LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives
Abstract
:1. Introduction
1.1. Alien Plant Pathogens: At the Roots of the Problem
1.2. Modern Drivers of Pathogen Invasions: Call for Early Detection
1.3. The Socio-Economic Impact of Plant Disease Invasions
1.4. Shortcomings of Traditional Prevention and Control Measures
1.5. The Step Forward of Molecular Tools
2. The Point-of-Care (POC) Diagnosis of Plant Diseases
3. The LAMP Technique for POC Application
3.1. Decisive Breakthroughs: Isothermal Functioning and User-Friendly Features
3.2. Rapidity and Cost Effectiveness
3.3. Using Unprocessed DNA Samples
4. Detection, Monitoring, and Quantification of LAMP Products
4.1. Specificity and Sensitivity
4.2. Visualization and Quantification of Reaction Products
4.2.1. Indirect Methods
4.2.2. Direct Methods
4.2.3. Probe-Based Methods
4.2.4. Lab-on-a-Chip (LOC) Applications
4.2.5. Methods Coupled with CRISPR-Cas Technology
5. Drawbacks of LAMP-Based POC Methods
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aglietti, C.; Luchi, N.; Pepori, A.L.; Bartolini, P.; Pecori, F.; Raio, A.; Capretti, P.; Santini, A. Real-time loop-mediated isothermal amplification: An early-warning tool for quarantine plant pathogen detection. AMB Express 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Panzavolta, T.; Bracalini, M.; Benigno, A.; Moricca, S. Alien invasive pathogens and pests harming trees, forests, and plantations: Pathways, global consequences and management. Forests 2021, 12, 1364. [Google Scholar] [CrossRef]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Picco, A.M.; Angelini, P.; Ciccarone, C.; Franceschini, A.; Ragazzi, A.; Rodolfi, M.; Varese, G.C.; Zotti, M. Biodiversity of emerging pathogenic and invasive fungi in plants, animals and humans in Italy. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2011, 145, 988–996. [Google Scholar] [CrossRef]
- Stenlid, J.; Oliva, J.; Boberg, J.B.; Hopkins, A.J. Emerging diseases in European forest ecosystems and responses in society. Forests 2011, 2, 486–504. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Garbelotto, M.; Linzer, R.; Nicolotti, G.; Gonthier, P. Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biol. Invasions 2010, 12, 943–957. [Google Scholar] [CrossRef]
- Pautasso, M. Responding to Diseases Caused by Exotic Tree Pathogens. In Infectious Forest Diseases; CABI: Wallingford, UK, 2013; p. 592. [Google Scholar] [CrossRef]
- Möller, M.; Stukenbrock, E.H. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 2017, 15, 756–771. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Brockerhoff, E.G.; Garrett, L.J.; Parke, J.L.; Britton, K.O. Live plant imports: The major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 2012, 10, 135–143. [Google Scholar] [CrossRef]
- Migliorini, D.; Ghelardini, L.; Tondini, E.; Luchi, N.; Santini, A. The potential of symptomless potted plants for carrying invasive soilborne plant pathogens. Divers. Distrib. 2015, 21, 1218–1229. [Google Scholar] [CrossRef]
- Ghelardini, L.; Luchi, N.; Pecori, F.; Pepori, A.L.; Danti, R.; Della Rocca, G.; Capretti, P.; Tsopelas, P.; Santini, A. Ecology of invasive forest pathogens. Biol. Invasions 2017, 19, 3183–3200. [Google Scholar] [CrossRef]
- Brownlie, J.; Peckham, C.; Waage, J.; Woolhouse, M.; Lyall, C.; Meagher, L.; Tait, J.; Baylis, M.; Nicoll, A. Infectious Diseases: Preparing for the Future, Foresight Report on the Detection and Identification of Infectious Diseases over the Next 10–25 Years, Future Threats; Government Office for Science and Innovation: London, UK, 2006. [Google Scholar] [CrossRef]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Olson, L.J.; Roy, S. On prevention and control of an uncertain biological invasion. Rev. Agric. Econ. 2005, 27, 491–497. [Google Scholar] [CrossRef]
- Thompson, R.N.; Gilligan, C.A.; Cunniffe, N.J. Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLoS Comput. Biol. 2016, 12, e1004836. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.; La Porta, N. Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry. Front. Plant Sci. 2020, 11, 570862. [Google Scholar] [CrossRef]
- Miller, S.A.; Beed, F.D.; Harmon, C.L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 2009, 47, 15–38. [Google Scholar] [CrossRef]
- Luchi, N.; Ioos, R.; Santini, A. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl. Microbiol. Biotechnol. 2020, 104, 2453–2468. [Google Scholar] [CrossRef]
- Pautasso, M.; Schlegel, M.; Holdenrieder, O. Forest health in a changing world. Microb. Ecol. 2015, 69, 826–842. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Schena, L.; Ippolito, A.; López-Herrera, C.J. Comparison of conventional and molecular methods for the detection of Rosellinia necatrix in avocado orchards in southern Spain. Plant Pathol. 2007, 56, 251–256. [Google Scholar] [CrossRef]
- Narayanasamy, P. Detection of fungal pathogens in plants. Microb. Plant Pathog.-Detect. Dis. Diagn. Fungal Pathog. 2011, 1, 5–199. [Google Scholar] [CrossRef]
- Tinivella, F.; Gullino, M.L.; Stack, J.P. The need for diagnostic tools and infrastructure. In Crop Biosecurity: Assuring our Global Food Supply; Springer: Dordrecht, The Netherlands, 2008; pp. 63–71. [Google Scholar] [CrossRef]
- McCartney, H.A.; Foster, S.J.; Fraaije, B.A.; Ward, E. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. Former. Pestic. Sci. 2003, 59, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, G.; Prasannath, K. Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Front. Cell. Infect. Microbiol. 2021, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Mullis, K.B.; Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In Recombinant DNA Methodology; Academic Press: Cambridge, MA, USA, 1989; pp. 189–204. [Google Scholar] [CrossRef]
- Vincelli, P.; Tisserat, N. Nucleic acid–based pathogen detection in applied plant pathology. Plant Dis. 2008, 92, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, R.C.; Roe, A.D. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol. Appl. 2020, 13, 95–115. [Google Scholar] [CrossRef]
- Mirmajlessi, S.M.; Loit, E.; Maend, M.; Mansouripour, S.M. Real-time PCR applied to study on plant pathogens: Potential applications in diagnosis—A review. Plant Prot. Sci. 2015, 51, 177–190. [Google Scholar] [CrossRef]
- Lau, H.Y.; Botella, J.R. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Front. Plant Sci. 2017, 8, 2016. [Google Scholar] [CrossRef]
- Paul, R.; Ostermann, E.; Wei, Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens. Bioelectron. 2020, 169, 112592. [Google Scholar] [CrossRef]
- Boonham, N. On-site testing: Moving decision making from the lab to the field. In Detection and Diagnostics of Plant Pathogens; Springer: Dordrecht, The Netherlands, 2014; pp. 135–146. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Boonham, N.; Hughes, K.J.D.; Griffin, R.L.; Barker, I. On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl. Environ. Microbiol. 2005, 71, 6702–6710. [Google Scholar] [CrossRef]
- Tomlinson, J.; Boonham, N. Potential of LAMP for detection of plant pathogens. In CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources; CABI: Wallingford, UK, 2008; Volume 3, pp. 1–7. [Google Scholar] [CrossRef]
- Danks, C.; Barker, I. On-site detection of plant pathogens using lateral-flow devices. EPPO Bull. 2000, 30, 421–426. [Google Scholar] [CrossRef]
- De Paz, H.D.; Brotons, P.; Muñoz-Almagro, C. Molecular isothermal techniques for combating infectious diseases: Towards low-cost point-of-care diagnostics. Expert Rev. Mol. Diagn. 2014, 14, 827–843. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef]
- Le, D.T.; Vu, N.T. Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl. Biol. Chem. 2017, 60, 169–180. [Google Scholar] [CrossRef]
- Changtor, P.; Rodriguez-Mateos, P.; Buddhachat, K.; Wattanachaiyingcharoen, W.; Iles, A.; Kerdphon, S.; Yimtragool, N.; Pamme, N. Integration of IFAST-based nucleic acid extraction and LAMP for on-chip rapid detection of Agroathelia rolfsii in soil. Biosens. Bioelectron. 2024, 250, 116051. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Detection of Botrytis cinerea by loop-mediated isothermal amplification. Lett. Appl. Microbiol. 2010, 51, 650–657. [Google Scholar] [CrossRef]
- Duan, Y.B.; Ge, C.Y.; Zhang, X.K.; Wang, J.X.; Zhou, M.G. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification. PLoS ONE 2014, 9, e111094. [Google Scholar] [CrossRef]
- Farmer, A.A.; Brierley, J.; Lynott, J.S.; Lees, A.K. A Loop-Mediated Isothermal Amplification (LAMP) assay for the detection of Bremia lactucae in the field. Plant Dis. 2024, 108, 2771–2777. [Google Scholar] [CrossRef]
- Malapi-Wight, M.; Demers, J.E.; Veltri, D.; Marra, R.E.; Crouch, J.A. LAMP detection assays for Boxwood blight pathogens: A comparative genomic approach. Sci. Rep. 2016, 6, 26140. [Google Scholar] [CrossRef]
- Parkinson, L.E.; Le, D.P.; Dann, E.K. Development of three loop-mediated isothermal amplification (LAMP) assays for the rapid detection of Calonectria ilicicola, Dactylonectria macrodidyma, and the Dactylonectria genus in avocado roots. Plant Dis. 2019, 103, 1865–1875. [Google Scholar] [CrossRef]
