia, F.; Rengganis, I.; Purnamasari, D.; Widhani, A.; Karjadi, T.H.; Shatri, H.; Putranto, R. Effect of Cholecalciferol Supplementation on Disease Activity and Quality of Life of Systemic Lupus Erythematosus Patients: A Randomized Clinical Trial Study. Acta Med. Indones. 2022, 54, 406. [Google Scholar]
- Karimzadeh, H.; Shirzadi, M.; Karimifar, M. The Effect of Vitamin D Supplementation in Disease Activity of Systemic Lupus Erythematosus Patients with Vitamin D Deficiency: A Randomized Clinical Trial. J. Res. Med. Sci. 2017, 22, 4. [Google Scholar] [CrossRef]
- Aranow, C.; Kamen, D.L.; Dall’Era, M.; Massarotti, E.M.; MacKay, M.C.; Koumpouras, F.; Coca, A.; Chatham, W.W.; Clowse, M.E.B.; Criscione-Schreiber, L.G.; et al. Randomized, Double-Blind, Placebo-Controlled Trial of the Effect of Vitamin D3 on the Interferon Signature in Patients with Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015, 67, 1848–1857. [Google Scholar] [CrossRef]
- Zheng, R.; Gonzalez, A.; Yue, J.; Wu, X.; Qiu, M.; Gui, L.; Zhu, S.; Huang, L. Efficacy and Safety of Vitamin D Supplementation in Patients with Systemic Lupus Erythematosus: A Meta-Analysis of Randomized Controlled Trials. Am. J. Med. Sci. 2019, 358, 104–114. [Google Scholar] [CrossRef]
- Lima, G.L.; Paupitz, J.; Aikawa, N.E.; Takayama, L.; Bonfa, E.; Pereira, R.M.R. Vitamin D Supplementation in Adolescents and Young Adults with Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care Res. 2016, 68, 91–98. [Google Scholar] [CrossRef]
- Szodoray, P.; Nakken, B.; Gaal, J.; Jonsson, R.; Szegedi, A.; Zold, E.; Szegedi, G.; Brun, J.G.; Gesztelyi, R.; Zeher, M.; et al. The Complex Role of Vitamin D in Autoimmune Diseases. Scand. J. Immunol. 2008, 68, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Maruotti, N.; Cantatore, F.P. Vitamin D and the Immune System. J. Rheumatol. 2010, 37, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Pelajo, C.F.; Lopez-Benitez, J.M.; Miller, L.C. Vitamin D and Autoimmune Rheumatologic Disorders. Autoimmun. Rev. 2010, 9, 507–510. [Google Scholar] [CrossRef]
- Petri, M.; Bello, K.J.; Fang, H.; Magder, L.S. Vitamin D in SLE: Modest Association with Disease Activity and Urine Protein/Creatinine Ratio. Arthritis Rheum. 2013, 65, 1865. [Google Scholar] [CrossRef]
- Bae, S.-H.; Hong, S.; Ahn, S.M.; Lim, D.-H.; Kim, Y.-G.; Lee, C.-K.; Yoo, B. AB0613 Predictive Role of Low Vitamin D Levels in Lupus Nephritis Flare. Ann. Rheum. Dis. 2015, 74, 1104. [Google Scholar] [CrossRef]
- Yupe, A.; Puron Gonzalez, E.; Salatino, E.; Santana, J.; Ochoa, M.; Cervantes-Ramirez, R.; Saldaña, E.; Calderon, G.; Ceniceros, B.; de la Cruz, U.; et al. Hypovitaminosis D in Lupus Nephitis. Arthritis Rheumatol. 2024, 76 (Suppl. 9), 2658. Available online: https://acrabstracts.org/abstract/hypovitaminosis-d-in-lupus-nephitis/ (accessed on 30 August 2025).
