Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Chemicals
2.2. Single-Sensillum Recording
2.3. Behavioral Assay
2.4. Data Processing
3. Results
3.1. Overall Comparison of Larval Sensilla
3.2. Responses of Medial Sensilla Styloconica
3.3. Responses of Lateral Sensilla Styloconica
3.4. Feeding Preferences of Larvae Regarding Four Plant Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kroschel, J.; Schaub, B. Chapter 6—Biology and ecology of potato tuber moths as major pests of potato. In Insect Pests of Potato; Alyokhin, A., Vincent, C., Giordanengo, P., Eds.; Academic Press: New York, NY, USA, 2013; pp. 165–192. [Google Scholar]
- Rondon, S.I. Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change. J. Integr. Agric. 2020, 19, 316–324. [Google Scholar] [CrossRef]
- Gao, Y.L.; Zhou, W.W. Potato insect pest management. J. Integr. Agric. 2020, 19, 311. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, J.; Ali, A.; Gao, Y.L. Different performance of Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) among four potato tuber varieties under laboratory condition. Insects 2021, 12, 580. [Google Scholar] [CrossRef]
- Dekebo, A.; Aryal, S.; Jung, C. Suitability of tomato leaves for larval development of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Entomol. Res. 2019, 49, 258–264. [Google Scholar] [CrossRef]
- Idris, I.; Naddaf, M.; Harmalani, H.; Alshater, R.; Alsafadi, R. Efficacy of olive stones and corncobs crystalline silica nanoparticles (Sio2, NPs) treatments on potato tuber moths (Phthorimaea operculella). Silicon 2023, 15, 3591–3598. [Google Scholar] [CrossRef]
- Jongsma, M.A.; Beekwilder, J. Co-evolution of insect proteases and plant protease inhibitors. Curr. Protein Pept. Sci. 2011, 12, 437–447. [Google Scholar] [CrossRef]
- Ramawat, K.G.; Goyal, S. Co-evolution of secondary metabolites during biological competition for survival and advantage: An overview. In Co-Evolution of Secondary Metabolites; Springer Nature: Cham, Switzerland, 2020; pp. 3–17. [Google Scholar] [CrossRef]
- Montell, C. A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 2009, 19, 345–353. [Google Scholar] [CrossRef]
- Rimal, S.; Sang, J.; Dhakal, S.; Lee, Y. Cucurbitacin B activates bitter-sensing gustatory receptor neurons via gustatory receptor 33a in Drosophila melanogaster. Mol. Cells 2020, 43, 530. [Google Scholar]
- Shrestha, B.; Lee, Y. Mechanisms of carboxylic acid attraction in Drosophila melanogaster. Mol. Cells 2021, 44, 900. [Google Scholar] [CrossRef]
- Wang, W.; Dweck, H.K.M.; Talross, G.J.S.; Zaidi, A.; Gendron, J.M.; Carlson, J.R. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. Elife Sci. 2022, 11, e81703. [Google Scholar] [CrossRef]
- Koul, O. Phytochemicals and insect control: An antifeedant approach. Crit. Rev. Plant Sci. 2008, 27, 1–24. [Google Scholar] [CrossRef]
- Ramirez, I. Why do sugars taste good? Neurosci. Biobehav. Rev. 1990, 14, 125–134. [Google Scholar] [CrossRef]
- Hidalgo-Martinez, D.; Payyavula, R.S.; Kudithipudi, C.; Shen, Y.; Xu, D.; Warek, U.; Strickland, J.A.; Melis, A. Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum). Planta 2020, 251, 92. [Google Scholar] [CrossRef] [PubMed]
- Rimal, S.; Lee, Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 2019, 111, 103178. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lei, M.; Andargie, M.; Zeng, J.; Li, J. Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiol. Mol. Plant Pathol. 2019, 107, 46–50. [Google Scholar] [CrossRef]
- Tang, Q.B.; Ma, Y.; Huang, L.Q.; Wang, C.Z. Advances in mechanisms of taste perception in insects. Acta Entomol. Sin. 2011, 54, 1433–1444. [Google Scholar]
