Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Lupus Nephritis Biomarkers
3.1. Kidney Disease Related-Biomarkers
3.1.1. Urine Parameters
3.1.2. Serum Parameters
3.2. Autoantibodies
3.3. Complement
3.4. Emerging Biomarkers
3.4.1. Cytokines
3.4.2. Chemokines
3.4.3. Adhesion Molecules
3.4.4. Other Proteins
3.4.5. Immune Cells
3.4.6. Microparticles
3.4.7. MicroRNAs
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | activity index |
ALCAM | activated leukocyte cell adhesion molecule |
Anti-dsDNA | anti-double-stranded deoxyribonucleic acid |
ACR | American College of Rheumatology |
AUC | area under the curve |
BAFF | B cell activating factor |
BILAG | British Isles Lupus Assessment Group |
BLyS | B lymphocyte stimulator |
CD163 | cluster of differentiation 163 |
CRR | complete renal response |
CXCL | C-X-C motif ligand |
DORIS | definitions of remission in SLE |
DNA | deoxyribonucleic acid |
eGFR | estimated glomerular filtration rate |
ESKD | end-stage kidney disease |
EULAR | European League Against Rheumatism |
HR | hazard ratio |
HMGB1+ | high mobility group box 1 |
IL | interleukin |
IP-10 | interferon-γ inducible protein-10 |
KDIGO | kidney disease improving global outcomes |
LN | lupus nephritis |
MCP-1 | monocyte chemoattractant protein-1 |
miRNAs | micro ribonucleic acids |
MPs | microparticles |
NGAL | neutrophil gelatinase-associated lipocalin |
NK | natural killer |
NPV | negative predictive values |
OR | odds ratio |
PCR | protein-creatinine ratio |
PERR | primary efficacy renal response |
PPV | positive predictive value |
RNA | ribonucleic acid |
ROC | receiver operating characteristic |
SLE | systemic lupus erythematosus |
SLEDAI | SLE disease activity index |
SLE-ELISpot | anti-dsDNA autoantibodies secreting cells enzyme-linked immune sorbent spot |
Sn | sensitivity |
Sp | specificity |
TWEAK | tumor necrosis factor-like weak inducer of apoptosis |
VCAM-1 | vascular cell adhesion molecule-1 |
References
- Davidson, A. What Is Damaging the Kidney in Lupus Nephritis? Nat. Rev. Rheumatol. 2016, 12, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Haas, M.; Glassock, R.; Zhao, M.-H. Redefining Lupus Nephritis: Clinical Implications of Pathophysiologic Subtypes. Nat. Rev. Nephrol. 2017, 13, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.-J.; Saxena, R.; Zhao, M.; Parodis, I.; Salmon, J.E.; Mohan, C. Lupus Nephritis. Nat. Rev. Dis. Primer 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Vilet, J.M.; Malvar, A.; Arazi, A.; Rovin, B.H. The Lupus Nephritis Management Renaissance. Kidney Int. 2022, 101, 242–255. [Google Scholar] [CrossRef]
- Parikh, S.V.; Rovin, B.H. Current and Emerging Therapies for Lupus Nephritis. J. Am. Soc. Nephrol. 2016, 27, 2929–2939. [Google Scholar] [CrossRef]
- Mejia-Vilet, J.M.; Zhang, X.L.; Cruz, C.; Cano-Verduzco, M.L.; Shapiro, J.P.; Nagaraja, H.N.; Morales-Buenrostro, L.E.; Rovin, B.H. Urinary Soluble CD163: A Novel Noninvasive Biomarker of Activity for Lupus Nephritis. J. Am. Soc. Nephrol. 2020, 31, 1335–1347. [Google Scholar] [CrossRef]
- Obrișcă, B.; Sorohan, B.; Tuță, L.; Ismail, G. Advances in Lupus Nephritis Pathogenesis: From Bench to Bedside. Int. J. Mol. Sci. 2021, 22, 3766. [Google Scholar] [CrossRef]
- Soliman, S.; Mohan, C. Lupus Nephritis Biomarkers. Clin. Immunol. 2017, 185, 10–20. [Google Scholar] [CrossRef]
- Palazzo, L.; Lindblom, J.; Mohan, C.; Parodis, I. Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature. J. Clin. Med. 2022, 11, 5759. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Cheema, K.; Anders, H.-J.; Aringer, M.; Bajema, I.; Boletis, J.; Frangou, E.; Houssiau, F.A.; Hollis, J.; et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association–European Dialysis and Transplant Association (EULAR/ERA–EDTA) Recommendations for the Management of Lupus Nephritis. Ann. Rheum. Dis. 2020, 79, 713–723. [Google Scholar] [CrossRef]
- Inthavong, H.; Vanarsa, K.; Castillo, J.; Hicks, M.J.; Mohan, C.; Wenderfer, S.E. Urinary CD163 Is a Marker of Active Kidney Disease in Childhood-Onset Lupus Nephritis. Rheumatology 2023, 62, 1335–1342. [Google Scholar] [CrossRef]
- Fava, A.; Buyon, J.; Magder, L.; Hodgin, J.; Rosenberg, A.; Demeke, D.S.; Rao, D.A.; Arazi, A.; Celia, A.I.; Putterman, C.; et al. Urine Proteomic Signatures of Histological Class, Activity, Chronicity, and Treatment Response in Lupus Nephritis. JCI Insight 2024, 9, e172569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gasparotto, M.; Gatto, M.; Binda, V.; Doria, A.; Moroni, G. Lupus Nephritis: Clinical Presentations and Outcomes in the 21st Century. Rheumatology 2020, 59, v39–v51. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Sethi, S.; Fervenza, F.C. Lupus Nephritis: Redefining the Treatment Goals. Kidney Int. 2025, 107, 198–211. [Google Scholar] [CrossRef]
- Rovin, B.H.; Ayoub, I.M.; Chan, T.M.; Liu, Z.H.; Mejía-Vilet, J.M.; Floege, J. KDIGO 2024 Clinical Practice Guideline for the Management of LUPUS NEPHRITIS. Kidney Int. 2024, 105, S1–S69. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic Lupus Erythematosus Disease Activity Index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Isenberg, D.A.; Rahman, A.; Allen, E.; Farewell, V.; Akil, M.; Bruce, I.N.; D’Cruz, D.; Griffiths, B.; Khamashta, M.; Maddison, P.; et al. BILAG 2004. Development and Initial Validation of an Updated Version of the British Isles Lupus Assessment Group’s Disease Activity Index for Patients with Systemic Lupus Erythematosus. Rheumatology 2005, 44, 902–906. [Google Scholar] [CrossRef]
- Wallace, D.J.; Hahn, B.H. Dubois’ Lupus Erythematosus and Related Syndromes, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Trouw, L.A.; Groeneveld, T.W.L.; Seelen, M.A.; Duijs, J.M.G.J.; Bajema, I.M.; Prins, F.A.; Kishore, U.; Salant, D.J.; Verbeek, J.S.; Kooten, C.V.; et al. Anti-C1q Autoantibodies Deposit in Glomeruli but Are Only Pathogenic in Combination with Glomerular C1q-Containing Immune Complexes. J. Clin. Investig. 2004, 114, 679–688. [Google Scholar] [CrossRef]
- Pickering, M.C.; Botto, M. Are Anti-C1q Antibodies Different from Other SLE Autoantibodies? Nat. Rev. Rheumatol. 2010, 6, 490–493. [Google Scholar] [CrossRef]
- Tsirogianni, A.; Pipi, E.; Soufleros, K. Relevance of Anti-C1q Autoantibodies to Lupus Nephritis. Ann. N. Y. Acad. Sci. 2009, 1173, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Gourley, M.F.; Austin Iii, H.A.; Scott, D.; Yarboro, C.H.; Vaughan, E.M.; Muir, J.; Boumpas, D.T.; Klippel, J.H.; Balow, J.E.; Steinberg, A.D. Methylprednisolone and Cyclophosphamide, Alone or in Combination, in Patients with Lupus Nephritis: A Randomized, Controlled Trial. Ann. Intern. Med. 1996, 125, 549–557. [Google Scholar] [CrossRef]
- Chan, T.M.; Fang, G.X.; Tong, M.K.L. Efficacy of Mycophenolate Mofetil in Patients with Diffuse Proliferative Lupus Nephritis. N. Engl. J. Med. 2001, 344, 383. [Google Scholar] [CrossRef] [PubMed]
- Illei, G.G.; Takada, K.; Parkin, D.; Austin, H.A.; Crane, M.; Yarboro, C.H.; Vaughan, E.M.; Kuroiwa, T.; Danning, C.L.; Pando, J.; et al. Renal Flares Are Common in Patients with Severe Proliferative Lupus Nephritis Treated with Pulse Immunosuppressive Therapy: Long-term Followup of a Cohort of 145 Patients Participating in Randomized Controlled Studies. Arthritis Rheum. 2002, 46, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Houssiau, F.A.; Vasconcelos, C.; D’Cruz, D.; Sebastiani, G.D.; Garrido, E.D.R.; Danieli, M.G.; Abramovicz, D.; Blockmans, D.; Mathieu, A.; Direskeneli, H.; et al. Immunosuppressive Therapy in Lupus Nephritis: The Euro-Lupus Nephritis Trial, a Randomized Trial of Low-dose versus High-dose Intravenous Cyclophosphamide. Arthritis Rheum. 2002, 46, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Ginzler, E.M.; Buyon, J.; Wallace, D.J. Mycophenolate Mofetil or Intravenous Cyclophosphamide for Lupus Nephritis. N. Engl. J. Med. 2005, 353, 2219–2228. [Google Scholar] [CrossRef]
- Appel, G.B.; Contreras, G.; Dooley, M.A.; Ginzler, E.M.; Isenberg, D.; Jayne, D.; Li, L.-S.; Mysler, E.; Sánchez-Guerrero, J.; Solomons, N.; et al. Mycophenolate Mofetil versus Cyclophosphamide for Induction Treatment of Lupus Nephritis. J. Am. Soc. Nephrol. 2009, 20, 1103–1112. [Google Scholar] [CrossRef]
- Houssiau, F.A.; D’Cruz, D.; Sangle, S.; Remy, P.; Vasconcelos, C.; Petrovic, R.; Fiehn, C.; Garrido, E.d.R.; Gilboe, I.-M.; Tektonidou, M.; et al. Azathioprine versus Mycophenolate Mofetil for Long-Term Immunosuppression in Lupus Nephritis: Results from the MAINTAIN Nephritis Trial. Ann. Rheum. Dis. 2010, 69, 2083–2089. [Google Scholar] [CrossRef]
- Dooley, M.A.; Jayne, D.; Ginzler, E.M.; Isenberg, D.; Olsen, N.J.; Wofsy, D.; Eitner, F.; Appel, G.B.; Contreras, G.; Lisk, L.; et al. Mycophenolate versus Azathioprine as Maintenance Therapy for Lupus Nephritis. N. Engl. J. Med. 2011, 365, 1886–1895. [Google Scholar] [CrossRef]