- Jiang, L.; Zhi, S.; Wei, C.; Rong, Z.; Zhang, H. Serum 25(OH)D Levels Are Associated with Disease Activity and Renal Involvement in Initial-Onset Childhood Systemic Lupus Erythematosus. Front. Pediatr. 2023, 11, 1252594. [Google Scholar] [CrossRef]
- Lupoli, R.; Vaccaro, A.; Ambrosino, P.; Poggio, P.; Amato, M.; Di Minno, M.N.D. Impact of Vitamin D Deficiency on Subclinical Carotid Atherosclerosis: A Pooled Analysis of Cohort Studies. J. Clin. Endocrinol. Metab. 2017, 102, 2146–2153. [Google Scholar] [CrossRef]
- García-Carrasco, M.; Romero-Galvez, J.L. Vitamin D and Cardiovascular Disease in Patients with Systemic Lupus Erythematosus. Reumatol. Clínica Engl. Ed. 2016, 12, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Lertratanakul, A.; Wu, P.; Dyer, A.; Urowitz, M.; Gladman, D.; Fortin, P.; Bae, S.C.; Gordon, C.; Clarke, A.; Bernatsky, S.; et al. 25-Hydroxyvitamin D and Cardiovascular Disease in Patients with Systemic Lupus Erythematosus: Data from a Large International Inception Cohort. Arthritis Care Res. 2014, 66, 1167–1176. [Google Scholar] [CrossRef]
- Mok, C.C.; Birmingham, D.J.; Leung, H.W.; Hebert, L.A.; Song, H.; Rovin, B.H. Vitamin D Levels in Chinese Patients with Systemic Lupus Erythematosus: Relationship with Disease Activity, Vascular Risk Factors and Atherosclerosis. Rheumatology 2012, 51, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ballesteros, A.I.; Betancourt-Núñez, A.; Meza-Meza, M.R.; Rivera-Escoto, M.; Mora-García, P.E.; Pesqueda-Cendejas, K.; Vizmanos, B.; Parra-Rojas, I.; Campos-López, B.; Montoya-Buelna, M.; et al. Relationship of Serum and Dietary Vitamin D with High Cardiometabolic Risk in Mexican Systemic Lupus Erythematosus Patients: A Cross-Sectional Study. Lupus 2024, 33, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.W.; Rhew, E.Y.; Dyer, A.R.; Dunlop, D.D.; Langman, C.B.; Price, H.; Sutton-Tyrrell, K.; McPherson, D.D.; Edmundowicz, D.; Kondos, G.T.; et al. 25-Hydroxyvitamin D and Cardiovascular Risk Factors in Women with Systemic Lupus Erythematosus. Arthritis Care Res. 2009, 61, 1387–1395. [Google Scholar] [CrossRef]
- Reynolds, J.A.; Haque, S.; Berry, J.L.; Pemberton, P.; Teh, L.S.; Ho, P.; Gorodkin, R.; Bruce, I.N. 25-Hydroxyvitamin D Deficiency Is Associated with Increased Aortic Stiffness in Patients with Systemic Lupus Erythematosus. Rheumatology 2011, 51, 544. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.N.; Fang, H.; Magder, L.S.; Petri, M. Vitamin D Deficiency Does Not Predict Progression of Coronary Artery Calcium, Carotid Intima–Media Thickness or High-Sensitivity C-Reactive Protein in Systemic Lupus Erythematosus. Rheumatology 2013, 52, 2071. [Google Scholar] [CrossRef]
- Jung, J.Y.; Koh, B.R.; Bae, C.B.; Kim, H.A.; Suh, C.H. Carotid Subclinical Atherosclerosis Is Associated with Disease Activity but Not Vitamin D in Korean Systemic Lupus Erythematosus. Lupus 2014, 23, 1517–1522. [Google Scholar] [CrossRef]
- Robinson, A.B.; Tangpricha, V.; Yow, E.; Gurion, R.; McComsey, G.A.; Schanberg, L.E. Vitamin D Deficiency Is Common and Associated with Increased C-Reactive Protein in Children and Young Adults with Lupus: An Atherosclerosis Prevention in Pediatric Lupus Erythematosus Substudy. Lupus Sci. Med. 2014, 1, e000011. [Google Scholar] [CrossRef]