- Marion-Poll, F.; Descoin, S.C. Taste detection of phytoecdysteroids in larvae of Bombyx mori, Spodoptera littoralis and Ostrinia nubilalis. J. Insect Physiol. 2002, 48, 467–476. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.L.; Wu, G.X.; Tang, Q.B.; Duan, X.; Liu, Q.J.; Lan, M.X.; Zhao, Y.H.; Hao, X.J.; Qin, X.P.; et al. Antifeedant mechanism of Dodonaea viscosa Saponin A isolated from the seeds of Dodonaea viscosa. Molecules 2022, 27, 4464. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, J.J.; Liu, Y.C.; Wuz, C.; Liu, L.; Niu, L.; Yan, F.M.; Zhao, X.C.; Tang, Q.B. Gustatory electrophysiological and behavioral responses of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae to three plant secondary metabolites. Chin. J. Appl. Entomol. 2023, 60, 564–576. [Google Scholar]
- Sun, L.L.; Hou, W.H.; Zhang, J.J.; Dang, Y.L.; Yang, Q.Y.; Zhao, X.C.; Ma, Y.; Tang, Q.B. Plant metabolites drive different responses in caterpillars of two closely related Helicoverpa species. Front. Physiol. 2021, 12, 662978. [Google Scholar] [CrossRef]
- Zhou, D.S.; Teng, T.; Liu, J.H.; Long, J.M. Cross-habituation to deterrents correlates with desensitization of the corresponding deterrent neuron in the larva of the black cutworm, Agrotis ipsilon. Entomol. Exp. Appl. 2021, 169, 1039–1048. [Google Scholar] [CrossRef]
- Yang, K.; Gong, X.L.; Li, G.C.; Huang, L.Q.; Ning, C.; Wang, C.Z. A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). Elife Sci. 2020, 9, e64114. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Jiang, N.J.; Tang, R.; Li, G.C.; Huang, L.Q.; Van Loon, J.J.A.; Wang, C.Z. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet. 2021, 17, e1009527. [Google Scholar] [CrossRef] [PubMed]
- Roessingh, P.; Hora, K.H.; Van Loon, J.J.A.; Menken, S.B.J. Evolution of gustatory sensitivity in Yponomeuta caterpillars: Sensitivity to the stereo-isomers dulcitol and sorbitol is localised in a single sensory cell. J. Comp. Physiol. A 1999, 184, 119–126. [Google Scholar] [CrossRef]
- Tang, R.; Jiang, N.J.; Ning, C.; Li, G.C.; Huang, L.Q.; Wang, C.Z. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. Insect Biochem. Mol. Biol. 2020, 118, 103312. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.B.; Wang, C.Z. Leaf disc test used in caterpillar feeding preference study. Chin. Bull. Entomol. 2007, 44, 912–915. [Google Scholar]
- Schoonhoven, L.M.; Van Loon, J.J.A. An inventory of taste in caterpillars: Each species its own key. Acta Zool. Acad. Sci. Hung. 2002, 40 (Suppl. S1), 215–263. [Google Scholar]
- Hou, W.H.; Sun, L.L.; Ma, Y.; Sun, H.W.; Zhang, J.J.; Bai, R.E.; Zhao, X.C.; Tang, Q.B. Gustatory perception and feeding preference of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae to four stimuli. Acta Entomol. Sin. 2020, 63, 545–557. [Google Scholar]
- Wang, Y. Effects of Sucrose and Sinigrin on Feeding Preferences and Gustatory Perceptions of Caterpillars in Two Helicoverpa Species. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2018. [Google Scholar]
- Sollai, G.; Tomassini Barbarossa, I.; Masala, C.; Solari, P.; Crnjar, R. Gustatory sensitivity and food acceptance in two phylogenetically closely related papilionid species: Papilio hospiton and Papilio machaon. PLoS ONE 2014, 9, e100675. [Google Scholar] [CrossRef]
- Liu, J.N.; Huang, H.P.; Zhang, Y.Y.; Yao, L.Y.; Hua, J.Z. Effects of plant allelochemicals nicotine on growth and development phase of Phthorimaea operculella (Zeller). Southwest China J. Agric. Sci. 2015, 28, 1105–1109. [Google Scholar]