- Chandra, A.; Keizerweerd, A.T.; Que, Y.; Grisham, M.P. Loop mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane. Mol. Biol. Rep. 2015, 42, 1309–1316. [Google Scholar] [CrossRef]
- Wu, J.Y.; Hu, X.R.; Zhang, C.Q. Molecular detection of QoI resistance in Colletotrichum gloeosporioides causing strawberry anthracnose based on loop-mediated isothermal amplification assay. Plant Dis. 2019, 103, 1319–1325. [Google Scholar] [CrossRef]
- Cui, S.; Ma, H.; Wang, X.; Yang, H.; Wu, Y.; Wei, Y.; Li, J.; Hu, J. Development and Comparison of Visual LAMP and LAMP-TaqMan Assays for Colletotrichum siamense. Microorganisms 2024, 12, 1325. [Google Scholar] [CrossRef]
- Yang, X.; Gu, C.Y.; Abid, M.; Al-Attala, M.N.; Qin, G.H.; Xu, Y.L.; May Phyo, S.S.; Zhang, A.; Zang, H.; Chen, Y. Development of loop-mediated isothermal amplification assay for rapid diagnosis of pomegranate twig blight and crown rot disease caused by Coniella granati. Crop protection 2020, 135, 105190. [Google Scholar] [CrossRef]
- Kozhar, O.; Ibarra Caballero, J.R.; Burns, K.S.; Stewart, J.E. Field ready: Development of a rapid LAMP-based colorimetric assay for the causal agent of white pine blister rust, Cronartium ribicola. For. Pathol. 2023, 53, e12814. [Google Scholar] [CrossRef]
- Aglietti, C.; Meinecke, C.D.; Ghelardini, L.; Barnes, I.; Van der Nest, A.; Villari, C. Rapid detection of pine pathogens Lecanosticta acicola, Dothistroma pini and D. septosporum on needles by probe-based LAMP assays. Forests 2021, 12, 479. [Google Scholar] [CrossRef]
- Myrholm, C.L.; Tomm, B.D.; Heinzelmann, R.; Feau, N.; Hamelin, R.C.; McDougal, R.; Winkworth, R.C.; Ramsfield, T.D. Development of a rapid loop-mediated isothermal amplification assay for the detection of Dothistroma septosporum. Forests 2021, 12, 362. [Google Scholar] [CrossRef]
- Yao, X.; Li, P.; Xu, J.; Zhang, M.; Ren, R.; Liu, G. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay. Front. Microbiol. 2016, 7, 1372. [Google Scholar] [CrossRef]
- Van Heerden, A.; Pham, N.; Wingfield, B.D.; Wingfield, M.; Muro Abad, J.; Duran, A.; Wilken, M. LAMP assay to detect Elsinoë necatrix, an important Eucalyptus shoot and leaf pathogen. Plant Dis. 2024, 108, 2731–2739. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Ma, Y.; Zhang, X.; Yang, H.; Li, G.; Wang, M.; Zhao, X.; Wang, J.; Zhang, X. Rapid and specific detection of Fusarium acuminatum and Fusarium solani associated with root rot on Astragalus membranaceus using loop-mediated isothermal amplification (LAMP). Eur. J. Plant Pathol. 2022, 163, 305–320. [Google Scholar] [CrossRef]
- Stehlíková, D.; Luchi, N.; Aglietti, C.; Pepori, A.L.; Diez, J.J.; Santini, A. Real-time loop-mediated isothermal amplification assay for rapid detection of Fusarium circinatum. Biotechniques 2020, 69, 11–17. [Google Scholar] [CrossRef]
- Meinecke, C.D.; Vos, L.D.; Yilmaz, N.; Steenkamp, E.T.; Wingfield, M.J.; Wingfield, B.D.; Villari, C. A LAMP Assay for Rapid Detection of the Pitch Canker Pathogen Fusarium circinatum. Plant Dis. 2023, 107, 2916–2923. [Google Scholar] [CrossRef]
- Zeng, D.; Ye, W.; Xu, M.; Lu, C.; Tian, Q.; Zheng, X. Rapid Diagnosis of Soya Bean Root Rot Caused by Fusarium culmorum Using a Loop-Mediated Isothermal Amplification Assay. J. Phytopathol. 2017, 165, 249–256. [Google Scholar] [CrossRef]
- Ortega, S.F.; Tomlinson, J.; Hodgetts, J.; Spadaro, D.; Gullino, M.L.; Boonham, N. Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in rice seed. Plant Dis. 2018, 102, 1549–1558. [Google Scholar] [CrossRef]
- Sanna, M.; Spadaro, D.; Gullino, M.L.; Mezzalama, M. Optimization of a Loop-Mediated Isothermal Amplification Assay for On-Site Detection of Fusarium fujikuroi in Rice Seed. Agronomy 2021, 11, 1580. [Google Scholar] [CrossRef]
- Niessen, L.; Vogel, R.F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 2010, 140, 183–191. [Google Scholar] [CrossRef]
- Pu, J.; Xie, Y.; Zhang, H.; Zhang, X.; Qi, Y.; Peng, J. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium mangiferae associated with mango malformation. Physiol. Mol. Plant Pathol. 2014, 86, 81–88. [Google Scholar] [CrossRef]
- Ghosh, R.; Nagavardhini, A.; Sengupta, A.; Sharma, M. Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris—Wilt pathogen of chickpea. BMC Res. Notes 2015, 8, 40. [Google Scholar] [CrossRef]
- Li, B.; Du, J.; Lan, C.; Liu, P.; Weng, Q.; Chen, Q. Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 2013, 135, 903–911. [Google Scholar] [CrossRef]
- Lan, C.; Ruan, H.; Yang, X.; Yao, J.; Jiang, J. Development of a loop-mediated isothermal amplification assay for sensitive and specific detection of Fusarium oxysporum f. sp. cucumerinum Owen. Phytoparasitica 2018, 46, 283–293. [Google Scholar] [CrossRef]
- Katoh, H.; Yamazaki, S.; Fukuda, T.; Sonoda, S.; Nishigawa, H.; Natsuaki, T. Detection of Fusarium oxysporum f. sp. fragariae by using loop-mediated isothermal amplification. Plant Dis. 2021, 105, 1072–1079. [Google Scholar] [CrossRef]
- Franco Ortega, S.; Tomlinson, J.; Gilardi, G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A.; Boonham, N. Rapid detection of Fusarium oxysporum f. sp. lactucae on soil, lettuce seeds and plants using loop-mediated isothermal amplification. Plant Pathol. 2018, 67, 1462–1473. [Google Scholar] [CrossRef]
- Almasi, M.A.; Dehabadi, S.H.; Moradi, A.; Eftekhari, Z.; Ojaghkandi, M.A.; Aghaei, S. Development and application of loop-mediated isothermal amplification assay for rapid detection of Fusarium oxysporum f. sp. lycopersici. J. Plant Pathol. Microbiol. 2013, 4, 5. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Hanyuda, S.; Fujita, N.; Komatsu, K.; Arie, T. Novel loop-mediated isothermal amplification (LAMP) assay with a universal QProbe can detect SNPs determining races in plant pathogenic fungi. Sci. Rep. 2017, 7, 4253. [Google Scholar] [CrossRef]
- Almasi, M.A. Development of a colorimetric loop-mediated isothermal amplification assay for the visual detection of Fusarium oxysporum f. sp. melonis. Hortic. Plant J. 2019, 5, 129–136. [Google Scholar] [CrossRef]
- Peng, J.; Zhan, Y.; Zeng, F.; Long, H.; Pei, Y.; Guo, J. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. niveum in soil. FEMS Microbiol. Lett. 2013, 349, 127–134. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Wang, L.; Zhang, X.; Yan, J.; Wang, J.; Wang, M. Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium proliferatum causing ear and kernel rot on maize. Crop protection 2020, 132, 105142. [Google Scholar] [CrossRef]
- Shan, L.; Haseeb, H.A.; Zhang, J.; Zhang, D.; Jeffers, D.P.; Dai, X.; Guo, W. A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. Int. J. Food Microbiol. 2019, 291, 72–78. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Kong, F.; Wang, C.; Chen, S.; Wang, J.; Wang, D. Visual detection of Fusarium temperatum by using CRISPR-Cas12a empowered LAMP assay coupled with AuNPs-based colorimetric reaction. LWT 2023, 185, 115190. [Google Scholar] [CrossRef]
- Niessen, L.; Gräfenhan, T.; Vogel, R.F. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int. J. Food Microbiol. 2012, 158, 171–185. [Google Scholar] [CrossRef]
- Rizzo, D.; Aglietti, C.; Benigno, A.; Bracalini, M.; Da Lio, D.; Bartolini, L.; Cappellini, G.; Aronadio, A.; Francia, C.; Luchi, N.; et al. Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut. Plants 2022, 11, 1239. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Luchi, N.; Rizzo, D.; Pepori, A.L.; Pecori, F.; Santini, A. Rapid diagnostics for Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) in chestnut nuts: New challenges by using LAMP and real-time PCR methods. AMB Express 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Harrison, C.; Tomlinson, J.; Ostoja-Starzewska, S.; Boonham, N. Evaluation and validation of a loop-mediated isothermal amplification test kit for detection of Hymenoscyphus fraxineus. Eur. J. Plant Pathol. 2017, 149, 253–259. [Google Scholar] [CrossRef]
- Villari, C.; Mahaffee, W.F.; Mitchell, T.K.; Pedley, K.F.; Pieck, M.L.; Hand, F.P. Early detection of airborne inoculum of Magnaporthe oryzae in turfgrass fields using a quantitative LAMP assay. Plant Dis. 2017, 101, 170–177. [Google Scholar] [CrossRef]
- Ren, W.; Liu, N.; Li, B. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop Prot. 2021, 141, 105452. [Google Scholar] [CrossRef]
- Ortega, S.F.; del Pilar Bustos López, M.; Nari, L.; Boonham, N.; Gullino, M.L.; Spadaro, D. Rapid detection of Monilinia fructicola and Monilinia laxa on peach and nectarine using loop-mediated isothermal amplification. Plant Dis. 2019, 103, 2305–2314. [Google Scholar] [CrossRef]
- Poniatowska, A.; Michalecka, M.; Puławska, J. LAMP-based detection of Monilinia fructigena, Monilinia polystroma and Monilinia fructicola in latently infected apple fruit. Plant Pathol. 2024, 73, 355–365. [Google Scholar] [CrossRef]