- Kamen, D.L.; Oates, J.C. A Pilot Study to Determine If Vitamin D Repletion Improves Endothelial Function in Lupus Patients. Am. J. Med. Sci. 2015, 350, 302–307. [Google Scholar] [CrossRef]
- Reynolds, J.A.; Haque, S.; Williamson, K.; Ray, D.W.; Alexander, M.Y.; Bruce, I.N. Vitamin D Improves Endothelial Dysfunction and Restores Myeloid Angiogenic Cell Function via Reduced CXCL-10 Expression in Systemic Lupus Erythematosus. Sci. Rep. 2016, 6, 22341. [Google Scholar] [CrossRef]
- Mellor-Pita, S.; Tutor-Ureta, P.; Rosado, S.; Alkadi, K.; Granado, F.; Jimenez-Ortiz, C.; Castejon, R. Calcium and Vitamin D Supplement Intake May Increase Arterial Stiffness in Systemic Lupus Erythematosus Patients. Clin. Rheumatol. 2019, 38, 1177–1186. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, F.; Li, Q.; Feng, X.; Geng, L.; Sun, L. Metabolic Alterations in Vitamin D Deficient Systemic Lupus Erythematosus Patients. Sci. Rep. 2024, 14, 18879. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Z.; Zhang, X.; Du, K.; Xie, Z.; Lin, Z. Pathogenesis and Treatment of Neuropsychiatric Systemic Lupus Erythematosus: A Review. Front. Cell Dev. Biol. 2022, 10, 998328. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.H.; Ho, C.S.; Ho, R.C.M.; Mak, A. 25-Hydroxyvitamin D3 Deficiency Independently Predicts Cognitive Impairment in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0144149. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Sarkar, A.K.; Matsuda, H.; Ihsan, M.A.; Haq, S.A.; Arefin, M.S.; Islam, S.N. Relationship Between Vitamin D Status and Brain Perfusion in Neuropsychiatric Lupus. Nucl. Med. Mol. Imaging 2022, 56, 158–168. [Google Scholar] [CrossRef]
- Hussein, H.A.; Daker, L.I.; Fouad, N.A.; Elamir, A.; Mohamed, S.R. Does Vitamin D Deficiency Contribute to Cognitive Dysfunction in Patients with Systemic Lupus Erythematosus? Innov. Clin. Neurosci. 2018, 15, 25. [Google Scholar] [CrossRef]
- Karnopp, T.E.; da Silva Freitas, V.; Di Domenico, A.L.; Chapacais, G.F.; dos Santos, N.G.; Freitas, E.C.; Gasparin, A.A.; Monticielo, O.A. What Is Known about the Effects of Vitamin D in Neuropsychiatric Lupus? Adv. Rheumatol. 2024, 64, 2. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.J.; Wu, P.; Gao, D.M.; Hu, J.; Wang, Q.; Chen, N.F.; Tong, S.Q.; Rao, L.; Liu, J. The Impact of Vitamin D on Cognitive Dysfunction in Mice with Systemic Lupus Erythematosus. Med. Sci. Monit. 2019, 25, 4716–4722. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, S.; Liu, J.; Zhao, Y.; Han, H.; Li, X.; Wang, Y. Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/Lpr Mice Coinciding with Activation of the PPARγ/NF-ΚB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling. Inflammation 2023, 46, 556–572. [Google Scholar] [CrossRef]
- Karnopp, T.E.; Freitas, E.C.; Rieger, A.; Chapacais, G.F.; Monticielo, O.A. Higher IgG Level Correlated with Vitamin D Receptor in the Hippocampus of a Pristane-Induced Lupus Model. Clin. Rheumatol. 2022, 41, 1859–1866. [Google Scholar] [CrossRef]
- UMIN Clinical Trials Registry. Available online: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000064329 (accessed on 30 August 2025).