- Zeher, M.; Doria, A.; Lan, J.; Aroca, G.; Jayne, D.; Boletis, I.; Hiepe, F.; Prestele, H.; Bernhardt, P.; Amoura, Z. Efficacy and Safety of Enteric-Coated Mycophenolate Sodium in Combination with Two Glucocorticoid Regimens for the Treatment of Active Lupus Nephritis. Lupus 2011, 20, 1484–1493. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and Safety of Rituximab in Patients with Active Proliferative Lupus Nephritis: The Lupus Nephritis Assessment with Rituximab Study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- Condon, M.B.; Ashby, D.; Pepper, R.J.; Cook, H.T.; Levy, J.B.; Griffith, M.; Cairns, T.D.; Lightstone, L. Prospective Observational Single-Centre Cohort Study to Evaluate the Effectiveness of Treating Lupus Nephritis with Rituximab and Mycophenolate Mofetil but No Oral Steroids. Ann. Rheum. Dis. 2013, 72, 1280–1286. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Liu, Z.; Xing, C.; Fu, P.; Ni, Z.; Chen, J.; Lin, H.; Liu, F.; He, Y.; et al. Multitarget Therapy for Induction Treatment of Lupus Nephritis: A Randomized Trial. Ann. Intern. Med. 2015, 162, 18–26. [Google Scholar] [CrossRef]
- Rovin, B.H.; Solomons, N.; Pendergraft, W.F.; Dooley, M.A.; Tumlin, J.; Romero-Diaz, J.; Lysenko, L.; Navarra, S.V.; Huizinga, R.B.; Adzerikho, I.; et al. A Randomized, Controlled Double-Blind Study Comparing the Efficacy and Safety of Dose-Ranging Voclosporin with Placebo in Achieving Remission in Patients with Active Lupus Nephritis. Kidney Int. 2019, 95, 219–231. [Google Scholar] [CrossRef]
- Furie, R.; Rovin, B.H.; Houssiau, F.; Malvar, A.; Teng, Y.K.O.; Contreras, G.; Amoura, Z.; Yu, X.; Mok, C.-C.; Santiago, M.B.; et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N. Engl. J. Med. 2020, 383, 1117–1128. [Google Scholar] [CrossRef]
- Rovin, B.H.; Teng, Y.K.O.; Ginzler, E.M.; Arriens, C.; Caster, D.J.; Romero-Diaz, J.; Gibson, K.; Kaplan, J.; Lisk, L.; Navarra, S.; et al. Efficacy and Safety of Voclosporin versus Placebo for Lupus Nephritis (AURORA 1): A Double-Blind, Randomised, Multicentre, Placebo-Controlled, Phase 3 Trial. Lancet 2021, 397, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.A.; Aroca, G.; Cascino, M.D.; Garg, J.P.; Rovin, B.H.; Alvarez, A.; Fragoso-Loyo, H.; Zuta-Santillan, E.; Schindler, T.; Brunetta, P.; et al. B-Cell Depletion with Obinutuzumab for the Treatment of Proliferative Lupus Nephritis: A Randomised, Double-Blind, Placebo-Controlled Trial. Ann. Rheum. Dis. 2022, 81, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Ginzler, E.M.; Gibson, K.; Satirapoj, B.; Santillán, A.E.Z.; Levchenko, O.; Navarra, S.; Atsumi, T.; Yasuda, S.; Chavez-Perez, N.N.; et al. Safety and Efficacy of Long-Term Voclosporin Treatment for Lupus Nephritis in the Phase 3 AURORA 2 Clinical Trial. Arthritis Rheumatol. 2024, 76, 59–67. [Google Scholar] [CrossRef]
- Furie, R.A.; Rovin, B.H.; Garg, J.P.; Santiago, M.B.; Aroca-Martínez, G.; Zuta Santillán, A.E.; Alvarez, D.; Navarro Sandoval, C.; Lila, A.M.; Tumlin, J.A.; et al. Efficacy and Safety of Obinutuzumab in Active Lupus Nephritis. N. Engl. J. Med. 2025, 392, 1471–1483. [Google Scholar] [CrossRef]
- Dall’Era, M.; Cisternas, M.G.; Smilek, D.E.; Straub, L.; Houssiau, F.A.; Cervera, R.; Rovin, B.H.; Mackay, M. Predictors of Long-Term Renal Outcome in Lupus Nephritis Trials: Lessons Learned from the Euro-Lupus Nephritis Cohort. Arthritis Rheumatol. 2015, 67, 1305–1313. [Google Scholar] [CrossRef]
- Tamirou, F.; Lauwerys, B.R.; Dall’Era, M.; Mackay, M.; Rovin, B.; Cervera, R.; Houssiau, F.A. A Proteinuria Cut-off Level of 0.7 g/Day after 12 Months of Treatment Best Predicts Long-Term Renal Outcome in Lupus Nephritis: Data from the MAINTAIN Nephritis Trial. Lupus Sci. Med. 2015, 2, e000123. [Google Scholar] [CrossRef]
- Sammaritano, L.R.; Askanase, A.; Bermas, B.L.; Dall’Era, M.; Duarte-García, A.; Hiraki, L.T.; Rovin, B.H.; Son, M.B.F.; Alvarado, A.; Aranow, C.; et al. 2024 American College of Rheumatology (ACR) Guideline for the Screening, Treatment, and Management of Lupus Nephritis. Arthritis Care Res. 2025, 77, 1045–1065. [Google Scholar] [CrossRef]
- Aggarwal, A.; Gupta, R.; Negi, V.S.; Rajasekhar, L.; Misra, R.; Singh, P.; Chaturvedi, V.; Sinha, S. Urinary Haptoglobin, Alpha-1 Anti-Chymotrypsin and Retinol Binding Protein Identified by Proteomics as Potential Biomarkers for Lupus Nephritis. Clin. Exp. Immunol. 2017, 188, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Kopetschke, K.; Klocke, J.; Grießbach, A.-S.; Humrich, J.Y.; Biesen, R.; Dragun, D.; Burmester, G.-R.; Enghard, P.; Riemekasten, G. The Cellular Signature of Urinary Immune Cells in Lupus Nephritis: New Insights into Potential Biomarkers. Arthritis Res. Ther. 2015, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Jakiela, B.; Kosałka, J.; Plutecka, H.; Węgrzyn, A.S.; Bazan-Socha, S.; Sanak, M.; Musiał, J. Urinary Cytokines and mRNA Expression as Biomarkers of Disease Activity in Lupus Nephritis. Lupus 2018, 27, 1259–1270. [Google Scholar] [CrossRef]
- Alharazy, S.; Kong, N.C.T.; Mohd, M.; Shah, S.A.; Ba’in, A.; Abdul Gafor, A.H. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study. Autoimmune Dis. 2015, 2015, 962046. [Google Scholar] [CrossRef]
- Fatemi, A.; Samadi, G.; Sayedbonakdar, Z.; Smiley, A. Anti-C1q Antibody in Patients with Lupus Nephritic Flare: 18-Month Follow-up and a Nested Case-Control Study. Mod. Rheumatol. 2016, 26, 233–239. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, A.; Misra, R.; Aggarwal, A. Urinary sCD25 as a Biomarker of Lupus Nephritis Disease Activity. Lupus 2015, 24, 273–279. [Google Scholar] [CrossRef]
- Obrișcă, B.; Vornicu, A.; Procop, A.; Herlea, V.; Terinte-Balcan, G.; Gherghiceanu, M.; Ismail, G. A Histology-Guided Approach to the Management of Patients with Lupus Nephritis: Are We There Yet? Biomedicines 2022, 10, 1409. [Google Scholar] [CrossRef]
- Malvar, A.; Pirruccio, P.; Alberton, V.; Lococo, B.; Recalde, C.; Fazini, B.; Nagaraja, H.; Indrakanti, D.; Rovin, B.H. Histologic versus Clinical Remission in Proliferative Lupus Nephritis. Nephrol. Dial. Transplant. 2017, 32, 1338–1344. [Google Scholar] [CrossRef]
- Parodis, I.; Adamichou, C.; Aydin, S.; Gomez, A.; Demoulin, N.; Weinmann-Menke, J.; Houssiau, F.A.; Tamirou, F. Per-Protocol Repeat Kidney Biopsy Portends Relapse and Long-Term Outcome in Incident Cases of Proliferative Lupus Nephritis. Rheumatology 2020, 59, 3424–3434. [Google Scholar] [CrossRef]
- Lichtnekert, J.; Anders, H.-J. Lupus Nephritis-Related Chronic Kidney Disease. Nat. Rev. Rheumatol. 2024, 20, 699–711. [Google Scholar] [CrossRef]
- Parikh, S.V.; Almaani, S.; Brodsky, S.; Rovin, B.H. Update on Lupus Nephritis: Core Curriculum 2020. Am. J. Kidney Dis. 2020, 76, 265–281. [Google Scholar] [CrossRef]
- Parikh, S.V.; Nagaraja, H.N.; Hebert, L.; Rovin, B.H. Renal Flare as a Predictor of Incident and Progressive CKD in Patients with Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2014, 9, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kapsia, E.; Marinaki, S.; Michelakis, I.; Liapis, G.; Sfikakis, P.P.; Boletis, J.; Tektonidou, M.G. Predictors of Early Response, Flares, and Long-Term Adverse Renal Outcomes in Proliferative Lupus Nephritis: A 100-Month Median Follow-Up of an Inception Cohort. J. Clin. Med. 2022, 11, 5017. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, K.; Kitamura, M.; Sato, S.; Fujikawa, K.; Horai, Y.; Matsuoka, N.; Tsuboi, M.; Nonaka, F.; Shimizu, T.; Fukui, S.; et al. Podocyte Foot Process Width Is a Prediction Marker for Complete Renal Response at 6 and 12 Months after Induction Therapy in Lupus Nephritis. Clin. Immunol. 2018, 197, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Barr, E.; Magder, L.S. Risk of Renal Failure Within 10 or 20 Years of Systemic Lupus Erythematosus Diagnosis. J. Rheumatol. 2021, 48, 222–227. [Google Scholar] [CrossRef]
- Calatroni, M.; Conte, E.; Stella, M.; De Liso, F.; Reggiani, F.; Moroni, G. Clinical and Immunological Biomarkers Can Identify Proliferative Changes and Predict Renal Flares in Lupus Nephritis. Arthritis Res. Ther. 2025, 27, 72. [Google Scholar] [CrossRef]
- Landolt-Marticorena, C.; Prokopec, S.D.; Morrison, S.; Noamani, B.; Bonilla, D.; Reich, H.; Scholey, J.; Avila-Casado, C.; Fortin, P.R.; Boutros, P.C.; et al. A Discrete Cluster of Urinary Biomarkers Discriminates between Active Systemic Lupus Erythematosus Patients with and without Glomerulonephritis. Arthritis Res. Ther. 2016, 18, 218. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Qin, B.; Wu, P.; Zhong, R.; Zhou, L.; Liang, Y. Human Epididymis Protein 4: A Novel Biomarker for Lupus Nephritis and Chronic Kidney Disease in Systemic Lupus Erythematosus. J. Clin. Lab. Anal. 2016, 30, 897–904. [Google Scholar] [CrossRef]
- Wong, C.C.Y.; Gao, L.Y.; Xu, Y.; Chau, M.K.M.; Zhang, D.; Yap, D.Y.H.; Ying, S.K.Y.; Lee, C.K.; Yung, S.; Chan, T.M. Cluster of Differentiation-44 as a Novel Biomarker of Lupus Nephritis and Its Role in Kidney Inflammation and Fibrosis. Front. Immunol. 2024, 15, 1443153. [Google Scholar] [CrossRef]
- Pang, Y.; Tan, Y.; Li, Y.; Zhang, J.; Guo, Y.; Guo, Z.; Zhang, C.; Yu, F.; Zhao, M. Serum A08 C1q Antibodies Are Associated with Disease Activity and Prognosis in Chinese Patients with Lupus Nephritis. Kidney Int. 2016, 90, 1357–1367. [Google Scholar] [CrossRef]