- Kong, G.; Li, T.; Huang, W.; Li, M.; Shen, W.; Jiang, L.; Hsiang, T.; Jiang, Z.; Xi, P. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 2021, 139, 105370. [Google Scholar] [CrossRef]
- Yang, K.; Lee, I.; Nam, S. Development of a rapid detection method for Peronospora destructor using loop-mediated isothermal amplification (LAMP). HortScience 2017, 52, S413. [Google Scholar] [CrossRef]
- Siegieda, D.G.; Panek, J.; Frąc, M. “Shining a LAMP” (Loop-Mediated Isothermal Amplification) on the Molecular Detection of Phytopathogens Phytophthora spp. and Phytophthora cactorum in Strawberry Fields. Pathogens 2021, 10, 1453. [Google Scholar] [CrossRef]
- Li, G.R.; Huang, G.M.; Zhu, L.H.; Lv, D.; Cao, B.; Liao, F.; Luo, J.F. Loop-mediated isothermal amplification (LAMP) detection of Phytophthora hibernalis, P. syringae and P. cambivora. J. Plant Pathol. 2019, 101, 51–57. [Google Scholar] [CrossRef]
- Tong, X.; Wu, J.; Mei, L.; Wang, Y. Detecting Phytophthora cinnamomi associated with dieback disease on Carya cathayensis using loop-mediated isothermal amplification. PLoS ONE 2021, 16, e0257785. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Liu, P.; Li, B.; Chen, G.; Weng, Q.; Chen, Q. Loop-mediated isothermal amplification assay for sensitive and rapid detection of Phytophthora capsici. Can. J. Plant Pathol. 2015, 37, 485–494. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Saville, A.C.; Paul, R.; Cooper, D.C.; Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 2020, 104, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, H.; Wang, S.; Xu, P.; Zhang, R.; Dong, S.; Zheng, X. Rapid detection of potato late blight using a loop-mediated isothermal amplification assay. J. Integr. Agric. 2020, 19, 1274–1282. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 2010, 100, 143–149. [Google Scholar] [CrossRef]
- Li, B.; Liu, P.; Xie, S.; Yin, R.; Weng, Q.; Chen, Q. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays. J. Phytopathol. 2015, 163, 185–193. [Google Scholar] [CrossRef]
- Dai, T.T.; Lu, C.C.; Lu, J.; Dong, S.; Ye, W.; Wang, Y.; Zheng, X. Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiol. Lett. 2012, 334, 27–34. [Google Scholar] [CrossRef]
- Kong, X.; Qin, W.; Huang, X.; Kong, F.; Schoen, C.D.; Feng, J.; Wang, Z.; Zhang, H. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola. Sci. Rep. 2016, 6, 28935. [Google Scholar] [CrossRef]
- King, K.M.; Krivova, V.; Canning, G.G.M.; Hawkins, N.J.; Kaczmarek, A.M.; Perryman, S.A.M.; Dyer, P.S.; Fraaije, B.A.; West, J.S. Loop-mediated isothermal amplification (LAMP) assays for rapid detection of Pyrenopeziza brassicae (light leaf spot of brassicas). Plant Pathol. 2018, 67, 167–174. [Google Scholar] [CrossRef]
- Takahashi, R.; Fukuta, S.; Kuroyanagi, S.; Miyake, N.; Nagai, H.; Kageyama, K.; Ishiguro, Y. Development and application of a loop-mediated isothermal amplification assay for rapid detection of Pythium helicoides. FEMS Microbiol. Lett. 2014, 355, 28–35. [Google Scholar] [CrossRef]
- Ghimire, B.; Avin, F.A.; Waliullah, S.; Ali, E.; Baysal-Gurel, F. Real-time and rapid detection of Phytopythium vexans using loop-mediated isothermal amplification assay. Plant Dis. 2023, 107, 3394–3402. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, C.; Sharma, S.; Kulshreshtha, D.; Gupta, S.; Singh, K.; Bhardwaj, S.C.; Aggarwal, R. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification. PLoS ONE 2018, 13, e0196409. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, G.; Wang, H.; Zhu, L.; Liang, Y.; Gbokie Jr, T.; Lu, Y.; Huang, X.; He, C.; Qin, J.; et al. Development and Evaluation of a Loop-Mediated Isothermal Amplifcation (LAMP) Assay for Specific and Sensitive Detection of Puccinia melanocephala Causing Brown Rust in Sugarcane. Agronomy 2024, 14, 1096. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Workman, J.N.; Nairn, C.J.; Fraedrich, S.W.; Villari, C. Rapid detection of raffaelea lauricola directly from host plant and beetle vector tissues using loop-mediated isothermal amplification. Plant Dis. 2020, 104, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Tarafdar, A.; Sharma, M. Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay. Sci. Rep. 2017, 7, 42737. [Google Scholar] [CrossRef] [PubMed]
- Panek, J.; Frąc, M. Loop-mediated isothermal amplification (LAMP) approach for detection of heat-resistant Talaromyces flavus species. Sci. Rep. 2019, 9, 5846. [Google Scholar] [CrossRef]
- Pieczul, K.; Perek, A.; Kubiak, K. Detection of Tilletia caries, Tilletia laevis and Tilletia controversa wheat grain contamination using loop-mediated isothermal DNA amplification (LAMP). J. Microbiol. Methods 2018, 154, 141–146. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; King, K.M.; West, J.S.; Stevens, M.; Sparkes, D.; Dickinson, M. A loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of airborne inoculum of Uromyces betae (sugar beet rust). Plant Dis. 2019, 103, 417–421. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Ma, D.; Yin, J. qPCR and loop mediated isothermal amplification for rapid detection of Ustilago tritici. PeerJ 2019, 7, e7766. [Google Scholar] [CrossRef]
- Moradi, A.; Almasi, M.A.; Jafary, H.; Mercado-Blanco, J. A novel and rapid loop-mediated isothermal amplification assay for the specific detection of Verticillium dahliae. J. Appl. Microbiol. 2014, 116, 942–954. [Google Scholar] [CrossRef]
- Megariti, M.; Panagou, A.; Patsis, G.; Papadakis, G.; Pantazis, A.K.; Paplomatas, E.J.; Tzima, A.K.; Markakis, E.A.; Gizeli, E. Rapid real-time quantitative colorimetric LAMP methodology for field detection of Verticillium dahliae in crude olive-plant samples. Plant Methods 2024, 20, 139. [Google Scholar] [CrossRef] [PubMed]
- Galvez, L.C.; Barbosa, C.F.C.; Koh, R.B.L.; Aquino, V.M. Loop-mediated isothermal amplification (LAMP) assays for the detection of abaca bunchy top virus and banana bunchy top virus in abaca. Crop Prot. 2020, 131, 105101. [Google Scholar] [CrossRef]
- Peng, D.; Xie, J.; Qiang, W.; Ling, K.S.; Guo, L.; Fan, Z.; Zhou, T. One-step reverse transcription loop-mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus. J. Virol. Methods 2017, 248, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yao, B.; Wang, G.; Hong, N. The detection of ACLSV and ASPV in pear plants by RT-LAMP assays. J. Virol. Methods 2018, 252, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, J.; Xia, Z.; Li, Y.; Huang, J.; Fan, Z. Rapid and sensitive detection of Banana bunchy top virus by loop-mediated isothermal amplification. J. Virol. Methods 2012, 185, 254–258. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Ostoja-Starzewska, S.; Adams, I.P.; Miano, D.W.; Abidrabo, P.; Kinyua, Z.; Alicai, T.; Dickinson, M.J.; Peters, D.; Boonham, N.; et al. Loop-mediated isothermal amplification for rapid detection of the causal agents of cassava brown streak disease. J. Virol. Methods 2013, 191, 148–154. [Google Scholar] [CrossRef]
- Peng, Q.; Ning, J.; Xu, Q.; Yang, T.; Wang, Y.; Zheng, T.; Zhuang, Q.; Xi, D. Development and application of a reverse transcription loop-mediated isothermal amplification combined with lateral flow dipstick for rapid and visual detection of Citrus leaf blotch virus in kiwifruit. Crop Prot. 2021, 143, 105555. [Google Scholar] [CrossRef]
- Johnson, A.A.; Dasgupta, I.; Gopal, D.S. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. J. Virol. Methods 2014, 203, 9–14. [Google Scholar] [CrossRef]
- Warghane, A.; Misra, P.; Bhose, S.; Biswas, K.K.; Sharma, A.K.; Reddy, M.K.; Ghosh, D.K. Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. J. Virol. Methods 2017, 250, 6–10. [Google Scholar] [CrossRef]
- Thanarajoo, S.S.; Kong, L.L.; Kadir, J.; Lau, W.H.; Vadamalai, G. Detection of Coconut cadang-cadang viroid (CCCVd) in oil palm by reverse transcription loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods 2014, 202, 19–23. [Google Scholar] [CrossRef]
- Park, J.; Jung, Y.; Kil, E.J.; Kim, J.; Tran, D.T.; Choi, S.K.; Yoon, J.; Cho, W.K.; Lee, S. Loop-mediated isothermal amplification for the rapid detection of Chrysanthemum chlorotic mottle viroid (CChMVd). J. Virol. Methods 2013, 193, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Fukuta, S.; Matsumoto, Y.; Hasegawa, T.; Kojima, H.; Hotta, M.; Miyake, N. Development of reverse transcription loop-mediated isothermal amplification assay as a simple detection method of Chrysanthemum stem necrosis virus in chrysanthemum and tomato. J. Virol. Methods 2016, 236, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Zhao, X.T.; Muhammad, I.; Ge, B.B.; Hong, B. Multiplex reverse transcription loop-mediated isothermal amplification for the simultaneous detection of CVB and CSVd in chrysanthemum. J. Virol. Methods 2014, 210, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.I.; Siljo, A.; Deeshma, K.P. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP). J. Virol. Methods 2013, 193, 190–196. [Google Scholar] [CrossRef]