- Pego-Reigosa, J.M.; Nicholson, L.; Pooley, N.; Langham, S.; Embleton, N.; Marjenberg, Z.; Barut, V.; Desta, B.; Wang, X.; Langham, J.; et al. The Risk of Infections in Adult Patients with Systemic Lupus Erythematosus: Systematic Review and Meta-Analysis. Rheumatology 2021, 60, 60–72. [Google Scholar] [CrossRef]
- Adel, Y.; Elgamal, M.; Abdelsalam, S.A. Impact of Vitamin D Level and Supplementation on Systemic Lupus Erythematosus Patients during COVID-19 Pandemic. Arch. Rheumatol. 2022, 37, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Susanto, H.; Soebadi, B.; Ernawati, D.S.; Pamardiati, A.E.; Hendarti, H.T.; Hernawan, I.; Radithia, D.; Awalia. Serum Vitamin D/25(OH)D Associated with Toll-like Receptor (TLR) 2 Expression of Immune Cells in the Saliva of Systemic Lupus Erythematosus: A Preliminary Study. J. Oral Med. Oral Surg. 2021, 27, 22. [Google Scholar] [CrossRef]
Study (Year) | Population (n, Age) | Mean Baseline 25(OH)D | Intervention vs. Control | Duration | Primary Outcomes | Key Findings | Risk of Bias/Limitations | Overall Appraisal |
---|---|---|---|---|---|---|---|---|
Aranow 2015 [76] | Adults with SLE, vit D ≤ 20 ng/mL, stable inactive disease (n = 57 randomized—54 intended to treat) | ~11–14 ng/mL | Vitamin D3 2000 IU/day or 4000 IU/day vs. placebo | 12 weeks | IFN gene signature | Repletion in 33% (2000 IU) and 61% (4000 IU). No reduction in IFN signature; disease activity unchanged. | Small sample; short follow-up; biomarker-centric endpoint; underpowered for clinical change. | Safe correction of deficiency; no effect on IFN signature or activity (SELENA-SLEDAI; anti-dsDNA) at 12 weeks. |
Karimzadeh 2017 [75] | Adults with SLE, 25(OH)D < 30 ng/mL (n = 90) | ~17 ng/mL | Vitamin D3 50,000 IU weekly ×12 weeks then monthly ×3 months vs. placebo | 9 months | SLEDAI | 25(OH)D ↑ ~20 ng/mL; SLEDAI decreased numerically but not significant vs. placebo. | Mixed background therapy; modest baseline activity; possible underpowering. | Corrects deficiency; clinical improvement signal weak. |
Fiblia 2022 [74] | Adult women with SLE + hypovitaminosis D (n = 52 completed) | ~15–16 ng/mL | Cholecalciferole 5000 IU/day vs. placebo | 12 weeks | MEX-SLEDAI; LupusQoL | Significant MEX-SLEDAI improvement; no QoL change. | Single-center; female-only; low baseline activity; short duration. | Positive effect on activity over 12 weeks. |
Lima 2016 (pediatric) [78] | Juvenile-onset SLE (≤25 yrs; onset <16 yrs) (n = 45) | ~19 ng/mL | D3 50,000 IU/week vs. placebo | 24 weeks | SLEDAI; ECLAM; anti-dsDNA; fatigue (K-FSS) | SLEDAI & ECLAM improved; fatigue improved; 15% converted anti-dsDNA(+)→(−); safety acceptable. | Small RCT; pediatric only; organ-specific outcomes limited. | Strongest clinical benefit; supports longer duration and higher dosing in pediatric SLE. |
Irfan 2022 (meta-analysis) [73] | 6 RCTs, n = 276 (mixed adult/pediatric SLE) | Varied (often deficient) | Pooled daily and weekly regimens | 12–36 weeks | SLEDAI, C3, C4, anti-dsDNA, fatigue | SLEDAI decreased (SMD −0.85); C3 ↑; no effect on anti-dsDNA or C4; fatigue inconsistent. | Moderate heterogeneity; variable regimens; small included trials. | Suggests modest activity improvement and complement rise; results heterogeneous. |
