Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Mothers and Children
2.2. Milk Sample Collection and Storage
2.3. Reagents and Chemicals
2.4. Sample Pretreatment
2.5. HPLC Analysis
2.6. Validation
2.6.1. Linearity
2.6.2. Extraction Recovery
2.6.3. Limit of Detection and Quantification
2.7. Questionnaire
2.8. Ethics Committee and Informed Consent
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raecker, T.; Thiele, B.; Boehme, R.M.; Guenther, K. Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies. Chemosphere 2011, 82, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Acir, I.-H.; Guenther, K. Endocrine-disrupting metabolites of alkylphenol ethoxylates—A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci. Total Environ. 2018, 635, 1530–1546. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Kim, C.; Park, M.; Han, Y.; Park, J.Y.; Yang, M. Association between Endocrine Disrupting Phenols in Colostrums and Maternal and Infant Health. Int. J. Endocrin. 2013, 2013, 282381. [Google Scholar] [CrossRef] [PubMed]
- Günther, K.; Racker, T.; Bohme, R. An Isomer-Specific Approach to Endocrine-Disrupting Nonylphenol in Infant Food. J. Agric. Food Chem. 2017, 65, 1247–1254. [Google Scholar] [CrossRef]
- Osimitza, T.G.; Droegea, W.; Driverb, J.H. Human Risk Assessment for Nonylphenol. Hum. Ecol. Risk Assess. Inter. J. 2015, 21, 1903–1919. [Google Scholar] [CrossRef]
- Zoller, U. Handbook of Detergents, Part E: Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Soares, A.; Guieysse, B.; Jefferson, B.; Cartmell, E.; Lester, J.N. Nonylphenol in the envi-ronment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ. Int. 2008, 34, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2016/26 of 13 January 2016 Amending Annex XVII to Regulation of the European Parliament and of the Council (EC) No. 1907/2006 on the Registration, Evaluation, Authorization and Restriction of Chemicals (“REACH”) as Regards Nonylphenol Ethoxylates; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Parliament. Directive 2003/53/EC of the European Parliament and of the Council of 18 June 2003 Amending for the 26th Time Council Directive 76/769/EEC Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (Nonylphenol, Nonylphenol Ethoxylate and Cement): DIRECTIVE 2003/53/EC; European Parliament: Strasbourg, France, 2003. [Google Scholar]
- European Union. Environmental Quality Standards Directive; European Union: Brussels, Belgium, 2008. [Google Scholar]
- European Commission. Tris(nonylphenyl)phosphite_Cosmetic Ingredient Database (CosIng). 2009. Available online: https://ec.europa.eu/growth/toolsdatabases/cosing/index.cfm?fuseaction=search.details_v2&id=38769.web (accessed on 30 November 2009).
- European Commission. European Union Risk Assessment Report: 4-Nonylphenol (Branched) and Nonylphenol: EUR 20387 EN; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Ademollo, N.; Ferrara, F.; Delise, M.; Fabietti, F.; Funari, E. Nonylphenol and octylphenol in human breast milk. Environ. Int. 2008, 34, 984–987. [Google Scholar] [CrossRef]
- Hudson, R.E.; Metz, T.D.; Ward, R.M.; McKnite, A.M.; Enioutina, E.Y.; Sherwin, C.M.; Watt, K.M.; Job, K.M. Drug exposure during pregnancy: Current understanding and approaches to measure maternal-fetal drug exposure. Front. Pharmacol. 2023, 14, 1111601. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Wang, P.-W.; Huang, L.-W.; Yang, S.-H.; Chiu, H.-H.; Chen, M.-L. Nonylphenol in pregnant women and their matching fetuses: Placental transfer and potential risks o infants. Environ. Res. 2014, 134, 143–148. [Google Scholar] [CrossRef]