- Kwon, S.J.; Cho, Y.E.; Kim, M.H.; Seo, J.K. A one-step reverse-transcription loop-mediated isothermal amplification assay optimized for the direct detection of cucumber green mottle mosaic virus in cucurbit seeds. Mol. Cell. Probes 2021, 60, 101775. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Q.; Sun, H.; Li, H.; Sun, B.; Liang, X.; Yuan, Y.; Liu, R.; Shi, Y. One-step reverse transcription loop mediated isothermal amplification assay for sensitive and rapid detection of Cucurbit chlorotic yellows virus. J. Virol. Methods 2014, 195, 63–66. [Google Scholar] [CrossRef]
- Okuda, M.; Okuda, S.; Iwai, H. Detection of Cucurbit chlorotic yellows virus from Bemisia tabaci captured on sticky traps using reverse transcription loop-mediated isothermal amplification (RT-LAMP) and simple template preparation. J. Virol. Methods 2015, 221, 9–14. [Google Scholar] [CrossRef]
- Walsh, H.A.; Pietersen, G. Rapid detection of Grapevine leafroll-associated virus type 3 using a reverse transcription loop-mediated amplification method. J. Virol. Methods 2013, 194, 308–316. [Google Scholar] [CrossRef]
- Gawande, S.P.; Raghavendra, K.P.; Monga, D.; Nagrale, D.T.; Prabhulinga, T.; Hiremani, N.; Meshram, M.; Kranthi, S.; Gokte-Narkhedkar, N.; Waghmare, V.N. Development of Loop Mediated Isothermal Amplification (LAMP): A new tool for rapid diagnosis of cotton leaf curl viral disease. J. Virol. Methods 2022, 306, 114541. [Google Scholar] [CrossRef]
- Tahzima, R.; Foucart, Y.; Peusens, G.; Belien, T.; Massart, S.; De Jonghe, K. New sensitive and fast detection of Little cherry virus 1 using loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods 2019, 265, 91–98. [Google Scholar] [CrossRef]
- Chen, L.; Jiao, Z.; Liu, D.; Liu, X.; Xia, Z.; Deng, C.; Zhou, T.; Fan, Z. One-step reverse transcription loop-mediated isothermal amplification for the detection of Maize chlorotic mottle virus in maize. J. Virol. Methods 2017, 240, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Meena, P.N.; Kharbikar, L.L.; Rana, R.S.; Satpathy, S.; Shanware, A.; Sivalingam, P.N.; Nandanwar, S. Detection of Mesta yellow vein mosaic virus (MeYVMV) in field samples by a loop-mediated isothermal amplification reaction. J. Virol. Methods 2019, 263, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Tiberini, A.; Tomlinson, J.; Micali, G.; Fontana, A.; Albanese, G.; Tomassoli, L. Development of a reverse transcription-loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Onion yellow dwarf virus. J. Virol. Methods 2019, 271, 113680. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Tuo, D.; Yan, P.; Li, X.; Zhou, P. Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification. J. Virol. Methods 2014, 195, 174–179. [Google Scholar] [CrossRef]
- Shen, W.; Tuo, D.; Yan, P.; Yang, Y.; Li, X.; Zhou, P. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus. J. Virol. Methods 2014, 204, 93–100. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.; Park, E.R.; Jang, W.C. Development of a highly sensitive and rapid detection method for Pea enation mosaic virus using loop-mediated isothermal amplification assay. J. Virol. Methods 2022, 300, 114427. [Google Scholar] [CrossRef]
- Tangkanchanapas, P.; Höfte, M.; De Jonghe, K. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) designed for fast and sensitive on-site detection of Pepper chat fruit viroid (PCFVd). J. Virol. Methods 2018, 259, 81–91. [Google Scholar] [CrossRef]
- Bester, R.; Maree, H.J. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of plum viroid I (PlVd-I). J. Virol. Methods 2022, 306, 114543. [Google Scholar] [CrossRef]
- Almasi, M.A.; Manesh, M.E.; Jafary, H.; Dehabadi, S.M.H. Visual detection of Potato Leafroll virus by loop-mediated isothermal amplification of DNA with the GeneFinder™ dye. J. Virol. Methods 2013, 192, 51–54. [Google Scholar] [CrossRef]
- Raigond, B.; Verma, A.; Pathania, S.; Sridhar, J.; Kochhar, T.; Chakrabarti, S.K. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Prot. 2020, 137, 105296. [Google Scholar] [CrossRef]
- Çelik, A. A novel technology for the one-step detection of prune dwarf virus: Colorimetric reverse transcription loop-mediated isothermal amplification assay. Crop Prot. 2022, 155, 105910. [Google Scholar] [CrossRef]
- Zong, X.; Wang, W.; Wei, H.; Wang, J.; Chen, X.; Xu, L.; Zhu, D.; Tan, Y.; Liu, Q. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 2014, 208, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Zhang, Y.; Huang, Q.; Yin, G.; Pennerman, K.K.; Liu, Z.; Guo, A. Reverse transcription loop-mediated isothermal amplification to rapidly detect Rice ragged stunt virus. Saudi J. Biol. Sci. 2018, 25, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Keizerweerd, A.T.; Chandra, A.; Grisham, M.P. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane. J. Virol. Methods 2015, 212, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Elvira-González, L.; Puchades, A.V.; Carpino, C.; Alfaro-Fernández, A.; Font-San-Ambrosio, M.I.; Rubio, L.; Galipienso, L. Fast detection of Southern tomato virus by one-step transcription loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods 2017, 241, 11–14. [Google Scholar] [CrossRef]
- Kuan, C.P.; Wu, M.T.; Lu, Y.L.; Huang, H.C. Rapid detection of squash leaf curl virus by loop-mediated isothermal amplification. J. Virol. Methods 2010, 169, 61–65. [Google Scholar] [CrossRef]
- Wang, K.L.; Deng, Q.Q.; Chen, J.W.; Shen, W.K. Development of a reverse transcription loop-mediated isothermal amplification assay for rapid and visual detection of Sugarcane streak mosaic virus in sugarcane. Crop Prot. 2019, 119, 38–45. [Google Scholar] [CrossRef]
- Wanjala, B.W.; Ateka, E.M.; Miano, D.W.; Fuentes, S.; Perez, A.; Low, J.W.; Kreuze, J.F. Loop-Mediated Isothermal Amplification assays for on-site detection of the main sweetpotato infecting viruses. J. Virol. Methods 2021, 298, 114301. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, J.; Luo, L.; Du, Q.; Li, X.; Afandi, A.; Feng, W.; Xie, X. Development of reverse transcription loop-mediated isothermal amplification assay for rapid and visual detection of Telosma mosaic virus (TeMV) in passion fruit. Crop Prot. 2021, 150, 105795. [Google Scholar] [CrossRef]
- Gawande, S.P.; Raghavendra, K.P.; Monga, D.; Nagrale, D.T.; Kranthi, S. Rapid detection of Tobacco streak virus (TSV) in cotton (Gossypium hirsutum) based on Reverse Transcription Loop Mediated Isothermal Amplification (RT-LAMP). J. Virol. Methods 2019, 270, 21–25. [Google Scholar] [CrossRef]
- Zhao, L.M.; Li, G.; Gao, Y.; Zhu, Y.R.; Liu, J.; Zhu, X.P. Reverse transcription loop-mediated isothermal amplification assay for detecting tomato chlorosis virus. J. Virol. Methods 2015, 213, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Kil, E.J.; Kim, S.; Lee, Y.J.; Kang, E.H.; Lee, M.; Cho, S.H.; Kim, M.; Lee, K.; Heo, N.; Choi, H.; et al. Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using a uracil DNA glycosylase to control carry-over contamination. J. Virol. Methods 2015, 213, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Kumari, S.; Kumar, R.; Pandey, K.K.; Singh, J. Loop-mediated isothermal amplification assay for quicker detection of tomato leaf curl Joydebpur virus infection in chilli. J. Virol. Methods 2022, 302, 114474. [Google Scholar] [CrossRef] [PubMed]
- Congdon, B.S.; Kehoe, M.A.; Filardo, F.F.; Coutts, B.A. In-field capable loop-mediated isothermal amplification detection of Turnip yellows virus in plants and its principal aphid vector Myzus persicae. J. Virol. Methods 2019, 265, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rigano, L.A.; Malamud, F.; Orce, I.G.; Filippone, M.P.; Marano, M.R.; Do Amaral, A.M.; Castagnaro, A.P.; Vojnov, A.A. Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiol. 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Wu, X.; Meng, C.; Wang, G.; Liu, Y.; Zhang, X.; Yi, K.; Peng, J. Rapid and quantitative detection of citrus huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ by real-time fluorescent loop-mediated isothermal amplification assay in China. Physiol. Mol. Plant Pathol. 2016, 94, 1–7. [Google Scholar] [CrossRef]
- Bühlmann, A.; Pothier, J.F.; Rezzonico, F.; Smits, T.H.; Andreou, M.; Boonham, N.; Duffy, B.; Frey, J.E. Erwinia amylovora loop-mediated isothermal amplification (LAMP) assay for rapid pathogen detection and on-site diagnosis of fire blight. J. Microbiol. Methods 2013, 92, 332–339. [Google Scholar] [CrossRef]
- Kini, K.; Wonni, I.; Silué, D.; Koebnik, R. Development of two loop-mediated isothermal amplification (LAMP) genomics-informed diagnostic protocols for rapid detection of Pantoea species on rice. MethodsX 2021, 8, 101216. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, Z.; Meng, X.; Wang, L.; Xie, X.; Chai, A.; Li, B. Development and Evaluation of a Loop-mediated Isothermal Amplification Assay for the Rapid Detection and Identification of Pectobacterium carotovorum on Celery in the Field. Hortic. Plant J. 2020, 6, 313–320. [Google Scholar] [CrossRef]