Zheng 2019 (meta-analysis) [77] | 5 RCTs, n = 490 (mainly adults) | Varied (often deficient) | Pooled daily and weekly regimens | 12–52 weeks | 25(OH)D, SLEDAI, fatigue | 25(OH)D consistently ↑; fatigue improved; no significant pooled SLEDAI effect; supplementation safe. | Clinical heterogeneity; endpoints diverse. | Supports correction of deficiency and fatigue benefit; uncertain effect on disease activity. |
Study | Type | Country | Population | CV Endpoint(s) | Main Findings/Results |
---|---|---|---|---|---|
Wu et al. (2009) [91] | Cross-sectional | USA (female cohort) | 79 women with SLE | CV risk factors | Low vitamin D linked with higher BP, low LDL-cholesterol, but associations were not statistically significant after BMI adjustment |
Reynolds et al. (2011) [92] | Cross-sectional | UK | 67 SLE | Aortic pulse-wave velocity (aPWV), carotid plaque and intima media thickness | Vitamin D deficiency strongly associated with increased aortic stiffness, independent of classic risk factors |
Mok et al. (2012) [89] | Cross-sectional | Hong Kong | 290 SLE | Carotid intima media thickness/plaque | Vitamin D associated with dyslipidemia, but not with subclinical atherosclerosis |
Kiani et al. (2013) (Hopkins Lupus Cohort) [93] | Prospective cohort | USA | ~100 SLE | CAC progression, carotid IMT, hsCRP | Baseline vitamin D did not predict CAC progression, IMT, or hsCRP over 2 years |
Lertratanakul et al. (2014) (SLICC inception) [88] | Prospective cohort | Multicenter international | ~1000 newly diagnosed SLE | CV risk factors; composite events | Lower vitamin D associated with worse CV risk factors. Trend: higher vitamin D linked to fewer CV events |
Jung et al. (2014) [94] | Cross-sectional | Korea | 102 SLE and 52 controls | Carotid IMT/plaque | No significant correlation between vitamin D and IMT/plaque or disease activity markers |
Robinson et al. (2014) (APPLE substudy) [95] | Pediatric cohort (effect modifier) | USA | 201 pediatric SLE | Carotid IMT progression | Subjects with serum 25(OH)D ≥ 20 ng/mL had less mean-max carotid IMT progression following 3 years of atorvastatin treatment |
Kamen & Oates (2015) [96] | Interventional (pilot) | USA | 9 SLE | Endothelial function—flow-mediated dilation (FMD) | FMD improved in ~50% of vitamin D-repleted patients vs. 0% in non-repleted |
Reynolds et al. (2016) [97] | Interventional | UK | 40 SLE—2 groups—22 deficient and 18 repleted | Endothelial function (FMD), angiogenic cells | Vitamin D improved FMD and increased circulating angiogenic cells; FMD change correlated with Δ25(OH)D |
Mellor-Pita et al. (2019) [98] | Cross-sectional | Spain | 47 SLE | Arterial stiffness—carotid femoral pulse wave velocity (PWV) | Patients with arterial stiffness had higher vitamin D levels, most of the patients were on Vitamin D–calcium supplements |
Ruiz-Ballesteros et al. (2024) [90] | Cross-sectional | Mexico | 224 SLE and 201 controls | Cardiometabolic risk | Low vitamin D associated with higher cardiometabolic risk (HTN, dyslipidemia, obesity) |
Yan et al. (2024) [99] | Mechanistic (omics) | China | 31 SLE | Lipid metabolism | Vitamin D deficiency associated with atherogenic lipid pathway alterations |
Study | Country | Sample Size | Supplement Duration | Vitamin D Supplement Doses | Outcomes |
---|---|---|---|---|---|