- Ringbeck, B.; Bury, D.; Lee, I.; Lee, G.; Alakeel, R.; Alrashed, M.; Tosepu, R.; Jayadipraja, E.A.; Tantrakarnapa, K.; Kliengchuay, W.; et al. Biomarker-Determined Nonylphenol Exposure and Associated Risks in Children of Thailand, Indonesia, and Saudi Arabia. Environ. Sci. Technol. 2022, 56, 10229–10238. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Chen, M.L.; Sung, F.C.; Paulus, S.-G.W.; Mao, I.F. Daily intake of 4- nonylphenol in Taiwanese. Environ. Int. 2007, 33, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K. Environmental contaminants in breast milk. J. Midwifery Womens Health 2006, 51, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Noorimotlagh, Z.; Haghighi, N.J.; Ahmadimoghadam, M.; Rahim, F. An updated systematic review on the possible effect of nonylphenol on male fertility. Environ. Sci. Pollut. Res. 2017, 24, 3298–3314. [Google Scholar] [CrossRef] [PubMed]
- Careghini, A.; Mastorgio, A.F.; Saponaro, S.; Sezenna, E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environ. Sci. Pollut. Res. 2015, 22, 5711–5741. [Google Scholar] [CrossRef] [PubMed]
- Gyllenhammar, I.; Glynn, A.; Darnerud, P.O.; Lignell, S.; van Delft, R.; Aune, M. Nonylphenol and bisphenol A in Swedish food and exposure in Swedish nursing women. Env. Int. 2012, 43, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Feng, C.; Yan, Z.; Wang, Y.; Liu, D.; Liao, W.; Bai1, Y. Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environ. Chem. Lett. 2020, 18, 2095–2106. [Google Scholar] [CrossRef]
- Azzouz, A.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood andbreast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2016, 119, 16–26. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ. Sci. Polutt. 2020, 27, 28829–28839. [Google Scholar] [CrossRef]
- Lee, S.M.; Cheong, D.; Kim, M.; Kim, Y.-S. Analysis of Endocrine Disrupting Nonylphenols in Foods by Gas Chromatography-Mass Spectrometry. Foods 2023, 12, 269. [Google Scholar] [CrossRef]
- Núňez, L.; Turiel, E.; Tadeo, J.L. Determination of nonylphenol and nonylphenol ethoxylates in environmental solid samples by ultrasonic-assisted extraction and high performance liquid chromatography-fluorescence detection. J. Chromatogr. A. 2007, 1146, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Stuebe, A. The risks of not breastfeeding for mothers and infants. Rev. Obstet. Gynecol. 2009, 2, 222–231. [Google Scholar] [PubMed]
- Anderson, P.O.; Pochop, S.L.; Manoguerra, A.S. Adverse drug reaction in breastfed infants: Less than imagined. Clin. Pediatr. 2003, 42, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-W.; Ding, W.-H.; Ku, H.-Y.; Chao, H.-R.; Chen, H.-Y.; Huang, M.-C.; Wang, S.-L. Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem. Toxicol. 2010, 48, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Lee, W.P.; Chung, H.Y.; Guo, B.R.; Mao, I.F. Biomonitoring of alkylphenols exposure for textile and housekeeping workers. Int. J. Environ. Anal. Chem. 2005, 85, 335–347. [Google Scholar] [CrossRef]
- Votavová, L.; Dobiáš, J.; Voldřich, M.; Čížková, H. Migration of nonylphenols from polymer packaging materials into food. Czech J. Food Sci. 2009, 27, 293–299. [Google Scholar] [CrossRef]
- Sise, S.; Uguz, U. Nonylphenol in Human Breast Milk in Relation to Sociodemo-graphic Variables, Diet, Obstetrics Histories and Lifestyle Habits in a Turkish Population. Iran. J. Public. Health 2017, 46, 491–499. [Google Scholar]
- Kim, S.H.; Nam, K.H.; Hwang, K.A.; Choi, K.C. Influence of hexabromocyclododecane and 4-nonylphenol on the regulation of cell growth, apoptosis and migration in prostatic cancer cells. Toxicol. Vitr. 2016, 32, 240–247. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, C.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; et al. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J. 2021, 19, e06421. [Google Scholar]
- Nielsen, E.; Østergaard, G.; Thorup, I.; Ladefoged, O.; Jelnes, O.; Jelnes, J.E. Toxicological Evaluation and Limit Values for Nonylphenol, Nonylphenol Ethoxylates, Tricresyl, Phosphates and Benzoic Acid; The Danish Environmental Protection Agency: Odense, Denmark, 2000; pp. 1–43.