- Gao, Y.P.; Gao, Y.C.; Liu, L.; Xun, Z.M.; Li, F.R. Analyses on Nicotine, Total Sugar Contents and Leaf Quality of Flue-cured Tobacco K326 in Yuxi City. Southwest China J. Agric. Sci. 2015, 28, 2763–2768. [Google Scholar]
- Pang, T.; Bai, C.M.; Xu, Y.J.; Xu, G.W.; Yuan, Z.Y.; Sun, Y.; Peng, L.M. Determination of sugars in tobacco leaf by HPLC with evaporative light scattering detection. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1281–1289. [Google Scholar] [CrossRef]
- Yang, Y.H.; Michaud, J.P.; Guan, X.M.; Cao, J.J.; Li, Z.; Yang, Q.P.; Zhang, Q.W.; Liu, Z.Z. Direct and indirect consumption of tannic acid impedes the development and survival of parasitoid when parasitizing cotton bollworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2016, 109, 839–844. [Google Scholar] [CrossRef]
- Mrdaković, M.; Perić Mataruga, V.; Ilijin, L.; Vlahović, M.; Janković Tomanić, M.; Mirčić, D.L. Response of Lymantria dispar (Lepidoptera: Lymantriidae) larvae from differently adapted populations to allelochemical stress: Effects of tannic acid. Eur. J. Entomol. 2013, 110, 55–63. [Google Scholar] [CrossRef]
- Hafeez, M.; Liu, S.; Jan, S.; Gulzar, A.; Fernández-Grandon, G.M.; Qasim, M.; Khan, K.A.; Ali, B.; Kedir, S.J.; Fahad, M.; et al. Enhanced effects of dietary tannic acid with chlorantraniliprole on life table parameters and nutritional physiology of Spodoptera exigua (Hübner). Pestic. Biochem. Physiol. 2019, 155, 108–118. [Google Scholar] [CrossRef]
- Nomura, M.; Itioka, T. Effects of synthesized tannin on the growth and survival of a generalist herbivorous insect, the common cutworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2002, 37, 285–289. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, J.; Xin, Z.J.; Lu, R.Q.; Ye, X.J.; Sun, X.L. Repellent and appetite-suppressive effect of nicotine on Empoasca vitis and Ectropis obliqua. Chin. J. Appl. Entomol. 2016, 53, 528–535. [Google Scholar]
- Juma, G.; Thiongo, M.; Dutaur, L.; Rharrabe, K.; Marion-Poll, F.; Le Ru, B.; Magoma, G.; Silvain, J.F.; Calatayud, P.A. Two sugar isomers influence host plant acceptance by a cereal caterpillar pest. Bull. Entomol. Res. 2013, 103, 20–28. [Google Scholar] [CrossRef]
- Zhang, J.J. Gustatory Perception Mechanism of Spodoptera Frugiperda Larvae to Plant Metabolites. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2023. [Google Scholar]
- Wang, Y.; Ma, Y.; Zhou, D.S.; Gao, S.X.; Zhao, X.C.; Tang, Q.B.; Wang, C.Z.; Van Loon, J.J.A. Higher plasticity in feeding preference of a generalist than a specialist: Experiments with two closely related Helicoverpa species. Sci. Rep. 2017, 7, 17876. [Google Scholar] [CrossRef]
- Del Campo, M.L.; Miles, C.I.; Schroeder, F.C.; Mueller, C.; Booker, R.; Renwick, J.A. Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature 2001, 411, 186–189. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Boroczky, K.; Haribal, M.; Hastings, A.P.; White, R.A.; Jiang, R.W.; Duplais, C. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc. Natl. Acad. Sci. USA 2021, 118, e2024463118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Zhang, S.S.; Niu, B.L.; Ji, D.F.; Liu, X.J.; Li, M.W.; Bai, H.; Palli, S.R.; Wang, C.Z.; Tan, A.J. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 2019, 17, e3000162. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, G.C.; Shelton, I.D. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 1997, 128, 365–372. [Google Scholar] [CrossRef]
- Tan, M.; Wu, H.; Yan, S.; Jiang, D. Evaluating the toxic effects of tannic acid treatment on Hyphantria cunea larvae. Insects 2022, 13, 872. [Google Scholar] [CrossRef] [PubMed]