Tay et al. (2015) [101] | Singapore | 61 SLE, 61 controls | Cross-sectional (no supplementation) | N/A (observational) | 25(OH)D3 deficiency independently predicted worse total throughput score (TTS); SLE patients scored less in TTS than healthy controls |
Hussein et al. (2018) [103] | Egypt | 30 SLE, 20 controls | Cross-sectional (no supplementation) | N/A (observational) | Lower vitamin D levels in SLE vs. controls; deficiency associated with worse executive dysfunction (TMT-B) |
Sultana et al. (2022) [102] | Bangladesh | 19 NPSLE | Cross-sectional (no supplementation) | N/A (observational) | Positive correlation between vitamin D levels and hypoperfusion in brain regions related to cognitive functions; vitamin D levels lower in NPSLE with lower clinical mini-mental state examination (MMSE) scores |
Yan et al. (2019) [105] | China | 20 MRL/lpr mice and 10 C57BL/6 J mice controls | 4 weeks | Aerococcus and one daily intraperitoneal injection of Vitamin D (2 μg/kg/day) | Vitamin D therapy improved neurobehavioral abnormalities. At the molecular level, vitamin D treatment regulated the expression of caspase-3 and Bcl-2, triggered the production of VDR, and decreased the quantity of dead cells in the CA1 area of the hippocampus. |
Li et al. (2023) [106] | China | 40 MRL/lpr mice | 3 weeks | 1,25(OH)2D3 4 μg/kg intraperitoneal, 2×/week | Delayed choroid plexus infiltration, preserved BCSFB, through activation of PPARγ/NF-κB/TNF-α and inhibition of TGF-β/Smad signaling |
Karnopp et al. (2022) [107] | Brazil | 23 mice divided into three groups: control (CO), pristane-induced lupus (PIL) and PIL mice supplemented with VD (VD) | 6 months | Calcitriol 2 μg/kg every 2 days | Hippocampal IgG infiltration was greater in the PIL group than in the CO group. There was evidence that vitamin D might decrease IgG infiltration. Each group’s hippocampal region was comparable. There were no variations in VDR expression between the groups. VDR and IgG expression in the hippocampus were found to be positively correlated. |
Karnopp et al. (2024) [104] | Brazil | Review | N/A | N/A | Hypovitaminosis D linked to NPSLE cognition deficits; supplementation beneficial in animal models |
UMIN000056299 (ongoing) [108] | Bangladesh | 72 NPSLE patients (planned) | 6 months | Vitamin D3 oral supplementation (dose not yet reported) | Primary: cognition (MMSE); Secondary: brain perfusion (SPECT), serum Vit D levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predescu, O.R.; Vreju, F.A.; Dinescu, S.C.; Bita, C.E.; Musetescu, A.E.; Florescu, A.; Ciurea, P.L. Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review. Life 2025, 15, 1580. https://doi.org/10.3390/life15101580
Predescu OR, Vreju FA, Dinescu SC, Bita CE, Musetescu AE, Florescu A, Ciurea PL. Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review. Life. 2025; 15(10):1580. https://doi.org/10.3390/life15101580
Chicago/Turabian StylePredescu, Oana Raluca, Florentin Ananu Vreju, Stefan Cristian Dinescu, Cristina Elena Bita, Anca Emanuela Musetescu, Alesandra Florescu, and Paulina Lucia Ciurea. 2025. "Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review" Life 15, no. 10: 1580. https://doi.org/10.3390/life15101580
APA StylePredescu, O. R., Vreju, F. A., Dinescu, S. C., Bita, C. E., Musetescu, A. E., Florescu, A., & Ciurea, P. L. (2025). Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review. Life, 15(10), 1580. https://doi.org/10.3390/life15101580