- Beran, P.; Stehlikova, D.; Cohen, S.P.; Rost, M.; Beranova, K.; Curn, V. Utilization of a New Hundred-Genomes Pipeline to Design a Rapid Duplex LAMP Detection Assay for Xanthomonas euvesicatoria and X. vesicatoria in Tomato. Plant Dis. 2023, 107, 1822–1828. [Google Scholar] [CrossRef]
- Gétaz, M.; Bühlmann, A.; Schneeberger, P.H.; Van Malderghem, C.; Duffy, B.; Maes, M.; Pothier, F.; Cottyn, B. A diagnostic tool for improved detection of Xanthomonas fragariae using a rapid and highly specific LAMP assay designed with comparative genomics. Plant Pathol. 2017, 66, 1094–1102. [Google Scholar] [CrossRef]
- Buddhachat, K.; Ritbamrung, O.; Sripairoj, N.; Inthima, P.; Ratanasut, K.; Boonsrangsom, T.; Sujipuli, K. One-step colorimetric LAMP (cLAMP) assay for visual detection of Xanthomonas oryzae pv. oryzae in rice. Crop Prot. 2021, 150, 105809. [Google Scholar] [CrossRef]
- Ejaz, K.; Faiq, A.; Asif, M.; Zaka, A.; Nguyen, M.H.; Cruz, C.V.; Oliva, R.; Arif, M.; Yasmin, S. Molecular characterization and screening of Xanthomonas oryzae pv. oryzae, isolated from Pakistan for prediction of bacterial leaf blight-resistant basmati rice. Physiol. Mol. Plant Pathol. 2022, 121, 101858. [Google Scholar] [CrossRef]
- Carvalho, I.C.B.; Carvalho, A.M.S.; Wendland, A.; Rossato, M. Colorimetric LAMP assay for detection of Xanthomonas phaseoli pv. manihotis in cassava through genomics: A new approach to an old problem. Plant Dis. 2024, 108, 2993–3000. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef]
- Yaseen, T.; Drago, S.; Valentini, F.; Elbeaino, T.; Stampone, G.; Digiaro, M.; D’onghia, A.M. On-site detection of Xylella fastidiosa in host plants and in” spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. 2015, 54, 488–496. [Google Scholar]
- Elbeaino, T.; Incerti, O.; Dakroub, H.; Valentini, F.; Huang, Q. Development of an FTP-LAMP assay based on TaqMan real-time PCR and LAMP for the specific detection of Xylella fastidiosa De Donno and mulberry strains in both plants and insect vectors. J. Microbiol. Methods 2020, 175, 105992. [Google Scholar] [CrossRef]
- Amoia, S.S.; Loconsole, G.; Ligorio, A.; Pantazis, A.K.; Papadakis, G.; Gizeli, E.; Minafra, A. A colorimetric LAMP detection of xylella fastidiosa in crude alkaline sap of olive trees in apulia as a field-based tool for disease containment. Agriculture 2023, 13, 448. [Google Scholar] [CrossRef]
- Farrall, T.; Abeynayake, S.W.; Webster, W.; Fiorito, S.; Dinsdale, A.; Whattam, M.; Campbell, P.R.; Gambley, C. Development of a rapid, accurate, and field deployable LAMP-CRISPR-Cas12a integrated assay for Xylella fastidiosa detection and surveillance. Australas. Plant Pathol. 2024, 53, 115–120. [Google Scholar] [CrossRef]
- Lu, H.; Wilson, B.A.; Ash, G.J.; Woruba, S.B.; Fletcher, M.J.; You, M.; Yang, G.; Gurr, G.M. Determining putative vectors of the Bogia Coconut Syndrome phytoplasma using loop-mediated isothermal amplification of single-insect feeding media. Sci. Rep. 2016, 6, 35801. [Google Scholar] [CrossRef]
- Kikuchi, T.; Aikawa, T.; Oeda, Y.; Karim, N.; Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 2009, 99, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Kogovšek, P.; Hodgetts, J.; Hall, J.; Prezelj, N.; Nikolić, P.; Mehle, N.; Lenarčič, R.; Rotter, A.; Dickinson, M.; Boonham, N.; et al. LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine. Plant Pathol. 2015, 64, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.J.; Albuquerque, D.C.; Inácio, M.L.; Martins, V.C.; Mota, M.; Freitas, P.P.; de Andrade, E. FTA-LAMP based biosensor for a rapid in-field detection of Globodera pallida—The pale potato cyst nematode. Front. Bioeng. Biotechnol. 2024, 12, 1337879. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Long, H.; Huang, W.; Liu, J.; Cui, J.; Kong, L.; Hu, X.; Gu, J.; Peng, D. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology. Sci. Rep. 2017, 7, 44853. [Google Scholar] [CrossRef] [PubMed]
- Kyei-Poku, G.; Gauthier, D.; Quan, G. Development of a loop-mediated isothermal amplification assay as an early-warning tool for detecting emerald ash borer (Coleoptera: Buprestidae) incursions. J. Econ. Entomol. 2020, 113, 2480–2494. [Google Scholar] [CrossRef]
- Rizzo, D.; Luchi, N.; Da Lio, D.; Bartolini, L.; Nugnes, F.; Cappellini, G.; Bruscoli, T.; Salemi, C.; Griffo, R.V.; Garonna, A.P.; et al. Development of a loop-mediated isothermal amplification (LAMP) assay for the identification of the invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) from frass. 3 Biotech 2021, 11, 85. [Google Scholar] [CrossRef]
- Dickey, A.M.; Osborne, L.S.; Shatters, R.G.; Mckenzie, C.L. Identification of the Meam1 Cryptic Species of Bemisia tabaci (Hemiptera: Aleyrodidae) by Loop-Mediated Isothermal Amplification. Fla. Entomol. 2013, 96, 756–764. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Wang, H.Y.; Chen, Y.F.; Ko, C.C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 2012, 68, 1206–1213. [Google Scholar] [CrossRef]
- Blaser, S.; Diem, H.; von Felten, A.; Gueuning, M.; Andreou, M.; Boonham, N.; Tomlinson, J.; Müller, P.; Utzinger, J.; Frey, J.E.; et al. From laboratory to point of entry: Development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest Manag. Sci. 2018, 74, 1504–1512. [Google Scholar] [CrossRef]
- Ide, T.; Kanzaki, N.; Ohmura, W.; Okabe, K. Molecular identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 2016, 109, 1410–1414. [Google Scholar] [CrossRef]
- Sial, M.U.; Zhao, Z.; Zhang, L.; Zhang, Y.; Mao, L.; Jiang, H. Loop-mediated isothermal amplification for the detection of R81T mutation in nAChR with crude genomic DNA extracted from individual Myzus persicae. J. Pest Sci. 2020, 93, 531–541. [Google Scholar] [CrossRef]
- Rizzo, D.; Moricca, S.; Bracalini, M.; Benigno, A.; Bernardo, U.; Luchi, N.; Da Lio, D.; Nugnes, F.; Cappellini, G.; Salemi, C.; et al. Rapid detection of Pityophthorus juglandis (Blackman)(Coleoptera, Curculionidae) with the loop-mediated isothermal amplification (LAMP) method. Plants 2021, 10, 1048. [Google Scholar] [CrossRef] [PubMed]
- Congdon, B.S.; Webster, C.G.; Severtson, D.; Spafford, H. In-field capable loop-mediated isothermal amplification detection of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae using a rapid and simple crude extraction technique. J. Econ. Entomol. 2021, 114, 2610–2614. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, A.; Fiedler, Ż.; Kucharczyk, H.; Obrępalska-Stęplowska, A. Detection of the quarantine species Thrips palmi by loop-mediated isothermal amplification. PLoS ONE 2015, 10, e0122033. [Google Scholar] [CrossRef] [PubMed]
- Rako, L.; Agarwal, A.; Semeraro, L.; Broadley, A.; Rodoni, B.C.; Blacket, M.J. A LAMP (loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 2021, 77, 5509–5521. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T.J. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Niessen, L. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol. Biotechnol. 2015, 99, 553–574. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Atceken, N.; Munzer Alseed, M.; Dabbagh, S.R.; Yetisen, A.K.; Tasoglu, S. Point-of-Care diagnostic platforms for loop-mediated isothermal amplification. Adv. Eng. Mater. 2023, 25, 2201174. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-mediated isothermal amplification (LAMP)–review and classification of methods for sequence-specific detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Safavieh, M.; Kanakasabapathy, M.K.; Tarlan, F.; Ahmed, M.U.; Zourob, M.; Asghar, W.; Shafiee, H. Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater. Sci. Eng. 2016, 2, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Rampazzo, R.D.C.P.; Costa, A.D.T.; Krieger, M.A. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. BioMed Res. Int. 2017, 1, 9306564. [Google Scholar] [CrossRef] [PubMed]
- Niemz, A.; Ferguson, T.M.; Boyle, D.S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011, 29, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Nwe, M.K.; Jangpromma, N.; Taemaitree, L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci. Rep. 2024, 14, 5916. [Google Scholar] [CrossRef]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef]
- Kaneko, H.; Kawana, T.; Fukushima, E.; Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 2007, 70, 499–501. [Google Scholar] [CrossRef]
- Nixon, G.; Garson, J.A.; Grant, P.; Nastouli, E.; Foy, C.A.; Huggett, J.F. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal. Chem. 2014, 86, 4387–4394. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Bustin, S.A.; Beaulieu, J.F.; Huggett, J.; Jaggi, R.; Kibenge, F.S.; Olsvik, P.A.; Penning, L.C.; Toegel, S. MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol. Biol. 2010, 11, 74. [Google Scholar] [CrossRef]
- Picot, S.; Cucherat, M.; Bienvenu, A.L. Systematic review and meta-analysis of diagnostic accuracy of loop-mediated isothermal amplification (LAMP) methods compared with microscopy, polymerase chain reaction and rapid diagnostic tests for malaria diagnosis. Int. J. Infect. Dis. 2020, 98, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Aglietti, C.; Benigno, A.; Scali, E.; Capretti, P.; Ghelardini, L.; Moricca, S. Molecular-based reappraisal of a historical record of Dothistroma needle blight in the centre of the Mediterranean region. Forests 2021, 12, 983. [Google Scholar] [CrossRef]