- Whittall Garcia, L.P.; Gladman, D.D.; Urowitz, M.; Bonilla, D.; Schneider, R.; Touma, Z.; Wither, J. Interferon-α as a Biomarker to Predict Renal Outcomes in Lupus Nephritis. Lupus Sci. Med. 2024, 11, e001347. [Google Scholar] [CrossRef]
- Chen, Y.M.; Hung, W.T.; Liao, Y.W.; Hsu, C.Y.; Hsieh, T.Y.; Chen, H.H.; Hsieh, C.W.; Lin, C.T.; Lai, K.L.; Tang, K.T.; et al. Combination Immunosuppressant Therapy and Lupus Nephritis Outcome: A Hospital-Based Study. Lupus 2019, 28, 658–666. [Google Scholar] [CrossRef]
- Häyry, A.; Faustini, F.; Zickert, A.; Larsson, A.; Niewold, T.B.; Svenungsson, E.; Oke, V.; Gunnarsson, I. Interleukin (IL) 16: A Candidate Urinary Biomarker for Proliferative Lupus Nephritis. Lupus Sci. Med. 2022, 9, e000744. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Yang, Y.; Liu, Y.; Feng, J. Diagnostic Performance of Serum Cystatin C and Complement Component 1q in Lupus Nephritis. Arthritis Res. Ther. 2019, 21, 267. [Google Scholar] [CrossRef]
- Obrișcă, B.; Vrabie, A.; Lujinschi, Ș.; Jurubiță, R.; Mocanu, V.; Berechet, A.; Sorohan, B.; Andronesi, A.; Lupușoru, G.; Achim, C.; et al. Clinical Predictors of Underlying Histologic Activity in Patients with Lupus Nephritis: A Focus on Urinary Soluble CD163. J. Clin. Med. 2025, 14, 6162. [Google Scholar] [CrossRef]
- Kitagawa, A.; Tsuboi, N.; Yokoe, Y.; Katsuno, T.; Ikeuchi, H.; Kajiyama, H.; Endo, N.; Sawa, Y.; Suwa, J.; Sugiyama, Y.; et al. Urinary Levels of the Leukocyte Surface Molecule CD11b Associate with Glomerular Inflammation in Lupus Nephritis. Kidney Int. 2019, 95, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Vilet, J.M.; Córdova-Sánchez, B.M.; Arreola-Guerra, J.M.; Morales-Buenrostro, L.E.; Uribe-Uribe, N.O.; Correa-Rotter, R. Renal Flare Prediction and Prognosis in Lupus Nephritis Hispanic Patients. Lupus 2016, 25, 315–324. [Google Scholar] [CrossRef] [PubMed]
- El-Mohsen, M.A.; Tawfik, A.; Bichari, W.; Shawky, S.; Mady, G.; Hassan, M. Value of Urinary Neutrophil Gelatinase-Associated Lipocalin versus Conventional Biomarkers in Predicting Response to Treatment of Active Lupus Nephritis. Int. J. Nephrol. 2020, 2020, 8855614. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Yiu, S.; Su, L.; Gordon, C.; Truman, M.; Lisk, L.; Solomons, N.; Bruce, I.N. Predictors of Treatment Response in a Lupus Nephritis Population: Lessons from the Aspreva Lupus Management Study (ALMS) Trial. Lupus Sci. Med. 2022, 9, e000584. [Google Scholar] [CrossRef]
- Park, D.J.; Kang, J.H.; Lee, J.W.; Lee, K.E.; Kim, T.J.; Park, Y.W.; Lee, J.S.; Choi, Y.D.; Lee, S.S. Risk Factors to Predict the Development of Chronic Kidney Disease in Patients with Lupus Nephritis. Lupus 2017, 26, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Shiga, T.; Ashida, C.; Tomita, D.; Itami, T.; Kishimoto, K.; Kinoshita, K.; Matsumura, I. U-KIM-1 as a Predictor of Treatment Response in Lupus Nephritis. Lupus 2023, 32, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.S.; Kim, S.; Chin, H.J. Remission of Proteinuria Indicates Good Prognosis in Patients with Diffuse Proliferative Lupus Nephritis. Lupus 2016, 25, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Domingues, V.; Levinson, B.A.; Bornkamp, N.; Goldberg, J.D.; Buyon, J.; Belmont, H.M. Serum Albumin at 1 Year Predicts Long-Term Renal Outcome in Lupus Nephritis. Lupus Sci. Med. 2018, 5, e000271. [Google Scholar] [CrossRef]
- Liu, X.-R.; Qi, Y.-Y.; Zhao, Y.-F.; Cui, Y.; Wang, X.-Y.; Zhao, Z.-Z. Albumin-to-Globulin Ratio (AGR) as a Potential Marker of Predicting Lupus Nephritis in Chinese Patients with Systemic Lupus Erythematosus. Lupus 2021, 30, 412–420. [Google Scholar] [CrossRef]
- Kwon, O.C.; Lee, E.-J.; Oh, J.S.; Hong, S.; Lee, C.-K.; Yoo, B.; Park, M.-C.; Kim, Y.-G. Plasma Immunoglobulin Binding Protein 1 as a Predictor of Development of Lupus Nephritis. Lupus 2020, 29, 547–553. [Google Scholar] [CrossRef]
- Mok, C.C.; Ding, H.H.; Kharboutli, M.; Mohan, C. Axl, Ferritin, Insulin-Like Growth Factor Binding Protein 2, and Tumor Necrosis Factor Receptor Type II as Biomarkers in Systemic Lupus Erythematosus. Arthritis Care Res. 2016, 68, 1303–1309. [Google Scholar] [CrossRef]
- Hardt, U.; Larsson, A.; Gunnarsson, I.; Clancy, R.M.; Petri, M.; Buyon, J.P.; Silverman, G.J.; Svenungsson, E.; Grönwall, C. Autoimmune Reactivity to Malondialdehyde Adducts in Systemic Lupus Erythematosus Is Associated with Disease Activity and Nephritis. Arthritis Res. Ther. 2018, 20, 36. [Google Scholar] [CrossRef]
- Barnado, A.; Carroll, R.J.; Casey, C.; Wheless, L.; Denny, J.C.; Crofford, L.J. Phenome-Wide Association Study Identifies dsDNA as a Driver of Major Organ Involvement in Systemic Lupus Erythematosus. Lupus 2019, 28, 66–76. [Google Scholar] [CrossRef]
- Plawecki, M.; Lheritier, E.; Clavarino, G.; Jourde-Chiche, N.; Ouili, S.; Paul, S.; Gout, E.; Sarrot-Reynauld, F.; Bardin, N.; Boëlle, P.-Y.; et al. Association between the Presence of Autoantibodies Targeting Ficolin-3 and Active Nephritis in Patients with Systemic Lupus Erythematosus. PLoS ONE 2016, 11, e0160879. [Google Scholar] [CrossRef]
- Gargiulo, M.D.L.Á.; Khoury, M.; Gómez, G.; Grimaudo, S.; Suárez, L.; Collado, M.V.; Sarano, J. Cut-off Values of Immunological Tests to Identify Patients at High Risk of Severe Lupus Nephritis. Medicina 2018, 78, 329–335. [Google Scholar] [PubMed]
- Sjӧwall, C.; Bentow, C.; Aure, M.A.; Mahler, M. Two-Parametric Immunological Score Development for Assessing Renal Involvement and Disease Activity in Systemic Lupus Erythematosus. J. Immunol. Res. 2018, 2018, 1294680. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.C.; Lee, J.S.; Ghang, B.; Kim, Y.-G.; Lee, C.-K.; Yoo, B.; Hong, S. Predicting Eventual Development of Lupus Nephritis at the Time of Diagnosis of Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2018, 48, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; Franceschini, F.; Fredi, M.; Vaglio, A.; Cavagna, L.; Petretto, A.; Pratesi, F.; Migliorini, P.; et al. Serum IgG2 Antibody Multicomposition in Systemic Lupus Erythematosus and Lupus Nephritis (Part 1): Cross-Sectional Analysis. Rheumatology 2021, 60, 3176–3188. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, A.; Aggarwal, A. Urinary Soluble CD163 Is a Good Biomarker for Renal Disease Activity in Lupus Nephritis. Clin. Rheumatol. 2021, 40, 941–948. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, A.; Aggarwal, A. Longitudinal Assessment of Monocyte Chemoattractant Protein-1 in Lupus Nephritis as a Biomarker of Disease Activity. Clin. Rheumatol. 2016, 35, 2707–2714. [Google Scholar] [CrossRef]
- Mok, C.C. Urinary Angiostatin, CXCL4 and VCAM-1 as Biomarkers of Lupus Nephritis. Arthritis Res. Ther. 2018, 20, 6. [Google Scholar] [CrossRef]
- Renaudineau, Y.; Chauveau, D.; Faguer, S.; Huart, A.; Ribes, D.; Pugnet, G.; Sailler, L.; Jamme, T.; Treiner, E.; Fortenfant, F.; et al. Urinary Soluble CD163 Is Useful as “Liquid Biopsy” Marker in Lupus Nephritis at Both Diagnosis and Follow-up to Predict Impending Flares. J. Transl. Autoimmun. 2024, 9, 100244. [Google Scholar] [CrossRef]
- Fava, A.; Wagner, C.A.; Guthridge, C.J.; Kheir, J.; Macwana, S.; DeJager, W.; Gross, T.; Izmirly, P.; Belmont, H.M.; Diamond, B.; et al. Association of Autoantibody Concentrations and Trajectories With Lupus Nephritis Histologic Features and Treatment Response. Arthritis Rheumatol. 2024, 76, 1611–1622. [Google Scholar] [CrossRef]
- Vasilev, V.; Artero, M.R.; Petkova, M.; Mihaylova, G.; Dragon-Durey, M.-A.; Radanova, M.; Roumenina, L.T. Clinical Relevance of Anti-C3 and Anti-C4 Autoantibodies in Lupus Nephritis. Kidney Int. Rep. 2024, 9, 1429–1440. [Google Scholar] [CrossRef]
- Kianmehr, N.; Khoshmirsafa, M.; Shekarabi, M.; Falak, R.; Haghighi, A.; Masoodian, M.; Seif, F.; Omidi, F.; Shirani, F.; Dadfar, N. High Frequency of Concurrent Anti-C1q and Anti-dsDNA but Not Anti-C3b Antibodies in Patients with Lupus Nephritis. J. Immunoass. Immunochem. 2021, 42, 406–423. [Google Scholar] [CrossRef]
- Moroni, G.; Quaglini, S.; Radice, A.; Trezzi, B.; Raffiotta, F.; Messa, P.; Sinico, R.A. The Value of a Panel of Autoantibodies for Predicting the Activity of Lupus Nephritis at Time of Renal Biopsy. J. Immunol. Res. 2015, 2015, 106904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, H.; Vanarsa, K.; Gidley, G.; Mok, C.C.; Petri, M.; Saxena, R.; Mohan, C. Association of Urine sCD163 With Proliferative Lupus Nephritis, Fibrinoid Necrosis, Cellular Crescents and Intrarenal M2 Macrophages. Front. Immunol. 2020, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, Y.; Wang, Y.; Liu, F.; Pan, S.; Li, S.; Guo, Z.; Gao, D.; Yang, J.; Liu, Z.; et al. Proteomics Uncovers ICAM2 (CD102) as a Novel Serum Biomarker of Proliferative Lupus Nephritis. Lupus Sci. Med. 2025, 12, e001446. [Google Scholar] [CrossRef] [PubMed]