- Panzuto, M.; Mauffette, Y.; Albert, P.J. Developmental, gustatory, and behavioral responses of leafroller larvae, Choristoneura rosaceana, to tannic acid and glucose. J. Chem. Ecol. 2002, 28, 145–160. [Google Scholar] [CrossRef]
- Cardinal-Aucoin, M.; Bauce, E.; Albert, P.J. Preingestive detection of tannins by Choristoneura fumiferana (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am. 2009, 102, 717–726. [Google Scholar] [CrossRef]
- Aboshi, T.; Yoshinaga, N.; Nishida, R.; Mori, N. Phospholipid biosynthesis in the gut of Spodoptera litura larvae and effects of tannic acid ingestion. Insect Biochem. Mol. Biol. 2010, 40, 325–330. [Google Scholar] [CrossRef]
- Kubo, I. New concept to search for alternate insect control agents from plants. Adv. Phytomed. 2006, 3, 61–80. [Google Scholar]
- Shi, X.; Fu, R.; Tang, F. Induction expression of P450 by tannic acid in Micromelalopha troglodyta (Lepidoptera: Notodontidae) larvae. J. Entomol. Sci. 2019, 54, 345–356. [Google Scholar] [CrossRef]
- Zhao, C.; Feng, X.; Tang, T.; Qiu, L. Isolation and expression analysis of CYP9A11 and cytochrome P450 reductase gene in the beet armyworm (Lepidoptera: Noctuidae). J. Insect Sci. 2015, 15, 122. [Google Scholar] [CrossRef]
- Zhao, P.; Xue, H.; Zhu, X.; Wang, L.; Zhang, K.X.; Li, D.Y.; Ji, J.C.; Niu, L.; Gao, X.K.; Luo, J.Y.; et al. Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. Int. J. Biol. Macromol. 2022, 194, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.D. Study on Mechanism of Insecticidal Active Substances and Microcapsule Preparation of Nicotiana tabacum and Aconitum kusnezoffii. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defense mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Pankow, J.F. A consideration of the role of gas/particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract. Chem. Res. Toxicol. 2001, 14, 1465–1481. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, M.; Shimoda, M. Extraction of volatile flavor compounds from tobacco leaf through a low-density polyethylene membrane. J. Chromatogr. Sci. 2017, 55, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.N.; Huang, H.P.; Hua, J.Z.; Zhang, Y.Y.; Yao, L.Y. Effects of nicotine on protective and detoxifying enzymes of Phthorimaea opercuella larvae. Guizhou Agric. Sci. 2015, 43, 78–81. [Google Scholar]
Compounds | Purity (%) | CAS | Source |
---|---|---|---|
Sucrose | Analytic pure | 57-50-1 | Wind Boat chemical reagent Technology Co. Ltd., Tian-jin, China |
D-Glucose | Analytic pure | 14431-43-7 | Xilong Scientific Co. Ltd., Shan-tou, China |
Nicotine | ≥99.0 | 54-11-5 | Neobioscience, Shen-zhen, China |
Tannic acid | 99.0 | 1401-55-4 | J&K Scientific, San Jose, CA, USA |
Sodium chloride | Analytic pure | 7647-14-5 | Xilong Scientific Co. Ltd., Shan-tou, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, N.; Tang, J.-C.; Zhao, J.; Fu, Q.-C.; Ma, Y.-F.; Tang, R.; Dong, W.-X. Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life 2023, 13, 2174. https://doi.org/10.3390/life13112174
Mu N, Tang J-C, Zhao J, Fu Q-C, Ma Y-F, Tang R, Dong W-X. Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life. 2023; 13(11):2174. https://doi.org/10.3390/life13112174
Chicago/Turabian StyleMu, Ni, Jia-Cai Tang, Jing Zhao, Qi-Chun Fu, Yan-Fen Ma, Rui Tang, and Wen-Xia Dong. 2023. "Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights" Life 13, no. 11: 2174. https://doi.org/10.3390/life13112174
APA StyleMu, N., Tang, J.-C., Zhao, J., Fu, Q.-C., Ma, Y.-F., Tang, R., & Dong, W.-X. (2023). Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life, 13(11), 2174. https://doi.org/10.3390/life13112174