- Wingfield, M.J.; De Beer, Z.W.; Slippers, B.; Wingfield, B.D.; Groenewald, J.Z.; Lombard, L.; Crous, P.W. One fungus, one name promotes progressive plant pathology. Mol. Plant Pathol. 2012, 13, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.G.; Brewster, J.D.; Paul, M.; Tomasula, P.M. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 2015, 20, 6048–6059. [Google Scholar] [CrossRef]
- Chander, Y.; Koelbl, J.; Puckett, J.; Moser, M.J.; Klingele, A.J.; Liles, M.R.; Carrias, A.; Mead, D.A.; Schoenfeld, T.W. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol. 2014, 5, 395. [Google Scholar] [CrossRef]
- Zhang, X.; Lowe, S.B.; Gooding, J.J. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 2014, 61, 491–499. [Google Scholar] [CrossRef]
- Fischbach, J.; Xander, N.C.; Frohme, M.; Glökler, J.F. Shining a light on LAMP assays’ A comparison of LAMP visualization methods including the novel use of berberine. Biotechniques 2015, 58, 189–194. [Google Scholar] [CrossRef]
- Mori, Y.; Kitao, M.; Tomita, N.; Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157. [Google Scholar] [CrossRef]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 2009, 46, 167–172. [Google Scholar] [CrossRef]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Alvarez, A.M.; Su, W.W.; Jenkins, D.M. FRET-based assimilating probe for sequence-specific real-time monitoring of loop-mediated isothermal amplification (LAMP). Biol. Eng. Trans. 2011, 4, 81–100. [Google Scholar] [CrossRef]
- Mayboroda, O.; Katakis, I.; O’Sullivan, C.K. Multiplexed isothermal nucleic acid amplification. Anal. Biochem. 2018, 545, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Jenkins, D.M. Real-time duplex applications of loop-mediated amplification (LAMP) by assimilating probes. Int. J. Mol. Sci. 2015, 16, 4786–4799. [Google Scholar] [CrossRef] [PubMed]
- Julich, S.; Riedel, M.; Kielpinski, M.; Urban, M.; Kretschmer, R.; Wagner, S.; Fritzsche, W.; Henkel, T.; Möller, R.; Werres, S. Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens. Bioelectron. 2011, 26, 4070–4075. [Google Scholar] [CrossRef]
- Chiriacò, M.S.; Luvisi, A.; Primiceri, E.; Sabella, E.; De Bellis, L.; Maruccio, G. Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Sci. Rep. 2018, 8, 7376. [Google Scholar] [CrossRef]
- Shoala, T. Nanodiagnostic Techniques in Plant Pathology. Nanobiotechnol. Appl. Plant Prot. 2019, 2, 209–222. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Kumar, S.; Srivastava, A.K. Nanodiagnostics for plant pathogens. Environ. Chem. Lett. 2017, 15, 7–13. [Google Scholar] [CrossRef]
Disease Name | Targeted Samples | Kind of LAMP Reaction | Method of Product Visualization | DNA/RNA Extraction Method | Reference |
---|---|---|---|---|---|
FUNGI AND OOMYCETES | |||||
Agroathelia rolfsii | Soil | Labeled primers for chip-based reaction | Colorimetric dyes | Immiscible filtration assisted by surface tension (IFAST)-based; chip-based | Changtor et al. [40] |
Botrytis cinerea | Fruits and flowers | Conventional 1 | Real-time fluorescence; HBN 4 | CTAB 6-based; lab kit | Tomlinson et al. [41]; Duan et al. [42] |
Bremia lactucae | Lactuca sativa | Conventional 1 | Real-time fluorescence | Lab kit | Farmer et al. [43] |
Calonectria henricotiae (IAPP) | Buxus spp. | Conventional based on OmniAmpTM RNA & DNA LAMP kit (Lucigen Corporation, Middleton, WI, USA) | Digital gel electrophoresis | Lab kit | Malapi-Wight et al. [44] |
Calonectria ilicicola | Persea americana | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit | Parkinson et al. [45] |
Calonectria pseudonaviculata (IAPP) | Buxus spp. | Conventional based on OmniAmpTM RNA & DNA LAMP kit (Lucigen Corporation, Middleton, WI, USA) | Digital gel electrophoresis | Lab kit | Malapi-Wight et al. [44] |
Ceratocystis platani (IAPP) | Platanus spp. | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and field DNA extraction kit (OptiGene) | Aglietti et al. [1] |
Colletotrichum falcatum | Saccharum officinarum | Conventional 1 | SYBR Green I dye | CTAB 6-based | Chandra et al. [46] |
Colletotrichum gloeosporioides | Fragaria × ananassa | Conventional 1 | HBN 4 | Lab kit | Wu et al. [47] |
Colletotrichum siamense | Soil samples and Fragaria spp. | Conventional 1 and TaqMAN-based | Gel electrophoresis, red dyes, and real-time fluorescence | CTAB 6-based and lab kit | Cui et al. [48] |
Coniella granati | Punica granatum | Conventional 1 | SYBR Green I and gel electrophoresis | Lab kit | Yang et al. [49] |
Cronartium ribicola (IAPP) | Pinus spp. | Conventional 1 | Colorimetric dyes | CTAB 6-based and field method | Kozhar et al. [50] |
Dactylonectria macrodidyma | Persea americana | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit | Parkinson et al. [45] |
Dothistroma septosporum (IAPP) | Pinus spp. | Based on assimilating probes; conventional | Real-time fluorescence; real-time fluorescence on a portable instrument | Lab kit | Aglietti et al. [51]; Myrholm et al. [52] |
Dothistroma pini (IAPP) | Pinus spp. | Based on assimilating probes | Real-time fluorescence | Lab kit | Aglietti et al. [51] |
Didymella bryoniae | Cucurbitaceae | Conventional 1 | Calcein | Lab kit | Yao et al. [53] |
Elsinoë necatrix (IAPP) | Eucalyptus spp. | Conventional 1 | Real-time fluorescence | Lab kit and simple method | Van Heerden et al. [54] |
Fusarium acuminatum | Astragalus membranaceus | Conventional 1 | SYBR Green I and gel electrophoresis | Lab kit | Wang et al. [55] |
Fusarium circinatum (IAPP) | Pinus spp. | Conventional 1 and based on assimilating probes | Real-time fluorescence on a portable instrument; filter paper dipstick | Lab kit and crude method | Stehlíková et al. [56]; Meinecke et al. [57] |
Fusarium culmorum | Glycine max | Conventional 1 | HBN 4 | CTAB 6-based | Zeng et al. [58] |
Fusarium fujikuroi | Oryza spp. | Conventional 1 | Gel electrophoresis | Lab kit and alkaline DNA extraction as a crude method | Ortega et al. [59]; Sanna et al. [60] |
Fusarium graminearum | Triticum spp. | Conventional 1 | Calcein and gel electrophoresis | Lab kit and crude method | Niessen et al. [61] |
Fusarium mangiferae | Mangifera spp. | Conventional based on RAPD marker 2 sequence | Gel electrophoresis, SYBR Green, and real-time fluorescence | Lab kit | Pu et al. [62] |
Fusarium oxysporum f. sp. ciceris | Cicer arietinum | Conventional 1 | HBN and gel electrophoresis | CTAB 6-based | Ghosh et al. [63] |
Fusarium oxysporum f. sp. cubense | Musa spp. | Conventional 1 | Gel electrophoresis and SYBR Green I | CTAB 6-based | Li et al. [64] |
Fusarium oxysporum f. sp. cucumerinum | Cucumis sativus | Conventional 1 | Gel electrophoresis and SYBR Green I | Lab kit | Lan et al. [65] |
Fusarium oxysporum f. sp. fragariae | Fragaria × ananassa | Conventional 1 | Gel electrophoresis, HBN 4, and real-time fluorescence | Rapid method | Katoh et al. [66] |
Fusarium oxysporum f. sp. lactucae | Lactuca sativa | Conventional 1 | Real-time fluorescence | Lab kit and crude method | Franco Ortega et al. [67] |
Fusarium oxysporum f. sp. lycopersici | Solanum lycopersicum | Conventional 1; based on universal QProbe | Visual dyes and real-time fluorescence on a portable instrument | Lab kit | Almasi et al. [68]; Ayukawa et al. [69] |
Fusarium oxysporum f. sp. melonis | Cucumis melo | Conventional 1 | Gel electrophoresis and HBN 4 | Lab kit and crude method | Almasi et al. [70] |
Fusarium oxysporum f. sp. niveum | Citrullus lanatus | Conventional 1 | Gel electrophoresis, visual dyes, and real-time fluorescence | Lab kit | Peng et al. [71] |
Fusarium proliferatum | Zea mays | Conventional 1 | SYBR Green I and gel electrophoresis | Lab kit | Wang et al. [72] |
Fusarium solani | Astragalus membranaceus | Conventional 1 | SYBR Green I and gel electrophoresis | Lab kit | Wang et al. [55] |
Fusarium temperatum | Zea mays | Conventional 1; nanoparticle probes coupled with CRISPR-CAS12a | SYBR Green I and gel electrophoresis; colorimetric dyes on a portable smartphone-based instrument | Lab kit | Shan et al. [73]; Li et al. [74] |
Fusarium tricinctum | Hordeum vulgare; Triticum spp. | Conventional 1 | Calcein | Lab kit and ultrasonication | Niessen et al. [75] |
Geosmithia morbida (IAPP) | Juglans nigra | Conventional 1 | HNB 4 and real-time fluorescence | Lab kit | Rizzo et al. [76] |
Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) | Castanea sativa | Conventional 1 | HNB 4 and real-time fluorescence on a portable instrument | Lab kit | Vettraino et al. [77] |
Hymenoscyphus fraxineus (IAPP) | Fraxinus excelsior | Conventional 1 | Real-time fluorescence on a portable instrument | CTAB 6-based and suitable field method | Harrison et al. [78] |
Lecanosticta acicola (IAPP) | Pinus spp. | Based on assimilating probes | Real-time fluorescence | Lab kit | Aglietti et al. [51] |