- Fasano, S.; Pierro, L.; Borgia, A.; Coscia, M.A.; Formica, R.; Bucci, L.; Riccardi, A.; Ciccia, F. Biomarker Panels May Be Superior over Single Molecules in Prediction of Renal Flares in Systemic Lupus Erythematosus: An Exploratory Study. Rheumatology 2020, 59, 3193–3200. [Google Scholar] [CrossRef]
- Himbert, M.; Jourde-Chiche, N.; Chapart, L.; Charles, N.; Baumstarck, K.; Daugas, E. Anti-dsDNA IgE: A Potential Non-Invasive Test for Prediction of Lupus Nephritis Relapse. RMD Open 2024, 10, e004255. [Google Scholar] [CrossRef]
- Pérez-Isidro, A.; Xipell, M.; Llobell, A.; De Moner, N.; Lledó, G.M.; Cervera, R.; Prieto-González, S.; Quintana, L.F.; Espinosa, G.; García-Ormaechea, M.; et al. Anti-dsDNA B-Cell ELISpot as a Monitoring and Flare Prediction Tool in SLE Patients. J. Clin. Med. 2023, 12, 1295. [Google Scholar] [CrossRef]
- Golder, V.; Tsang-A-Sjoe, M.W.P. Treatment Targets in SLE: Remission and Low Disease Activity State. Rheumatology 2020, 59, v19–v28. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.S.; Go, H.; Lim, J.S.; Oh, J.S.; Kim, Y.-G.; Lee, C.-K.; Yoo, B.; Hong, S. Clinical and Histological Significance of Urinary CD11c+ Macrophages in Lupus Nephritis. Arthritis Res. Ther. 2020, 22, 173. [Google Scholar] [CrossRef]
- Colliard, S.; Jourde-Chiche, N.; Clavarino, G.; Sarrot-Reynauld, F.; Gout, E.; Deroux, A.; Fougere, M.; Bardin, N.; Bouillet, L.; Cesbron, J.; et al. Autoantibodies Targeting Ficolin-2 in Systemic Lupus Erythematosus Patients With Active Nephritis. Arthritis Care Res. 2018, 70, 1263–1268. [Google Scholar] [CrossRef]
- Birmingham, D.J.; Bitter, J.E.; Ndukwe, E.G.; Dials, S.; Gullo, T.R.; Conroy, S.; Nagaraja, H.N.; Rovin, B.H.; Hebert, L.A. Relationship of Circulating Anti-C3b and Anti-C1q IgG to Lupus Nephritis and Its Flare. Clin. J. Am. Soc. Nephrol. 2016, 11, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.; Yu, Y.; Shi, J.; Zhang, Y.; Yang, J.; Yang, L.; Liu, X. Antibodies against C1q Are a Valuable Serological Marker for Identification of Systemic Lupus Erythematosus Patients with Active Lupus Nephritis. Dis. Markers 2015, 2015, 450351. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Puerta, J.A.; Ortiz-Reyes, B.; Urrego, T.; Vanegas-García, A.L.; Muñoz, C.H.; González, L.A.; Cervera, R.; Vásquez, G. Urinary Neutrophil Gelatinase-Associated Lipocalin and Monocyte Chemoattractant Protein 1 as Biomarkers for Lupus Nephritis in Colombian SLE Patients. Lupus 2018, 27, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhao, L.; Wang, C.; Shang, J.; Miao, Y.; Dong, Y.; Zhao, Z. Anti-Double-Stranded DNA Isotypes and Anti-C1q Antibody Improve the Diagnostic Specificity of Systemic Lupus Erythematosus. Dis. Markers 2018, 2018, 4528547. [Google Scholar] [CrossRef]
- Radanova, M.; Vasilev, V.; Mihaylova, G.; Kosturkova, M.; Kishore, U.; Roumenina, L. Autoantibodies against Complement Classical Pathway Components C1q, C1r, C1s and C1-Inh in Patients with Lupus Nephritis. Int. J. Mol. Sci. 2022, 23, 9281. [Google Scholar] [CrossRef]
- Ishizaki, J.; Saito, K.; Nawata, M.; Mizuno, Y.; Tokunaga, M.; Sawamukai, N.; Tamura, M.; Hirata, S.; Yamaoka, K.; Hasegawa, H.; et al. Low Complements and High Titre of Anti-Sm Antibody as Predictors of Histopathologically Proven Silent Lupus Nephritis without Abnormal Urinalysis in Patients with Systemic Lupus Erythematosus. Rheumatology 2015, 54, 405–412. [Google Scholar] [CrossRef]
- Bock, M.; Heijnen, I.; Trendelenburg, M. Anti-C1q Antibodies as a Follow-Up Marker in SLE Patients. PLoS ONE 2015, 10, e0123572. [Google Scholar] [CrossRef]
- Vigne, J.; Haut, N.; Clavarino, G.; Jourde-Chiche, N.; Sarrot-Reynauld, F.; Trouw, L.A.; Defendi, F.; Thielens, N.M.; Gaboriaud, C.; Rossi, V.; et al. Anti-C1s Autoantibodies as Complementary Serologic Biomarker in Lupus Nephritis. Clin. Immunol. 2025, 275, 110487. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Wu, L.; Wu, T.; Tu, J.; Wu, X.; Sun, F.; Ding, H.; Shen, N.; Wu, H.; et al. Combination of Anti-SSA/Ro60 and Anti-dsDNA Serotype Is Predictive of Belimumab Renal Response in Patients with Lupus Nephritis. Lupus Sci. Med. 2024, 11, e001156. [Google Scholar] [CrossRef]
- Martin, M.; Trattner, R.; Nilsson, S.C.; Björk, A.; Zickert, A.; Blom, A.M.; Gunnarsson, I. Plasma C4d Correlates With C4d Deposition in Kidneys and With Treatment Response in Lupus Nephritis Patients. Front. Immunol. 2020, 11, 582737. [Google Scholar] [CrossRef]
- Phatak, S.; Chaurasia, S.; Mishra, S.K.; Gupta, R.; Agrawal, V.; Aggarwal, A.; Misra, R. Urinary B Cell Activating Factor (BAFF) and a Proliferation-Inducing Ligand (APRIL): Potential Biomarkers of Active Lupus Nephritis. Clin. Exp. Immunol. 2017, 187, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Majumder, S.; Kumar, S.; Gupta, R.; Muhammed, H.; Shobha, V.; Aggarwal, A.; Misra, R. Urinary C3d Is Elevated in Patients with Active Lupus Nephritis and a Fall in Its Level after 3 Months Predicts Response at 6 Months on Follow Up. Lupus 2020, 29, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Selvaraja, M.; Abdullah, M.; Arip, M.; Chin, V.K.; Shah, A.; Amin Nordin, S. Elevated Interleukin-25 and Its Association to Th2 Cytokines in Systemic Lupus Erythematosus with Lupus Nephritis. PLoS ONE 2019, 14, e0224707. [Google Scholar] [CrossRef]
- Ding, H.; Lin, C.; Cai, J.; Guo, Q.; Dai, M.; Mohan, C.; Shen, N. Urinary Activated Leukocyte Cell Adhesion Molecule as a Novel Biomarker of Lupus Nephritis Histology. Arthritis Res. Ther. 2020, 22, 122. [Google Scholar] [CrossRef]
- Liang, P.; Tang, Y.; Lin, L.; Zhong, H.; Yang, H.; Zeng, Y.; Lv, J.; Li, X.; Lu, Y.; Xu, A. Low Level of Circulating Basophil Counts in Biopsy-Proven Active Lupus Nephritis. Clin. Rheumatol. 2018, 37, 459–465. [Google Scholar] [CrossRef]
- Ruchakorn, N.; Ngamjanyaporn, P.; Suangtamai, T.; Kafaksom, T.; Polpanumas, C.; Petpisit, V.; Pisitkun, T.; Pisitkun, P. Performance of Cytokine Models in Predicting SLE Activity. Arthritis Res. Ther. 2019, 21, 287. [Google Scholar] [CrossRef]
- Buyon, J.P.; Kim, M.Y.; Guerra, M.M.; Lu, S.; Reeves, E.; Petri, M.; Laskin, C.A.; Lockshin, M.D.; Sammaritano, L.R.; Branch, D.W.; et al. Kidney Outcomes and Risk Factors for Nephritis (Flare/De Novo) in a Multiethnic Cohort of Pregnant Patients with Lupus. Clin. J. Am. Soc. Nephrol. 2017, 12, 940–946. [Google Scholar] [CrossRef]
- Rossi, G.M. Persistent Isolated C3 Hypocomplementemia as a Strong Predictor of End-Stage Kidney Disease in Lupus Nephritis. Kidney Int. Rep. 2022, 7, 2647–2656. [Google Scholar] [CrossRef]
- Parodis, I.; Zickert, A.; Sundelin, B.; Axelsson, M.; Gerhardsson, J.; Svenungsson, E.; Malmström, V.; Gunnarsson, I. Evaluation of B Lymphocyte Stimulator and a Proliferation Inducing Ligand as Candidate Biomarkers in Lupus Nephritis Based on Clinical and Histopathological Outcome Following Induction Therapy. Lupus Sci. Med. 2015, 2, e000061. [Google Scholar] [CrossRef]
- Furie, R.; Rovin, B.H.; Houssiau, F.; Contreras, G.; Teng, Y.K.O.; Curtis, P.; Green, Y.; Okily, M.; Madan, A.; Roth, D.A. Safety and Efficacy of Belimumab in Patients with Lupus Nephritis: Open-Label Extension of BLISS-LN Study. Clin. J. Am. Soc. Nephrol. 2022, 17, 1620–1630. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Vanarsa, K.; Thai, N.; Castillo, J.; Lea, G.A.B.; Lee, K.H.; Kim, S.; Pedroza, C.; Wu, T.; et al. Proximity Extension Assay Proteomics and Renal Single Cell Transcriptomics Uncover Novel Urinary Biomarkers for Active Lupus Nephritis. J. Autoimmun. 2024, 143, 103165. [Google Scholar] [CrossRef]
- Vincent, F.B.; Kandane-Rathnayake, R.; Hoi, A.Y.; Slavin, L.; Godsell, J.D.; Kitching, A.R.; Harris, J.; Nelson, C.L.; Jenkins, A.J.; Chrysostomou, A.; et al. Urinary B-Cell-Activating Factor of the Tumour Necrosis Factor Family (BAFF) in Systemic Lupus Erythematosus. Lupus 2018, 27, 2029–2040. [Google Scholar] [CrossRef]
- Abdel Galil, S.M.; Ezzeldin, N.; El-Boshy, M.E. The Role of Serum IL-17 and IL-6 as Biomarkers of Disease Activity and Predictors of Remission in Patients with Lupus Nephritis. Cytokine 2015, 76, 280–287. [Google Scholar] [CrossRef]
- Dedong, H.; Feiyan, Z.; Jie, S.; Xiaowei, L.; Shaoyang, W. Analysis of Interleukin-17 and Interleukin-23 for Estimating Disease Activity and Predicting the Response to Treatment in Active Lupus Nephritis Patients. Immunol. Lett. 2019, 210, 33–39. [Google Scholar] [CrossRef]
- Nordin, F.; Shaharir, S.S.; Abdul Wahab, A.; Mustafar, R.; Abdul Gafor, A.H.; Mohamed Said, M.S.; Rajalingham, S.; Shah, S.A. Serum and Urine interleukin-17A Levels as Biomarkers of Disease Activity in Systemic Lupus Erythematosus. Int. J. Rheum. Dis. 2019, 22, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Saif, D.S.; Abdelsattar, S.; Zahran, E.S.; Khalil, M.; Samir, S.; Abo Mansour, H.E. Interleukin Biomarkers as Predictive Tools for Lupus Nephritis Grade and Disease Activity in Systemic Lupus Erythematosus. ARP Rheumatol. 2025, 4, 80–90. [Google Scholar] [PubMed]