- Otaka, H.; Yasuhara, A.; Morita, M. Determination of bisphenol A and 4-nonylphenol in human milk using alkaline digestion and cleanup by solid-phase extraction. Anal. Sci. 2003, 19, 1663–1666. [Google Scholar] [CrossRef]
- Guenther, K.; Heinke, V.; Thiele, B.; Kleist, E.; Prast, H.; Raecker, T. Endocrine Disrupting Nonylphenols are ubiquitous in food. Environ. Sci. Technol. 2002, 36, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
Maternal Characteristics | Children’s Characteristics | |||
---|---|---|---|---|
Parameter | Mean ± STD | Parameter | Mean ± STD | |
Age | 32.29 ± 3.68 | Age in months | 2.42 ± 1.06 | |
Weight (kg) | 65.11 ± 12.02 | Weight at birth (kg) | 3.51 ± 2.12 | |
Height (cm) | 167.01 ± 5.90 | Length at birth (cm) | 50.24 ± 1.98 | |
BMI | 23.32 ± 4.02 | Apgar score after birth | 9.75 ± 0.67 | |
First menstruation age | 13.18 ± 1.38 | |||
Number of pregnancies (%) | 1 | 57.30 | ||
2 | 27.00 | |||
3 | 15.70 |
Extraction Steps | Chromabond C18ec |
---|---|
Conditioning | 1 mL methanol 1 mL water |
Sample load | 0.5 L with ISTD |
Cleaning | 1 mL 5% methanol |
Drying | Under vacuum 1–2 min |
Elution of analytes | 1 mL acetonitrile |
Kind of Drinking Water | n | Mean ± STD NP (ng/mL) | Std. Error Mean | 95% Confidence Interval for Mean | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
Lower bound | Upper bound | ||||||
Bottled | 22 | 2.28 ± 0.29 | 0.06 | 2.05 | 2.40 | 0.38 | 1.69 |
Tap | 53 | 1.16 ± 0.31 | 0.04 | 1.07 | 1.24 | 0.67 | 2.27 |
Other | 14 | 2.08 ± 0.23 | 0.06 | 1.95 | 2.21 | 0.57 | 1.47 |
Total | 89 | 1.15 ± 0.29 | 0.03 | 1.09 | 2.31 | 0.38 | 2.27 |
Mean ± STD NP (ng/mL) | STD Error Mean | |||
---|---|---|---|---|
Consumption of fish | n | |||
yes | 80 | 3.14 ± 0.30 | 0.03 | p = 0.041 |
no | 9 | 2.89 ± 0.21 | 0.07 | |
Consumption of pork | ||||
yes | 60 | 3.31 ± 0.32 | 0.04 | p = 0.048 |
no | 29 | 3.03 ± 0.21 | 0.04 | |
Consumption of beef | ||||
yes | 49 | 3.23 ± 0.35 | 0.05 | p = 0.06 |
no | 40 | 2.98 ± 0.21 | 0.03 |
Wearing Gloves for Cleaning | n | Mean ± STD NP (ng/mL) | STD Error Mean | |
---|---|---|---|---|
yes | 20 | 2.83 ± 0.28 | 0.06 | p = 0.709 |
no | 69 | 2.26 ± 0.29 | 0.04 | |
Using nail polish | ||||
yes | 19 | 2.23 ± 0.28 | 0.07 | p = 0.729 |
no | 70 | 2.15 ± 0.29 | 0.04 | |
Gel nails | ||||
yes | 19 | 4.21 ± 0.28 | 0.07 | p = 0.06 |
no | 70 | 4.14 ± 0.29 | 0.04 |
Vitamin Supplements | n | Mean ± STD NP (ng/mL) | STD Error Mean | |
---|---|---|---|---|
yes | 60 | 3.48 ± 0.29 | 0.04 | p = 0.06 |
no | 27 | 3.06 ± 0.29 | 0.06 | |
Medication | ||||
yes | 23 | 2.94 ± 0.34 | 0.07 | p = 0.093 |
no | 65 | 2.72 ± 0.27 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repková, A.; Mišľanová, C.; Hrabčáková, J.; Masár, M.; Slezáková, Z.; Žemlička, L.; Valachovičová, M. Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life 2023, 13, 2361. https://doi.org/10.3390/life13122361
Repková A, Mišľanová C, Hrabčáková J, Masár M, Slezáková Z, Žemlička L, Valachovičová M. Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life. 2023; 13(12):2361. https://doi.org/10.3390/life13122361
Chicago/Turabian StyleRepková, Adriana, Csilla Mišľanová, Janka Hrabčáková, Marián Masár, Zuzana Slezáková, Lukáš Žemlička, and Martina Valachovičová. 2023. "Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia" Life 13, no. 12: 2361. https://doi.org/10.3390/life13122361
APA StyleRepková, A., Mišľanová, C., Hrabčáková, J., Masár, M., Slezáková, Z., Žemlička, L., & Valachovičová, M. (2023). Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life, 13(12), 2361. https://doi.org/10.3390/life13122361