Magnaporthe oryzae | Lolium perenne; Oryza spp. | Based on assimilating probes; conventional 1 | Real-time fluorescence and gel electrophoresis | Lab kit and alkaline DNA extraction as crude method | Villari et al. [79]; Ortega et al. [59] |
Marssonina coronaria (IAPP) | Malus spp. | Conventional 1 | HBN 4 and gel electrophoresis | Rapid method | Ren et al. [80] |
Monilinia fructicola (IAPP) | Malus spp.; Prunus persica | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Ortega et al. [81]; Poniatowska et al. [82] |
Monilinia fructigena (IAPP) | Malus spp. | Conventional 1 | Real-time fluorescence | Lab kit and crude method | Poniatowska et al. [82] |
Monilinia laxa (IAPP) | Malus spp.; Prunus persica | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Ortega et al. [81] |
Monilinia polystroma (IAPP) | Malus spp. | Conventional 1 | Real-time fluorescence | Lab kit and crude method | Poniatowska et al. [82] |
Peronophythora litchii (IAPP) | Litchi chinensis | Conventional 1 | SYBR Green I | Lab kit | Kong et al. [83] |
Peronospora destructor | Allium cepa | Conventional 1 | HBN 4 and gel electrophoresis | Lab kit | Yang et al. [84] |
Phytophthora cactorum (IAPP) | Fragaria × ananassa | Conventional 1 | SYBR Green I, gel electrophoresis, and real-time fluorescence | Lab kit | Siegieda et al. [85] |
Phytophthora cambivora (IAPP) | None: applied only on axenic cultures | Conventional 1 | SYBR Green I, gel electrophoresis, and turbidity | Lab kit | Li et al. [86] |
Phytophthora cinnamomi (IAPP) | Carya cathayensis | Conventional 1 | HBN 4 and gel electrophoresis | Lab kit | Tong et al. [87] |
Phytophthora capsici (IAPP) | Capsicum spp. | Conventional 1 | Calcein and gel electrophoresis | CTAB 6-based | Dong et al. [88] |
Phytophthora hibernalis (IAPP) | None: applied only on axenic cultures | Conventional 1 | SYBR Green I, gel electrophoresis, and turbidity | Lab kit | Li et al. [86] |
Phytophthora infestans (IAPP) | Solanum tuberosum; Solanum lycopersicum | Conventional 1 | SYBR Green I, HBN 4, gel electrophoresis, and LFD 5 | CTAB 6-based and quick sodium hydroxide method; lab kit | Ristaino et al. [89]; Kong et al. [90] |
Phytophthora kernoviae (IAPP) | Rhododendron spp. | Conventional 1 and multiplex | Gel electrophoresis and LFD 5 | CTAB 6 and LFD 5-based | Tomlinson et al. [91] |
Phytophthora nicotianae (IAPP) | Nicotiana spp. | Conventional 1 | SYBR green I and gel electrophoresis | CTAB 6-based | Li et al. [92] |
Phytophthora ramorum (IAPP) | Rhododendron spp.; Viburnum spp. | Conventional 1 and multiplex | Gel electrophoresis and LFD 5; real-time fluorescence on a portable instrument | CTAB 6 and LFD 5-based; lab kit and field DNA extraction kit (OptiGene) | Aglietti et al. [1];Tomlinson et al. [91] |
Phytophthora sojae (IAPP) | Glycine max | Conventional; based on Loopamp DNA amplification kit (Eiken Chemical, Tokyo, Japan) | Optical density at 650 mm, HBN 4, and gel electrophoresis | Lab kit | Dai et al. [93] |
Phytophthora syringae (IAPP) | None: applied only on axenic cultures | Conventional 1 | SYBR Green I, gel electrophoresis, and turbidity | Lab kit | Li et al. [86] |
Plasmopara viticola | Vitis vinifera | Conventional 1 | HBN 4 and gel electrophoresis | Rapid method | Kong et al. [94] |
Pyrenopeziza brassicae | Brassica napus | Conventional 1 | Real-time fluorescence | Lab kit | King et al. [95] |
Pythium helicoides | Euphorbia pulcherrima | Conventional 1 | Turbidity | Lab kit | Takahashi et al. [96] |
Phytopythium vexans | - | Conventional 1 | Real-time fluorescence and colorimetric dyes | Lab kit | Ghimire et al. [97] |
Puccinia triticina (IAPP) | Triticum spp. | Conventional 1 | HBN 4, EtBr dye, and gel electrophoresis | Lab kit and CTAB 6-based | Manjunatha et al. [98] |
Puccinia melanocephala (IAPP) | Saccharum hybrids spp. | Conventional 1 | Gel electrophoresis and colorimetric dyes | Lab kit and CTAB 6-based | Wu et al. [99] |
Raffaelea lauricola (IAPP) | Persea borbonia | Based on assimilating probes | Real-time fluorescence | Lab kit and crude method | Hamilton et al. [100] |
Rhizoctonia bataticola | Cicer arietinum | Conventional 1 | SYBR Green I and gel electrophoresis | Lab kit | Ghosh et al. [101] |
Talaromyces flavus | Fragaria × ananassa | Conventional 1 | Real-time fluorescence | Lab kit and quick method | Panek and Frąc. [102] |
Tilletia caries (IAPP), Tilletia laevis (IAPP) and Tilletia controversa (IAPP) | Triticum spp. | Conventional 1 | EvaGreen (Biotium), gel electrophoresis, and real-time fluorescence | Lab kit | Pieczul et al. [103] |
Uromyces betae | Beta vulgaris | Conventional 1 | Real-time fluorescence | Lab kit | Kaczmarek et al. [104] |
Ustilago tritici (IAPP) | Triticum spp. | Conventional 1 | Real-time fluorescence and gel electrophoresis | Based on phenol-chloroform-isoamyl alcohol | Yan et al. [105] |
Verticillium dahliae (IAPP) | Olea europeae | Conventional; based on RAPD 2 sequence | Visual dyes, gel electrophoresis, and real-time fluorescence on a portable instrument | Lab kit and crude method | Moradi et al. [106]; Megariti et al. [107] |
VIRUSES | |||||
Abaca bunchy top virus (ABTV) | Musa textilis | Conventional 1 | GelRed and SYBR Green I | CTAB 6-based | Galvez et al. [108] |
Apple chlorotic leaf spot virus (ACLSV) | Prunus spp.; Malus spp.; Pyrus spp. | RT-LAMP 3 | SYBR Green I and gel electrophoresis | Lab protocol and CTAB 6-based | Peng et al. [109]; Lu et al. [110] |
Apple stem pitting virus (ASPV) | Pyrus spp. | RT-LAMP 3 | SYBR Green I and gel electrophoresis | CTAB 6-based | Lu et al. [110] |
Banana bunchy top virus (BBTV) | Musa textilis | Conventional 1 | Turbidity, SYBR Green I, GelRed, and gel electrophoresis | CTAB 6-based | Peng et al. [111]; Galvez et al. [108] |
Cassava brown streak virus (CBSV) | Manihot esculenta | RT-LAMP 3 | Real-time fluorescence on a portable instrument | CTAB 6-based | Tomlinson et al. [112] |
Citrus leaf blotch virus (CLBV) | Actinidia spp. | RT-LAMP 3 | SYBR Green I, gel electrophoresis, and LFD 5 | CTAB 6-based | Peng et al. [113] |
Citrus yellow mosaic badnavirus (CMBV) | Citrus spp. | Conventional 1 | Turbidity, SYBR Green I, and gel electrophoresis | Lab protocol | Johnson et al. [114] |
Citrus tristeza virus (CTV) | Citrus spp. | RT-LAMP 3 | SYBR Green I and gel electrophoresis | Lab kit | Warghane et al. [115] |
Coconut cadang-cadang viroid (CCCVd) | Elaies guineensis | RT-LAMP 3 | Fluorescent dyes and gel electrophoresis | NETME method | Thanarajoo et al. [116] |
Chrysanthemum chlorotic mottle viroid (CChMVd) | Chrysanthemum spp. | Conventional 1 | SYBR Green I, gel electrophoresis, and real-time fluorescence | Lab protocol | Park et al. [117] |
Chrysanthemum stem necrosis virus (CSNV) | Dendranthema grandiflorum; Solanum lycopersicum | RT-LAMP 3 | Real-time fluorescence on a portable instrument | Lab protocol and crude method | Suzuki et al. [118] |
Chrysanthemum stunt viroid (CSVd) | Chrysanthemum morifolium | Multiplex RT-LAMP 3 | Gel electrophoresis coupled with EcoR I digestion; visual dyes | Lab kit | Liu et al. [119] |
Chrysanthemum Virus B (CVB) | Chrysanthemum morifolium | Multiplex RT-LAMP 3 | Gel electrophoresis coupled with EcoR I digestion; visual dyes | Lab kit | Liu et al. [119] |
Cucumber green mottle mosaic virus (CGMMV) | Cucurbitaceae | RT-LAMP 3 and conventional 1 | Gel electrophoresis and SYBR Green I | Lab protocol and kits | Bhat et al. [120]; Kwon et al. [121] |
Cucurbit chlorotic yellows virus (CCYV) | Bemisia tabaci | RT-LAMP 3 | Gel electrophoresis, SYBR Green I, and turbidity | Lab kit | Wang et al. [122]; Okuda et al. [123] |
Grapevine leafroll-associated virus type 3 (GLRaV-3) | Vitis spp. | RT-LAMP 3 | Gel electrophoresis, turbidity, and HNB | Lab protocol and crude extraction | Walsh et al. [124] |
Leaf curl viral disease (CLCuD) | Gossypium hirsutum | Conventional 1 coupled with rolling circle amplification | Gel electrophoresis and visual dyes | Lab kit | Gawande et al. [125] |
Little cherry virus 1 (LChV-1) | Prunus spp. | RT-LAMP 3 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Tahzima et al. [126] |
Maize chlorotic mottle virus (MCMV) | Zea mays | RT-LAMP 3 | Gel electrophoresis and visual dyes | Lab kit and crude method | Chen et al. [127] |
Mesta yellow vein mosaic virus (MeYVMV) | Hibiscus sabdariffa and H. cannabinus | Conventional 1 | Gel electrophoresis and HBN 4 | Lab protocol | Meena et al. [128] |
Onion yellow dwarf virus (OYDV) | Allium cepa | RT-LAMP 3 | Real-time fluorescence, gel electrophoresis, and SYBR Green I | Lab kit | Tiberini et al. [129] |
Papaya leaf distortion mosaic virus (PLDMV) | Carica papaya | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | Lab kit | Shen et al. [130] |
Papaya ringspot virus (PRSV) | Carica papaya | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | Lab kit | Shen et al. [131] |
Pea enation mosaic virus (PEMV) | Pisum sativum | Conventional 1 | Gel electrophoresis and SYBR Green I | Lab kit | Kim et al. [132] |