- Guimarães, J.D.A.R.; Furtado, S.D.C.; Lucas, A.C.D.S.; Mori, B.; Barcellos, J.F.M. Diagnostic Test Accuracy of Novel Biomarkers for Lupus Nephritis—An Overview of Systematic Reviews. PLoS ONE 2022, 17, e0275016. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.N.; Taha, H.A.; Abd El-Fattah El-Feqi, M.; Eesa, N.N.; Mohamed, R.A. Urinary TNF-like Weak Inducer of Apoptosis (TWEAK) as a Biomarker of Lupus Nephritis. Z. Für Rheumatol. 2018, 77, 71–77. [Google Scholar] [CrossRef]
- Susianti, H.; Hanggara, D.S.; Lestari, K.D.; Purnamasari, P.; Aprilia, A. Analysis of TNF-like Weak Inducer of Apoptosis for Detecting Lupus Nephritis. Comp. Clin. Pathol. 2022, 31, 313–316. [Google Scholar] [CrossRef]
- Dong, X.W.; Zheng, Z.H.; Ding, J.; Luo, X.; Li, Z.Q.; Li, Y.; Rong, M.Y.; Fu, Y.L.; Shi, J.H.; Yu, L.C.; et al. Combined Detection of uMCP-1 and uTWEAK for Rapid Discrimination of Severe Lupus Nephritis. Lupus 2018, 27, 971–981. [Google Scholar] [CrossRef]
- Reyes-Martínez, F.; Pérez-Navarro, M.; Rodríguez-Matías, A.; Soto-Abraham, V.; Gutierrez-Reyes, G.; Medina-Avila, Z.; Valdez-Ortiz, R. Assessment of Urinary TWEAK Levels in Mexican Patients with Untreated Lupus Nephritis: An Exploratory Study. Nefrología 2018, 38, 152–160. [Google Scholar] [CrossRef]
- Elsaid, D.S.; Abdel Noor, R.A.; Shalaby, K.A.; Haroun, R.A.-H. Urinary Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (uTWEAK) and Urinary Monocyte Chemo-Attractant Protein-1 (uMCP-1): Promising Biomarkers of Lupus Nephritis Activity? Saudi J. Kidney Dis. Transplant. 2021, 32, 19–29. [Google Scholar] [CrossRef]
- Selim, Z.I.; Khader, T.M.; Mohammed, H.O.; Al-Hammady, D.H.; Seif, H.M.A.; Al-Johi, A.A. Urinary Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (uTWEAK) as a Biomarker for Lupus Nephritis Activity and Its Correlation with Histolopathological Findings of Renal Biopsy. Egypt. Rheumatol. 2019, 41, 19–23. [Google Scholar] [CrossRef]
- Alduraibi, F.K.; Tsokos, G.C. Lupus Nephritis Biomarkers: A Critical Review. Int. J. Mol. Sci. 2024, 25, 805. [Google Scholar] [CrossRef]
- Abediazar, S.; Jafari-Nakhjavani, M.; Ghorbanihaghjo, A.; Shekarchi, M.; Zununi-Vahed, S. Serum Levels of CXCL10 and Vitamin D in Patients with Lupus Nephritis. Iran J. Kidney Dis. 2019, 13, 389–397. [Google Scholar] [PubMed]
- Klocke, J.; Kopetschke, K.; Grießbach, A.; Langhans, V.; Humrich, J.Y.; Biesen, R.; Dragun, D.; Radbruch, A.; Burmester, G.; Riemekasten, G.; et al. Mapping Urinary Chemokines in Human Lupus Nephritis: Potentially Redundant Pathways Recruit CD4+ and CD8+ T Cells and Macrophages. Eur. J. Immunol. 2017, 47, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Mok, C.C.; Vanarsa, K.; Habazi, D.; Li, J.; Pedroza, C.; Saxena, R.; Mohan, C. Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays. Arthritis Rheumatol. 2019, 71, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, Y. Clinical Significance of Serum CXCL9, CXCL10, and CXCL11 in Patients with Lupus Nephritis. Immun. Inflamm. Dis. 2024, 12, e1368. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, Z.; Luo, X.; Ding, J.; Li, Y.; Li, Z.; Li, S.; Rong, M.; Fu, Y.; Wu, Z.; et al. Combined Utilization of Untimed Single Urine of MCP-1 and TWEAK as a Potential Indicator for Proteinuria in Lupus Nephritis: A Case–Control Study. Medicine 2018, 97, e0343. [Google Scholar] [CrossRef]
- Stanley, S.; Vanarsa, K.; Soliman, S.; Habazi, D.; Pedroza, C.; Gidley, G.; Zhang, T.; Mohan, S.; Der, E.; Suryawanshi, H.; et al. Comprehensive Aptamer-Based Screening Identifies a Spectrum of Urinary Biomarkers of Lupus Nephritis across Ethnicities. Nat. Commun. 2020, 11, 2197. [Google Scholar] [CrossRef]
- Whittall-Garcia, L.; Goliad, K.; Kim, M.; Bonilla, D.; Gladman, D.; Urowitz, M.; Fortin, P.R.; Atenafu, E.G.; Touma, Z.; Wither, J. Identification and Validation of a Urinary Biomarker Panel to Accurately Diagnose and Predict Response to Therapy in Lupus Nephritis. Front. Immunol. 2022, 13, 889931. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, R.; Ding, H.; Tian, L.; Gao, T.; Bao, C. The Utility of Urinary Biomarker Panel in Predicting Renal Pathology and Treatment Response in Chinese Lupus Nephritis Patients. PLoS ONE 2020, 15, e0240942. [Google Scholar] [CrossRef] [PubMed]
- Endo, N.; Tsuboi, N.; Furuhashi, K.; Shi, Y.; Du, Q.; Abe, T.; Hori, M.; Imaizumi, T.; Kim, H.; Katsuno, T.; et al. Urinary Soluble CD163 Level Reflects Glomerular Inflammation in Human Lupus Nephritis. Nephrol. Dial. Transplant. 2016, 31, 2023–2033. [Google Scholar] [CrossRef]
- Bona, N.; Pezzarini, E.; Balbi, B.; Daniele, S.M.; Rossi, M.F.; Monje, A.L.; Basiglio, C.; Pelusa, H.F.; Arriaga, S.M.M. Oxidative Stress, Inflammation and Disease Activity Biomarkers in Lupus Nephropathy. Lupus 2020, 29, 311–323. [Google Scholar] [CrossRef]
- Ngamjanyaporn, P.; Worawichawong, S.; Pisitkun, P.; Khiewngam, K.; Kantachuvesiri, S.; Nongnuch, A.; Assanatham, M.; Sathirapongsasuti, N.; Kitiyakara, C. Predicting Treatment Response and Clinicopathological Findings in Lupus Nephritis with Urine Epidermal Growth Factor, Monocyte Chemoattractant Protein-1 or Their Ratios. PLoS ONE 2022, 17, e0263778. [Google Scholar] [CrossRef]
- Lai, L.; Wu, C.; Li, X.; Rong, Y.; Huang, Y.; Wang, B. Urinary MCP-1 and VCAM-1 as Non-Invasive Biomarkers for the Diagnosis and Activity Assessment of Lupus Nephritis. PLoS ONE 2025, 20, e0323334. [Google Scholar] [CrossRef]
- Davies, J.C.; Carlsson, E.; Midgley, A.; Smith, E.M.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M.; BILAG-BR and MRC MASTERPLANS Consortia. A Panel of Urinary Proteins Predicts Active Lupus Nephritis and Response to Rituximab Treatment. Rheumatology 2021, 60, 3747–3759. [Google Scholar] [CrossRef]
- Vodehnal, S.; Mohan, C. Urinary Biomarkers for Active Lupus Nephritis That Have Survived Independent Validation across Cohorts. Kidney Int. 2024, 106, 1135–1145. [Google Scholar] [CrossRef]
- Soliman, S.A.; Stanley, S.; Vanarsa, K.; Ismail, F.; Mok, C.C.; Mohan, C. Exploring Urine:Serum Fractional Excretion Ratios as Potential Biomarkers for Lupus Nephritis. Front. Immunol. 2022, 13, 910993. [Google Scholar] [CrossRef]
- Chalmers, S.A.; Ayilam Ramachandran, R.; Garcia, S.J.; Der, E.; Herlitz, L.; Ampudia, J.; Chu, D.; Jordan, N.; Zhang, T.; Parodis, I.; et al. The CD6/ALCAM Pathway Promotes Lupus Nephritis via T Cell–Mediated Responses. J. Clin. Investig. 2022, 132, e147334. [Google Scholar] [CrossRef]
- Amer, A.S.; Abdel Moneam, S.M.; Hashaad, N.I.; Yousef, E.M.; Abd El-Hassib, D.M. Clinico-Serological Associations of Urinary Activated Leukocyte Cell Adhesion Molecule in Systemic Lupus Erythematosus and Lupus Nephritis. Clin. Rheumatol. 2024, 43, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Baek, W.-Y.; Jung, J.-Y.; Kim, H.-A.; Lee, S.-W.; Suh, C.-H. Longitudinal Assessment of Urinary ALCAM, HPX, and PRDX6 in Korean Patients with Systemic Lupus Erythematosus: Implications for Disease Activity Monitoring and Treatment Response. Front. Immunol. 2024, 15, 1369385. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.Y.; Yung, S.; Chau, M.K.; Tang, C.S.; Yap, D.Y.; Tang, A.H.; Ying, S.K.; Lee, C.K.; Chan, T.M. Clinico-Pathological Associations of Serum VCAM-1 and ICAM-1 Levels in Patients with Lupus Nephritis. Lupus 2021, 30, 1039–1050. [Google Scholar] [CrossRef]
- Gasparin, A.A.; De Andrade, N.P.B.; Hax, V.; Palominos, P.E.; Siebert, M.; Marx, R.; Schaefer, P.G.; Veronese, F.V.; Monticielo, O.A. Urinary Soluble VCAM-1 Is a Useful Biomarker of Disease Activity and Treatment Response in Lupus Nephritis. BMC Rheumatol. 2020, 4, 67. [Google Scholar] [CrossRef]
- Parodis, I.; Gokaraju, S.; Zickert, A.; Vanarsa, K.; Zhang, T.; Habazi, D.; Botto, J.; Serdoura Alves, C.; Giannopoulos, P.; Larsson, A.; et al. ALCAM and VCAM-1 as Urine Biomarkers of Activity and Long-Term Renal Outcome in Systemic Lupus Erythematosus. Rheumatology 2020, 59, 2237–2249. [Google Scholar] [CrossRef]
- Olmes, G.; Büttner-Herold, M.; Ferrazzi, F.; Distel, L.; Amann, K.; Daniel, C. CD163+ M2c-like Macrophages Predominate in Renal Biopsies from Patients with Lupus Nephritis. Arthritis Res. Ther. 2016, 18, 90. [Google Scholar] [CrossRef]
- Gamal, N.M.; Badawy, E.R.; Talaat, E.A.; Ibrahim, H.M.; Abd Elsamea, M.H. Clinical Utility of Urinary Soluble CD163 in Evaluation of Lupus Nephritis Patients. Egypt. Rheumatol. 2022, 44, 151–157. [Google Scholar] [CrossRef]
- Yang, G.; Guo, N.; Yin, J.; Wu, J. Elevated Soluble CD163 Predicts Renal Function Deterioration in Lupus Nephritis: A Cohort Study in Eastern China. J. Int. Med. Res. 2021, 49, 03000605211049963. [Google Scholar] [CrossRef]
- Fava, A.; Rao, D.A.; Mohan, C.; Zhang, T.; Rosenberg, A.; Fenaroli, P.; Belmont, H.M.; Izmirly, P.; Clancy, R.; Trujillo, J.M.; et al. Urine Proteomics and Renal Single-Cell Transcriptomics Implicate Interleukin-16 in Lupus Nephritis. Arthritis Rheumatol. 2022, 74, 829–839. [Google Scholar] [CrossRef]
- Susianti, H.; Iriane, V.M.; Dharmanata, S.; Handono, K.; Widijanti, A.; Gunawan, A.; Kalim, H. Analysis of Urinary TGF-Β1, MCP-1, NGAL, and IL-17 as Biomarkers for Lupus Nephritis. Pathophysiology 2015, 22, 65–71. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wu, H.-H.; Liu, S.-H.; Tu, K.-H.; Lee, C.-C.; Hsu, H.-H.; Chang, M.-Y.; Yu, K.-H.; Chen, W.; Tian, Y.-C. Polyomavirus BK, BKV microRNA, and Urinary Neutrophil Gelatinase-Associated Lipocalin Can Be Used as Potential Biomarkers of Lupus Nephritis. PLoS ONE 2019, 14, e0210633. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.H.M.; Sabry, A.A.; Abdelmoneim, A.R.; Marzouk, H.F.A.; AbdelFattah, R.M. Urinary Neutrophil Gelatinase-Associated Lipocalin (uNGAL) and Kidney Injury Molecule-1 (uKIM-1) as Markers of Active Lupus Nephritis. Clin. Rheumatol. 2024, 43, 167–174. [Google Scholar] [CrossRef] [PubMed]
- El Shahawy, M.S.; Hemida, M.H.; Abdel-Hafez, H.A.; El-Baz, T.Z.; Lotfy, A.-W.M.; Emran, T.M. Urinary Neutrophil Gelatinase-Associated Lipocalin as a Marker for Disease Activity in Lupus Nephritis. Scand. J. Clin. Lab. Investig. 2018, 78, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Susianti, H.; Wijaya, J.W.; Rastini, A.; Handono, K.; Gunawan, A.; Kalim, H. Urinary Neutrophil Gelatinase-Associated Lipocalin to Monitor Lupus Nephritis Disease Activity. Biomark. Insights 2015, 10, BMI.S27625. [Google Scholar] [CrossRef]
- Elewa, E.A.; El Tokhy, M.A.; Fathy, S.E.; Talaat, A.M. Predictive Role of Urinary Neutrophil Gelatinase-Associated Lipocalin in Lupus Nephritis. Lupus 2015, 24, 138–146. [Google Scholar] [CrossRef]
- Satirapoj, B.; Kitiyakara, C.; Leelahavanichkul, A.; Avihingsanon, Y.; Supasyndh, O. Urine Neutrophil Gelatinase-Associated Lipocalin to Predict Renal Response after Induction Therapy in Active Lupus Nephritis. BMC Nephrol. 2017, 18, 263. [Google Scholar] [CrossRef]
- The Accelerating Medicines Partnership in SLE network; Arazi, A.; Rao, D.A.; Berthier, C.C.; Davidson, A.; Liu, Y.; Hoover, P.J.; Chicoine, A.; Eisenhaure, T.M.; Jonsson, A.H.; et al. The Immune Cell Landscape in Kidneys of Patients with Lupus Nephritis. Nat. Immunol. 2019, 20, 902–914. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Z.B.; Chen, P.P.; Lu, C.C.; Zhang, J.X.; Li, X.Q.; Yuan, B.Y.; Huang, S.J.; Ma, K.L. Urinary Podocyte Microparticles Are Associated with Disease Activity and Renal Injury in Systemic Lupus Erythematosus. BMC Nephrol. 2019, 20, 303. [Google Scholar] [CrossRef]
- Burbano, C.; Gómez-Puerta, J.A.; Muñoz-Vahos, C.; Vanegas-García, A.; Rojas, M.; Vásquez, G.; Castaño, D. HMGB1+ Microparticles Present in Urine Are Hallmarks of Nephritis in Patients with Systemic Lupus Erythematosus. Eur. J. Immunol. 2019, 49, 323–335. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Omer, M.H.; Shafqat, A.; Ahmad, O.; Nadri, J.; AlKattan, K.; Yaqinuddin, A. Urinary Biomarkers for Lupus Nephritis: A Systems Biology Approach. J. Clin. Med. 2024, 13, 2339. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Nikitin, A.O.; Nevinsky, G.A. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Non-Coding RNA 2024, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- ElFeky, D.S.; Omar, N.M.; Shaker, O.G.; Abdelrahman, W.; Gheita, T.A.; Nada, M.G. Circulatory microRNAs and Proinflammatory Cytokines as Predictors of Lupus Nephritis. Front. Immunol. 2024, 15, 1449296. [Google Scholar] [CrossRef] [PubMed]
- Khoshmirsafa, M.; Kianmehr, N.; Falak, R.; Mowla, S.J.; Seif, F.; Mirzaei, B.; Valizadeh, M.; Shekarabi, M. Elevated Expression of miR-21 and miR-155 in Peripheral Blood Mononuclear Cells as Potential Biomarkers for Lupus Nephritis. Int. J. Rheum. Dis. 2019, 22, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavani, M.; Etemadi, J.; Pourlak, T.; Mirhosaini, Z.; Zununi Vahed, S.; Abediazar, S. Plasma Levels of miR-21, miR-150, miR-423 in Patients with Lupus Nephritis. Iran. J. Kidney Dis. 2019, 13, 198–206. [Google Scholar]
- Li, W.; Liu, S.; Chen, Y.; Weng, R.; Zhang, K.; He, X.; He, C. Circulating Exosomal microRNAs as Biomarkers of Systemic Lupus Erythematosus. Clinics 2020, 75, e1528. [Google Scholar] [CrossRef]
- Solé, C.; Moliné, T.; Vidal, M.; Ordi-Ros, J.; Cortés-Hernández, J. An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019, 8, 773. [Google Scholar] [CrossRef]
- Perez-Hernandez, J.; Forner, M.J.; Pinto, C.; Chaves, F.J.; Cortes, R.; Redon, J. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0138618. [Google Scholar] [CrossRef]
- Perez-Hernandez, J.; Martinez-Arroyo, O.; Ortega, A.; Galera, M.; Solis-Salguero, M.A.; Chaves, F.J.; Redon, J.; Forner, M.J.; Cortes, R. Urinary Exosomal miR-146a as a Marker of Albuminuria, Activity Changes and Disease Flares in Lupus Nephritis. J. Nephrol. 2021, 34, 1157–1167. [Google Scholar] [CrossRef]
- Zununi Vahed, S.; Nakhjavani, M.; Etemadi, J.; Jamshidi, H.; Jadidian, N.; Pourlak, T.; Abediazar, S. Altered Levels of Immune-Regulatory microRNAs in Plasma Samples of Patients with Lupus Nephritis. BioImpacts 2018, 8, 177–183. [Google Scholar] [CrossRef]
- Higazi, A.M.; Kamel, H.M.; Nasr, M.H.; Keryakos, H.K.; AbdEl-Hamid, N.M.; Soliman, S.A. Potential Role of Circulating miRNA-146a and Serum Kallikrein 1 as Biomarkers of Renal Disease in Biopsy-Proven Lupus Nephritis Patients. Egypt. Rheumatol. 2023, 45, 73–80. [Google Scholar] [CrossRef]
Definitions of Complete Renal Response | References | ||||
---|---|---|---|---|---|
Nomenclature | Proteinuria | Renal Function | Urinary Sediment | Additional Criteria | |
Renal remission | Proteinuria < 1 g/day | Absence of a doubling of sCr level | <10 dysmorphic RBC/hpf and absence of cellular casts | - | Gourley et al. [22] |
Complete remission | Proteinuria < 0.3 g/day | Values for sCr and CrCl no more than 15% above the baseline value | Normal urinary sediment | Normal serum albumin concentration | Chan et al. [23] |
Complete response | Proteinuria < 1 g/day | sCr < 130% of the lowest level during treatment | <10 RBC/hpf and absence of cellular casts | Pt. had to be off IS therapy, with the exception of HQ (≤400 mg/day) and prednisone (≤10 mg/day) or their equivalents | Illei et al. [24] |
Renal remission | Proteinuria < 1 g/day | Absence of a doubling of the sCr level | <10 RBC/hpf | - | Houssiau et al. [25] |
Complete remission | Return to within 10% of normal values of proteinuria | Return to within 10% of normal values of sCr levels | Return to within 10% of normal values of urine sediment | - | Ginzler et al. [26] |
Complete remission | Proteinuria ≤ 0.5 g/day | Return to normal sCr | Inactive urinary sediment (≤5 WBC/hpf and ≤5 RBC/hpf, and a reading of lower than 2+ on dipstick and absence of red cell casts) | - | Appel et al. [27] |
Renal remission | Proteinuria < 1 g/day | sCr ≤ 1.4 mg/dL | <10 RBC/hpf | - | Houssiau et al. [28] |
Complete renal remission | Proteinuria < 0.5 g/day | Improved or stable sCr ± 25% of baseline | Absence of hematuria and cellular casts | - | Dooley et al. [29] |
Complete response | UPCR < 0.5 | sCr within 10% of normal value | Normalized urine sediment | - | Zeher et al. [30] |
Complete renal response | UPCR < 0.5 | Normal sCr if it was abnormal at baseline or a sCr level of ≤115% of baseline if it was normal at baseline | Inactive urinary sediment (<5 RBCs/hpf and absence of RBC casts) | - | Rovin et al. [31] |
Complete remission | UPCR < 50 mg/mmol | sCr no greater than 15% above baseline | - | - | Condon et al. [32] |
Complete remission | Proteinuria ≤ 0.4 g/day | Normal sCr levels | Absence of active urine sediment | Serum albumin level of ≥35 g/L | Liu et al. [33] |
Complete renal remission | UPCR ≤ 0.5 in 2 consecutive, first morning void urine specimens | eGFR > 60 mL/min/1.73 m2 or no decrease of ≥20% of baseline eGFR on 2 consecutive occasions | - | No administration of rescue medication and no more than 10 mg prednisone for more than 3 consecutive days or for more than 7 total days from weeks 16 to 26 | Rovin et al. [34] |
Primary efficacy renal response | UPCR ≤ 0.7 | eGFR no worse than 20% below the pre-flare value or ≥60 mL/min/1.73 m2 | - | No use of rescue therapy | Furie et al. [35] |
Complete renal response | UPCR < 0.5 | eGFR no worse than 10% below the pre-flare value or ≥90 mL/min/1.73 m2 | - | No use of rescue therapy | Furie et al. [35] |
Complete renal response | UPCR ≤ 0.5 | Stable renal function defined as eGFR ≥ 60 m/min/1.73 m2 or no confirmed decrease from baseline in eGFR of >20% | - | No administration of rescue medication and no more than 10 mg prednisone equivalent per day for 3 or more consecutive days or for 7 or more days during weeks 44 through 52 | Rovin et al. [36] |
Complete renal response | UPCR < 0.5 | Normal renal function (sCr ≤ ULN) without worsening of baseline sCr by more than 15% | Inactive urinary sediment (<10 RBC/hpf without RBC casts) | No administration of rescue therapies such as cyclophosphamide, rituximab, tacrolimus or pulse-dose corticosteroids (equivalent to methylprednisolone 500 mg or greater) after baseline | Furie et al. [37] |
Complete renal response | UPCR ≤ 0.5 | eGFR ≥ 60 m/min/1.73 m2 or no confirmed decrease from pretreatment baseline in eGFR of >20% | - | No administration of rescue medication and no more than 10 mg prednisone for ≥3 consecutive days or for ≥7 days in total during the eight weeks prior to the endpoint assessment | Saxena et al. [38] |