Pepper chat fruit viroid (PCFVd) | Capsicum annuum | RT-LAMP 3 | Real-time fluorescence on a portable instrument and visual dyes | Lab kit and suitable field method | Tangkanchanapas et al. [133] |
Piper yellow mottle virus (PYMoV) | Piper nigrum | Conventional 1 and RT-LAMP 3 | Turbidity, calcein, and gel electrophoresis | Lab protocol | Bhat et al. [120] |
Plum viroid I (PlVd-I) | Harpephyllum caffrum | RT-LAMP 3 | Gel electrophoresis, visual dyes, and real-time fluorescence | CTAB 6-based and crude method | Bester and Maree, [134] |
Potato Leafroll virus (PLRV) | Solanum tuberosum | Conventional 1 | Gel electrophoresis and visual dyes | Lab protocol | Almasi et al. [135] |
Potato virus a (PVA) | Solanum tuberosum | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | Lab protocol | Raigond et al. [136] |
Prune dwarf virus (PDV) | Prunus spp. | RT-LAMP 3 | Kit-based colorimetric visualization and gel electrophoresis | Lab kit | Çelik, [137] |
Prunus necrotic ringspot virus (PNRSV) | Prunus spp. | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | Magnetic nanoparticle-based | Zong et al. [138] |
Rice ragged stunt virus (RRSV) | Oryza spp. | RT-LAMP 3 | Real-time fluorescence and gel electrophoresis | Lab kit | Lai et al. [139] |
Sorghum mosaic virus (SrMV) | Saccharum hybrids spp. | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | CTAB 6-based | Keizerweerd et al. [140] |
Southern tomato virus (STV) | Solanum lycopersicum | RT-LAMP 3 | Gel electrophoresis and GelRed | Lab protocol | Elvira-González et al. [141] |
Squash leaf curl virus (SLCV) | Cucurbita pepo; Cucumis melo | Conventional 1 | Gel electrophoresis and SYBR Green I | Lab protocol | Kuan et al. [142] |
Sugarcane streak mosaic virus (SCSMV) | Saccharum hybrids spp. | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | CTAB 6-based | Keizerweerd et al. [140]; Wang et al. [143] |
Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV) and sweet potato leaf curl virus (SPLCV) | Ipomoea batatas | RT-LAMP 3 | Kit-based colorimetric visualization and gel electrophoresis | CTAB 6-based | Wanjala et al. [144] |
Telosma mosaic virus (TeMV) | Passiflora edulis | RT-LAMP 3 | Gel electrophoresis and SYBR Green I | Lab protocol and kits | Fu et al. [145] |
Tobacco streak virus (TSV) | Gossypium hirsutum | RT-LAMP 3 | Gel electrophoresis, SYBR Green I, and HNB | Lab kit | Gawande et al. [146] |
Tomato chlorosis virus (ToCV) | Solanum lycopersicum | RT-LAMP 3; conventional 1 | Gel electrophoresis and SYBR Green I | Lab kit | Zhao et al. [147]; Kil et al. [148] |
Tomato leaf curl Joydebpur virus (ToLCJoV) | Capsicum anuum | Conventional 1 | Gel electrophoresis and HBN 4 | Lab kit and crude method | Krishnan et al. [149] |
Turnip yellows virus (TuYV) | Brassica oleracea; B. napus; Cicer arietinum; Pisum sativum; Vicia faba; Lens culinaris; Lactuca sativa; Myzus persicae | RT-LAMP 3 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Congdon et al. [150] |
Ugandan cassava brown streak virus (UCBSV) | Manihot esculenta | RT-LAMP 3 | Real-time fluorescence on a portable instrument and LFD 5 | CTAB 6-based | Tomlinson et al. [112] |
BACTERIA | |||||
Candidatus Liberibacter asiaticus (IAPP) | Citrus spp. | Conventional 1 | Gel electrophoresis, SYBR Green I, real-time fluorescence, and LFD 5-combined | CTAB 6-based | Rigano et al. [151]; Wu et al. [152] |
Erwinia amylovora (IAPP) | More than 100 naturally infected samples from different hosts | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and boiling method | Bühlmann et al. [153] |
Pantoea ananatis | Oryza spp. | Conventional 1 | Kit-based colorimetric visualization | Lab kit | Kini et al. [154] |
Pectobacterium carotovorum (IAPP) | Apium graveolens | Conventional 1 | Gel electrophoresis, calcein, and turbidity | Lab kit and crude method | Shi et al. [155] |
Xanthomonas euvesicatoria (IAPP) | Solanum lycopersicum | Based on assimilating probe | Real-time fluorescence and multiplex | Lab kit | Beran et al. [156] |
Xanthomonas fragariae (IAPP) | Fragaria × ananassa | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Gétaz et al. [157] |
Xanthomonas oryzae pv. Oryzae (IAPP) | Oryza spp. | Conventional 1 | Gel electrophoresis, GelRed, and real-time fluorescence on a portable instrument | Lab kit; CTAB 6-based | Buddhachat et al. [158]; Ejaz et al. [159] |
Xanthomonas phaseoli pv. Manihotis (IAPP) | Manihot esculenta | Conventional 1 | Colorimetric dyes | Lab kit | Carvalho et al. [160] |
Xanthomonas vesicatoria (IAPP) | Solanum lycopersicum | Based on assimilating probe | Real-time fluorescence and multiplex | Lab kit | Beran et al. [156] |
Xylella fastidiosa (IAPP) | Nerium oleander; Prunus avium; P. dulcis; Polygala myrtifolia; Acacia saligna; Olea europeae; Philaenus spumarius and Neophilaenus campestris; Vitis vinifera; Citrus sinensis | Conventional 1; fluorescence of TaqMan Probe upon dequenching LAMP (FTP-LAMP); coupled with CRISPR-Cas12a | Gel electrophoresis, HBN 4, and real-time fluorescence on a portable instrument | Lab kit and suitable field methods; crude method | Aglietti et al. [1]; Harper et al. [161]; Yaseen et al. [162]; Elbeaino et al. [163]; Amoia et al. [164]; Farrall et al. [165] |
PHYTOPLASMAS AND NEMATODES | |||||
Bogia Coconut Syndrome Phytoplasma (IAPP) | Insects | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit | Lu et al. [166] |
Bursaphelenchus xylophilus (IAPP) | Pinus spp. | Conventional 1 and probe-based | Visual dyes and LFD 5 | Lab kit | Kikuchi et al. [167] |
Flavescence dorée (FDp) (IAPP) | Vitis spp. | Conventional 1 | Real-time fluorescence on a portable instrument | CTAB 6-based and on-site homogenization | Kogovšek et al. [168] |
Globodera pallida (IAPP) | Nematodes | Probe and microchip-based | Biochip platform measurement | Lab kit and Flinder Technology Associates (FTA) card-based | Camacho et al. [169] |
Meloidogyne hapla (IAPP) | Roots, adults, and eggs | Conventional 1 | SYBR Green I dye, gel electrophoresis, and LFD 5 | Combination with FTA technology | Peng et al. [170] |
INSECTS | |||||
Agrilus planipennis (IAPP) | Adults, larvae, eggs, and Fraxinus spp. frass | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Kyei-Poku et al. [171] |
Aromia bungii (IAPP) | Adults, larvae, and frass | Conventional 1 | Real-time fluorescence, HBN 4, and gel electrophoresis | CTAB 6-based | Rizzo et al. [172] |
Bemisia tabaci (IAPP) | Adults | Conventional 1 | SYBR Green I dye, gel electrophoresis, and real-time fluorescence on a portable instrument | Quick and on-site test | Dickey et al. [173]; Hsieh et al. [174]; Blaser et al. [175] |
Fruit flies (Bactrocera and Zeugodacus genus) | Adults | Conventional 1 | Real-time fluorescence on a portable instrument | On-site test | Blaser et al. [175] |
Lyctus brunneus | Adults and wood frass | Conventional 1 | Fluorescent dyes and gel electrophoresis | Lab kit | Ide et al. [176] |
Myzus persicae | Individual aphids | Conventional 1 | HBN 4 and gel electrophoresis | Crude method | Sial et al. [177] |
Pityophthorus juglandis (IAPP) | Walnut frass, adults, and larvae | Conventional 1 | HBN 4, real-time fluorescence, and gel electrophoresis | Lab kit | Rizzo et al. [178] |
Spodoptera frugiperda (IAPP) | Larvae | Conventional 1 | Real-time fluorescence on portable instrument | Lab kit and crude method | Congdon et al. [179] |
Thrips palmi (IAPP) | Adults and larvae | Conventional 1 | Fluorescent dyes, gel electrophoresis, and real-time fluorescence on a portable instrument | Lab kit and on-site test | Przybylska et al. [180]; Blaser et al. [175] |
Trogoderma granarium (IAPP) | Adult and larvae | Conventional 1 | Real-time fluorescence on a portable instrument | Lab kit and crude method | Rako et al. [181] |
Point-of-Care Features | |||||||
---|---|---|---|---|---|---|---|
Technique | Approx. Time Needed | Cost per Analysis | Thermal Cycle Required | Portable Instruments Availability | Work with Unprocessed Samples | Simplified DNA/RNA Extraction | Advanced Lab Skills Required |
PCR | >1 h | USD 12 (end-point PCR) | Yes | Yes but expensive | No | No | Yes |
LAMP | From 30 min to 1 h | USD 3 | No, isothermal reaction | Yes, including low-cost solutions | Yes | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aglietti, C.; Benigno, A.; Cacciola, S.O.; Moricca, S. LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives. Life 2024, 14, 1549. https://doi.org/10.3390/life14121549
Aglietti C, Benigno A, Cacciola SO, Moricca S. LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives. Life. 2024; 14(12):1549. https://doi.org/10.3390/life14121549
Chicago/Turabian StyleAglietti, Chiara, Alessandra Benigno, Santa Olga Cacciola, and Salvatore Moricca. 2024. "LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives" Life 14, no. 12: 1549. https://doi.org/10.3390/life14121549
APA StyleAglietti, C., Benigno, A., Cacciola, S. O., & Moricca, S. (2024). LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives. Life, 14(12), 1549. https://doi.org/10.3390/life14121549