Complete renal response | UPCR < 0.5 | An eGFR of at least 85% of the baseline value | - | No administration of rescue therapy (except for glucocorticoid-only rescue) | Furie et al. [39] |
Biomarker | Sample | Comparator | Disease Activity Evaluation | Metrics and Findings | References |
---|---|---|---|---|---|
Diagnosis | |||||
Albumin-creatinine ratio | Urine | Active non-renal SLE | NA | AUC 0.963 | Häyry et al. [65] |
Creatinine | Serum/plasma | Active non-renal SLE; Non-proliferative LN | NA | AUC 0.76, Sn 58%, Sp 96% | Landolt-Marticorena et al. [59] |
Serum/plasma | Non-renal SLE | NA | AUC 0.82, Sn 74.6%, Sp 76.1%, PPV 85.8%, NPV 60.7% | Yang et al. [60] | |
Proteinuria | Urine | Non-renal SLE; Inactive LN | NA | Proteinuria/24 h-AUC 0.92; Sn 93.75%, Sp 83.87% | Kopetschke et al. [44] |
Urine | Active non-renal SLE | NA | UPCR-AUC 0.93 | Aggarwal et al. [43] | |
Disease activity | |||||
Albumin-creatinine ratio | Urine | Non-proliferative LN | Proliferative LN | AUC 0.71 | Häyry et al. [65] |
Urine | Inactive LN | SLEDAI | AUC 0.98, Sn 88.89%, Sp 100% | Wong et al. [61] | |
Creatinine | Serum/plasma | Inactive LN | SLEDAI | AUC 0.62, Sn 84.62%, Sp 35% | Wong et al. [61] |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.68 | Alharazy et al. [46] | |
CystatinC | Serum/plasma | Inactive LN | SLEDAI | AUC 0.90, Sn 75.7%, Sp 94.6% | Xu et al. [66] |
eGFR CystatinC | Serum/plasma | Inactive LN | SLEDAI | AUC 0.90, Sn 75.7%, Sp 94.6% | Xu et al. [66] |
Granular casts | Urine | Inactive LN | SLEDAI | AUC 0.91, Sn 82.4%, Sp 100% | Jakiela et al. [45] |
Proteinuria | Urine | Inactive LN | SLEDAI | UPCR-AUC 0.94 | Alharazy et al. [46] |
Urine | Inactive LN | AI | Proteinuria/24 h-AI > 2 AUC 0.69, Sn 48.5%, Sp 88.8%, PPV 94.1%, NPV 32%; AI > 3-AUC 0.75, Sn 50%, Sp 90%, PPV 94.1%. NPV 36% | Obrișcă et al. [67] | |
Urine | Non-renal SLE | SLEDAI | Proteinuria/24 h-AUC 0.99, Sn 88.2%, Sp 100% (cut off >1.1 g/24 h), Sn 100%, Sp 90.9% (cut off >0.4 g/24 h) | Jakiela et al. [45] | |
Urine | Non-proliferative LN | Proliferative LN | UPCR-AUC 0.74 | Kitagawa et al. [68] | |
Urine | Inactive LN | SLEDAI | UPCR-AUC 0.89 | Gupta et al. [48] | |
Red blood cells | Urine | Non-renal SLE | SLEDAI | AUC 0.92, Sn 76.5%, Sp 100% | Jakiela et al. [45] |
Urine | Inactive LN | SLEDAI | AUC 0.72 | Alharazy et al. [46] | |
Urine | Inactive LN | AI | AI > 9-AUC 0.7, Sn 77.7%, Sp 66.6%, PPV 63.6%, NPV 80% | Obrișcă et al. [67] | |
Urine | Class V LN | Proliferative LN | OR 3.22 | Calatroni et al. [58] | |
White blood cells | Urine | Inactive LN | SLEDAI | AUC 0.75, Sn 70.6%, Sp 75% | Jakiela et al. [45] |
Urine | Inactive LN | SLEDAI | AUC 0.65 | Alharazy et al. [46] | |
Renal flares | |||||
Creatinine | Serum/plasma | NA | NA | sCr at presentation—HR 1.76 | Mejía-Vilet et al. [69] |
Proteinuria | Urine | NA | NA | Proteinuria (g/24 h) at first visit and LN flare—HR 1.004; Proteinuria > 500 mg/24 h and LN flare—NPV 85%, PPV 43% | Fatemi et al. [47] |
Urine | NA | NA | Proteinuria > 0.8 g/24 h at 12 months- a higher risk of flares (OR 4.12) Baseline proteinuria > 2 g/24 h and 12 months proteinuria > 0.8 g/24 h- a shorter time to flare (HR 2.56 and HR 2.57) | Kapsia et al. [55] | |
Response to therapy | |||||
Creatinine | Serum/plasma | NA | NA | Baseline sCr to predict CRR-AUC 0.85, Sn 76.92%, Sp 92.59%, PPV 83.3%, NPV 89.3% | El-Mohsen et al. [70] |
Proteinuria | Urine | NA | NA | The changes in UPCR at 3 months predict 1-year response- AUC 0.76 in proliferative LN | Fava et al. [12] |
Urine | NA | NA | Baseline 24 h proteinuria-OR 0.63: negative predictor of improvement and CRR at 6 months | McDonald et al. [71] | |
Urine | NA | NA | Baseline levels 0.1–0.87 g/24-predictive of CRR at 6 months (OR 4.3) | Ichinose et al. [56] | |
Urine | NA | NA | UPCR (<1.5 g/g at month 6)-Sn 86%, Sp 81%, PPV 81%, NPV 86% to predict CRR by month 12 25% UPCR reduction at month 6-Sn 86%, Sp 65%, PPV 69%, NPV 83% to predict CCR by month 12 | Mejia-Vilet et al. [6] | |
Urine | NA | NA | Baseline UPCR-AUC 0.80, Sn 76.92%, Sp 88.89%, PPV 80%, NPV 96% | El-Mohsen et al. [70] | |
Prognosis | |||||
Creatinine | Serum/plasma | NA | NA | Higher baseline levels are predictive of ESKD-HR 2.1 | Chen et al. [64] |
Serum/plasma | NA | NA | Good long-term renal outcome = sCr ≤ 1 mg/dL after 7 years sCr ≤ 0.8 mg/dL at 12 months-Sn 58%, Sp 83%, PPV 88%, NPV 49% sCr ≤ 1 mg/dL at 12 months-Sn 90%, Sp 48%, PPV 78%, NPV 69% | Dall’Era et al. [40] | |
Serum/plasma | NA | NA | Risk of sustained 30% decline in eGFR-baseline sCr: HR 1.19; sustained 50% decline in eGFR—HR 1.23, ESKD-HR 1.24 | Whittal Garcia et al. [63] | |
Serum/plasma | NA | NA | Risk factor for death and doubling of sCr/ESKD-HRa 4.65 | Pang et al. [62] | |
eGFR Creatinine | Serum/plasma | NA | NA | <60 mL/min/1.73 m2 at the onset of LN-predictor of development of CKD: HR 4.91 | Park et al. [72] |
Proteinuria | Urine | NA | NA | Good long-term renal outcome = sCr ≤ 1 mg/dL after 7 years Proteinuria < 0.8 g/24 h at 12 months Sn 81%, Sp 78%, PPV 88%, NPV 67% | Dall’Era et al. [40] |
Urine | NA | NA | Baseline UPCR > 3.1 g/Cr-AUC 0.64, Sp 41.5%, Sn 80%-predicted decreased eGFR at 12 months | Nozaki et al. [73] | |
Urine | NA | NA | Proteinuria (g/24 h) at diagnosis-predictive of renal failure (dialysis or KT) within 20 years-RRa 2.75 | Petri et al. [57] | |
Urine | NA | NA | RR of incident ESKD 0.11, RR of composite outcome (sum of mortality and incidence of ESKD) 0.21 | Koo et al. [74] | |
Urine | NA | NA | 12-month proteinuria > 0.8 g/24 h—OR 10.8 for CKD stage 3–4/ESKD | Kapsia et al. [55] | |
Urine | NA | NA | UPCR at 12 months to predict long-term renal outcome (doubling of sCr/sCr > 4 mg/dL (if initial Cr > 2.5 mg/dL)/ESKD at 48 months)-AUC 0.65, Sn 77%, Sp 66%, PPV 36%, NPV 91%, HR 1.45 | Domingues et al. [75] | |
Urine | NA | NA | Proteinuria at 12 months < 0.7 g/24 h to predict good long-term renal outcome (sCr ≤ 1 mg/dL after 7 years)-Sn 71%, Sp 75%, PPV 94%, NPV 31% | Tamirou et al. [41] | |
Red blood cells | Urine | NA | NA | RBC ≤ 5/hpf at 12 months to predict good long-term renal outcome = sCr ≤ 1 mg/dL after 7 years: Sn 62%, Sp 64%, PPV 78%, NPV 45% | Dall’Era et al. [40] |
Biomarker | Sample | Comparator | Disease Activity Evaluation | Metrics and Findings | References |
---|---|---|---|---|---|
Diagnosis | |||||
Anti-C1q | Serum/plasma | Non-renal SLE | NA | AUC 0.753 | Renaudineau et al. [89] |
Serum/plasma | Non-renal SLE | NA | Sn 53%, Sp 85%, NPV 67%, PPV 76% | Plawecki et al. [81] | |
Serum/plasma | Non-renal SLE | NA | AUC 0.843, Sn 68.75%, Sp 84%; OR 14.79 | Gargiulo et al. [82] | |
Serum/plasma | Non-renal SLE | NA | Sn 53%, Sp 87%, NPV 87%, PPV 61% | Colliard et al. [101] | |
Serum/plasma | Non-renal SLE | NA | OR 4.4 | Sjöwall et al. [83] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.64, Sn 47%, Sp 83% | Pang et al. [62] | |
Serum/plasma | Non-renal SLE | NA | Sn 63%, Sp 71% | Birmingham et al. [102] | |
Serum/plasma | Non-renal SLE | NA | Sn 85.7%, Sp 66.7%, PPV 60%, NPV 88.9%, OR 12 | Chi et al. [103] | |
Serum/plasma | Non-renal SLE | NA | AUC 0.76, Sn 74%, Sp 55% | Gómez-Puerta et al. [104] | |
Serum/plasma | Non-renal SLE | NA | Sn 59%, Sp 63%, PPV 64%, NPV 58%, OR 2.40 | Jia et al. [105] | |
Anti-dsDNA | Serum/plasma | Non-renal SLE | NA | AUC 0.72, Sn 72%, Sp 72.33%, HR 5.84, HRa 2.67 | Liu et al. [76] |
Serum/plasma | Non-renal SLE | NA | AUC 0.89, Sn 100%, Sp 71%, PPV 44%, NPV 100%, HR 1.06 | Kwon et al. [77] | |
Serum/plasma | Active non-renal SLE; inactive SLE | NA | Sn 94%, Sp 40%, PPV 43%, NPV 93% | Mok et al. [78] | |
Serum/plasma | Non-renal SLE | NA | OR 2.1 | Hardt et al. [79] | |
Serum/Plasma | Non-renal SLE | NA | OR 3.27 | Barnado et al. [80] | |
Serum/plasma | Non-renal SLE | NA | Sn 92%, Sp 32%, NPV 81%, PPV 54% | Plawecki et al. [81] | |
Serum/plasma | Non-renal SLE | NA | AUC 0.70, Sn 56.25%, Sp 88%, OR 9.43 | Gargiulo et al. [82] | |
Serum/plasma | non-renal SLE | NA | OR 2.9 | Sjöwall et al. [83] | |
Serum/plasma | Non-renal SLE | NA | HRa 1.004 | Kwon et al. [84] | |
Serum/plasma | Non-renal SLE; HC | NA | Non-renal SLE-AUC 0.65; HC-AUC 0.94 | Bruschi et al. [85] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.61 | Aggarwal et al. [43] | |
Serum/plasma | Active non-renal SLE; inactive SLE | NA | AUC 0.6 | Gupta et al. [86] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.64, Sn 63%, Sp 64% | Mok et al. [88] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.72, Sn 71.43%, Sp 70.37% | Wong et al. [61] | |
Serum/plasma | Non-renal SLE | NA | AUC 0.79 | Renaudineau et al. [89] | |
Anti-Sm | Serum/plasma | Non-renal SLE | NA | HRa 2.09 | Kwon et al. [84] |
Serum/plasma | Non-renal SLE | NA | Sn 74%, Sp 83%, PPV 93%, NPV 53%-diagnosis of silent LN | Ishizaki et al. [107] | |
Disease activity | |||||
Anti-C1q | Serum/plasma | Isolated class V LN | Proliferative LN | AUC 0.73, Sp 47.7%, Sn 100% | Renaudineau et al. [89] |
Serum/plasma | Non-proliferative LN | Proliferative LN, AI | AUC 0.71, OR 1.49; AI (r 0.27) | Fava et al. [90] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.73, Sn 62.9%, Sp 75%, PPV 69%, NPV 71%, OR 5.1 | Kianmehr et al. [92] | |
Serum/plasma | Inactive LN | SLEDAI | OR 8.4 | Sjöwall et al. [83] | |
Serum/plasma | N/A | SLEDAI, ECLAM | SLEDAI (r 0.47), ECLAM (r 0.28) | Bock et al. [108] | |
Serum/plasma | Non-proliferative LN | Proliferative LN, AI | anti-dsDNA/anti-C1q-OR 8.67; AI (r 0.24) | Moroni et al. [93] | |
Serum/plasma | Non-A BILAG category | BILAG, Class IV LN, AI | AUC 0.72, Sn 50%, Sp 74.2%; BILAG (r 0.34); Class IV LN-Sn 40%, Sp 93.5%, PPV 76.9%, NPV 74.1%, OR 9.5, AI (r 0.43) | Radanova et al. [106] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.76, Sn 72%, Sp 55%; SLEDAI (r 0.46) | Gómez-Puerta et al. [104] | |
Serum/plasma | Class V LN | Proliferative LN | OR 1.02 | Calatroni et al. [58] | |
Anti-dsDNA | Serum/plasma | Non-proliferative LN | Proliferative LN, AI | AUC 0.73, OR 1.37, AI (r 0.34) | Fava et al. [90] |
Serum/plasma | Class V LN | Proliferative LN ± Class V LN | AUC 0.83 | Li et al. [95] | |
Serum/plasma | Non-BILAG A | BILAG | AUC 0.66, OR 3.86 | Vasilev et al. [91] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.88, Sn 70.6%, Sp 87.5% | Jakiela et al. [45] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.7, Sn 71.4%, Sp 62.5%, PPV 62.5%, NPV 67%; OR 4.2; (r 0.42) | Kianmehr et al. [92] | |
Serum/plasma | Inactive LN | SLEDAI | OR 4.8 | Sjöwall et al. [83] | |
Serum/plasma | Non-proliferativeLN | Proliferative LN | AUC 0.72, Sn 82%, Sp 59% | Landolt-Marticorena et al. [59] | |
Serum/plasma | Non-proliferative LN | Proliferative LN, AI | anti-dsDNA/antiC1q-OR 8.67; AI (r 0.31) | Moroni et al. [93] | |
Serum/plasma | Non-proliferative LN | Proliferative LN | AUC 0.7 | Zhang et al. [94] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.75, Sn 65%, Sp 65% | Mok et al. [88] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.68, Sn 73.08%, Sp 55.56% | Wong et al. [61] | |
Serum/plasma | Isolated class V LN | Proliferative LN | AUC 0.81, Sp 44.4%, Sn 100% | Renaudineau et al. [89] | |
Anti-Sm | Serum/plasma | Isolated class V LN | Proliferative LN | AUC 0.72, Sp 44.4%, Sn 100% | Renaudineau et al. [89] |
Renal flares | |||||
Anti-C1q | Serum/plasma | NA | NA | Sn 70%, Sp 44% | Birmingham et al. [102] |
Serum/plasma | NA | NA | NPV 93%, PPV 35%; HR 1.009 | Fatemi et al. [47] | |
Serum/plasma | NA | NA | Sn 67.6%, Sp 79.7%, PPV 62.5%, NPV 83.1% | Vigne et al. [109] | |
Anti-C1s | Serum/plasma | NA | NA | Sn 59.5%, Sp 81.1%, PPV 61.1%, NPV 80% | Vigne et al. [109] |
Anti-dsDNA | Serum/plasma | NA | NA | Sn 40%, Sp 90%, PPV 80%, NPV 60% | Himbert et al. [97] |
Serum/plasma SLE-ELISpot | NA | NA | High SLE-ELISpot: HR 6.5 | Pérez-Isidro et al. [98] | |
Serum/plasma | NA | NA | AUC 0.85, Sn 87%, Sp 83%, PPV 43%, NPV 97%, HR 21.67 | Fasano et al. [96] | |
Serum/plasma | NA | NA | Sn 91.9%, Sp 36.5%, PPV 42%, NPV 90% | Vigne et al. [109] | |
Response to therapy | |||||
Anti-dsDNA | Serum/plasma | NA | NA | Disappearance at 6 months to predict a CRR at 12 months—Sn 70%, Sp 56%, PPV 67%, NPV 59% 25% reduction at 6 months to predict a CRR at 12 months—Sn 83%, Sp 45%, PPV 59%, NPV 74% | Mejia-Vilet et al. [6] |
Serum/plasma | NA | NA | Baseline anti-dsDNA+ inversely predicted NRR at 6 months-OR 0.32 | Zhao et al. [110] | |
Serum/plasma | NA | NA | AUC 0.73 to predict NRR at 6 months after treatment | Kim et al. [100] | |
Prognosis | |||||
Anti-C1q | Serum/plasma | RF for death and doubling of sCr/ESKD-HR 3.9; HRa 1.2 | Pang et al. [62] | ||
Anti-dsDNA | Serum/Plasma | Renal failure: OR 2.3, ESKD: OR 2.53 | Barnado et al. [80] | ||
Serum/plasma | Risk of sustained 30% decline in eGFR-HR 1.73; sustained 50% decline in eGFR-HR 1.97; ESKD-HR 1.89 Adverse renal event (the time to the second renal flare and/or the time to at least a 30% sustained decline in eGFR)-AUC 0.69, Sn 64%, Sp 62%, PPV 67%, NPV 59%, HR 1.62 | Whittal-Garcia et al. [63] |
Biomarker | Sample | Comparator | Disease Activity Evaluation | Metrics and Findings | References |
---|---|---|---|---|---|
Diagnosis | |||||
C3 | Serum/plasma | Active non-renal SLE; inactive SLE | NA | Sn 97%, Sp 32%, PPV 41%, NPV 95% | Mok et al. [78] |
Serum/plasma | Active non-renal SLE | NA | AUC 0.66, Sn 66%, Sp 61% | Mok et al. [88] | |
Serum/plasma | Non-renal SLE | NA | AUC 0.70 | Renaudineau et al. [89] | |
Serum/plasma | Non-renal SLE | NA | HRa 0.97 | Kwon et al. [84] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.68 | Aggarwal et al. [43] | |
Serum/plasma | Active non-renal SLE; Inactive SLE | NA | AUC 0.65 | Gupta et al. [87] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.91, Sn 85.71%, Sp 86.84% | Wong et al. [61] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.78, Sn 74%, Sp 64%, PPV 67%, NPV 71%, OR 5.03 | Martin et al. [111] | |
Serum/plasma | Non-renal SLE | NA | Sn 78%, Sp 92%, PPV 97%, NPV 58%, OR 39-diagnosis of silent LN | Ishizaki et al. [107] | |
Serum/plasma | Non-renal SLE | NA | HR 6.4 | Liu et al. [76] | |
Serum/Plasma | Activenon- renal SLE | NA | AUC 0.81 | Phatak et al. [112] | |
C4 | Serum/Plasma | Active non-renal SLE | NA | AUC 0.61 | Phatak et al. [112] |
Serum/plasma | Active non-renal SLE; Inactive SLE | NA | AUC 0.62 | Gupta et al. [87] | |
Serum/plasma | Non-renal SLE | NA | HR 4.99 | Liu et al. [76] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.66 | Aggarwal et al. [43] | |
Serum/plasma | Active non-renal SLE; Inactive SLE | NA | AUC 0.62 | Gupta et al. [86] | |
Serum/plasma | Active non-renal SLE | NA | AUC 0.71, Sn 70%, Sp 68%, PPV 69%, NPV 70%; OR 5.1 | Martin et al. [111] | |
Disease activity | |||||
C3 | Serum/plasma | Non-renal SLE; Inactive LN | AI | AI > 8-AUC 0.68 | Liang et al. [116] |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.82, Sn 74%, Sp 73% | Mok et al. [88] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.75 | Gupta et al. [48] | |
Serum/plasma | Non-proliferative LN | Proliferative LN | AUC 0.7 | Zhang et al. [94] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.82 | Ganguly et al. [113] | |
Serum/plasma | Class V LN | Proliferative LN | AUC 0.77, Sn 75%, Sp 74%, PPV 92%, NPV 44% | Ding et al. [115] | |
Serum/plasma | Class V LN | Proliferative LN ± class V LN | AUC 0.76 | Li et al. [95] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.89, Sn 74.36%, Sp 84.21% | Wong et al. [61] | |
Serum/plasma | N/A | SLEDAI | SLEDAI (r-0.99) | Selvaraja et al. [114] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.88, Sn 100%, Sp 64.7% | Jakiela et al. [45] | |
C4 | Serum/plasma | Inactive LN | SLEDAI | AUC 0.68 | Gupta et al. [48] |
Serum/plasma | Class V LN | Proliferative LN ± class V LN | AUC 0.68 | Li et al. [95] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.87 | Ganguly et al. [113] | |
Serum/plasma | N/A | SLEDAI | SLEDAI (r-0.83) | Selvaraja et al. [114] | |
Serum/plasma | Inactive LN | SLEDAI | AUC 0.88, Sn 81.3%, Sp 88.2% | Jakiela et al. [45] | |
C4d | Serum/plasma | N/A | AI | AI (r 0.37) | Martin et al. [111] |
Renal flares | |||||
C3 | Serum/plasma | NA | NA | Sn 70%, Sp 59%, OR 2.5 | Ruchakorn et al. [117] |
Serum/plasma | NA | NA | AUC 0.76, Sn 100%, Sp 50.9%, PPV 23%, NPV 100%, HR 5.95 | Fasano et al. [96] | |
C4 | Serum/plasma | NA | NA | AUC 0.82, Sn 100%, Sp 62.3%, PPV 28%, NPV 100%, HR 5.51 | Fasano et al. [96] |
Serum/plasma | NA | NA | ORa 5.6 | Buyon et al. [118] | |
Response to therapy | |||||
C3 | Serum/plasma | NA | NA | AUC 0.84 to predict NRR at 6 months after treatment | Kim et al. [100] |
Serum/plasma | NA | NA | C3 normalization at month 6-Sn 76%, Sp 55%, PPV 61%, NPV 71% to predict CRR by month 12 25% C3 increase at month 6-Sn 76%, Sp 68%, PPV 69%, NPV 75% to predict CCR by month 12 | Mejia-Vilet et al. [6] | |
C4 | Serum/plasma | NA | NA | AUC 0.65 to predict NRR at 6 months after treatment | Kim et al. [100] |
Prognosis | |||||
C3 | Serum/plasma | NA | NA | Persistent isolated low C3 6 months after KB-composite outcome of ESKD or death-HR 2.46; ESKD-HRa 3.41 | Rossi et al. [119] |
Serum/plasma | NA | NA | Low C3 ever-predictive of renal failure (dialysis or KT) within 20 years-RRa 2.0 | Petri et al. [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabie, A.; Obrișcă, B.; Sorohan, B.M.; Ismail, G. Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review. Life 2025, 15, 1497. https://doi.org/10.3390/life15101497
Vrabie A, Obrișcă B, Sorohan BM, Ismail G. Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review. Life. 2025; 15(10):1497. https://doi.org/10.3390/life15101497
Chicago/Turabian StyleVrabie, Alexandra, Bogdan Obrișcă, Bogdan Marian Sorohan, and Gener Ismail. 2025. "Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review" Life 15, no. 10: 1497. https://doi.org/10.3390/life15101497
APA StyleVrabie, A., Obrișcă, B., Sorohan, B. M., & Ismail, G. (2025). Biomarkers in Lupus Nephritis: An Evidence-Based Comprehensive Review. Life, 15(10), 1497. https://doi.org/10.3390/life15101497