Calcium, Potassium, Sodium, and Magnesium Concentrations in the Placenta, Umbilical Cord, and Fetal Membrane from Women with Multiple Pregnancies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Determination of Metals in Afterbirths
2.4. Statistical Analysis
3. Results
- for Ca, K, Mg: placenta > fetal membrane > umbilical cord;
- for Na: umbilical cord > fetal membrane > placenta.
- Ca and Mg concentrations in the umbilical cord (r = 0.81, p = 0.00) and fetal membrane (r = 0.73, p = 0.00);
- K and Mg concentrations in the placenta (r = 0.73, p = 0.00);
- Ca and K concentrations in the fetal membrane (r = 0.73, p = 0.00).
- placental Ca concentration and placental weight (ρ = 0.42, p = 0.00);
- umbilical cord Mg concentrations and the length of the pregnancy (ρ = 0.42, p = 0.00).
4. Discussion
4.1. The Ca, K, Na, and Mg Concentrations in Afterbirth Tissues
4.1.1. Calcium
4.1.2. Potassium
4.1.3. Sodium
4.1.4. Magnesium
4.2. The Influence of Tobacco Smoke
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; International Atomic Energy Agency & Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health; World Health Organization. 1996. Available online: https://apps.who.int/iris/handle/10665/37931 (accessed on 29 December 2022).
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A Review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef] [PubMed]
- Jabłoński Edward, S.M. Mineral Elements in Diet of Pregnant and Breast-Feeding Women. Part II. Micro Minerals: Iron, Zinc, Copper, Selenium, Iodine, Fluorine, Manganese, Molybdenium, Chromium. Przegl. Lek. 2007, 64, 170–174. [Google Scholar] [PubMed]
- Kumar, A.; Kaur, S. Calcium: A Nutrient in Pregnancy. J. Obstet. Gynaecol. India 2017, 67, 313. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on the Tolerable Upper Intake Level of calcium. EFSA J. 2012, 10, 2814. [Google Scholar] [CrossRef] [Green Version]
- Christakos, S. Mechanism of Action of 1,25-Dihydroxyvitamin D3 on Intestinal Calcium Absorption. Rev. Endocr. Metab. Disord. 2012, 13, 39–44. [Google Scholar] [CrossRef]
- Areco, V.A.; Kohan, R.; Talamoni, G.; Tolosa De Talamoni, N.G.; Peralta López, M.E. Intestinal Ca2+ Absorption Revisited: A Molecular and Clinical Approach. World J. Gastroenterol. 2020, 26, 3344. [Google Scholar] [CrossRef]
- Brunette, M.G. Calcium Transport through the Placenta. Can. J. Physiol. Pharmacol. 1988, 66, 1261–1269. [Google Scholar] [CrossRef]
- Belkacemi, L.; Bédard, I.; Simoneau, L.; Lafond, J. Calcium Channels, Transporters and Exchangers in Placenta: A Review. Cell Calcium. 2005, 37, 1–8. [Google Scholar] [CrossRef]
- Jankowska, A.; Grzesiak, M.; Krekora, M.; Dominowska, J.; Jerzyńska, J.; Kałużny, P.; Wesołowska, E.; Szadkowska-Stańczyk, I.; Trafalska, E.; Kaleta, D.; et al. Determinants of the Essential Elements and Vitamins Intake and Status during Pregnancy: A Descriptive Study in Polish Mother and Child Cohort. Nutrients 2021, 13, 949. [Google Scholar] [CrossRef]
- Poręba, R.; Drews, K.; Karowicz-Bilińska, A.; Oszukowski, P.; Pawelczyk, L.; Radowicki, S.; Spaczyński, M.; Szczapa, J. Expert review of Polish Ginecological Society regarding micronutrient supplementation in pregnancy. Ginekol. Pol. 2011, 82, 550–553. [Google Scholar]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Duley, L.; Torloni, M.R. Calcium Supplementation during Pregnancy for Preventing Hypertensive Disorders and Related Problems. Cochrane Database Syst. Rev. 2018, 10, CD001059. [Google Scholar] [CrossRef] [PubMed]
- McKeating, D.R.; Fisher, J.J.; Perkins, A.V. Elemental Metabolomics and Pregnancy Outcomes. Nutrients 2019, 11, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, T.; Štulc, J.; Sibley, C.P.; Boyd, R.D.H. Effect of Maternal Hypokalaemia on Unidirectional Maternofetal and Net Potassium Fluxes across the Placenta of the Anaesthetized Rat. Placenta 1992, 13, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Wolak, T.; Shoham-Vardi, I.; Sergienko, R.; Sheiner, E. High Potassium Level during Pregnancy Is Associated with Future Cardiovascular Morbidity. J. Matern. Fetal. Neonatal Med. 2016, 29, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; De Groot, C.J.M.; Hofmeyr, G.J. Pre-Eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Terry, J. The Major Electrolytes: Sodium, Potassium, and Chloride. J. Infus. Nurs. 1993, 17, 240–247. [Google Scholar]
- Gurney, M.A.; Laubitz, D.; Ghishan, F.K.; Kiela, P.R. Pathophysiology of Intestinal Na+/H+ Exchange. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Sibley, C.P.; Glazier, J.D.; Greenwood, S.L.; Lacey, H.; Mynett, K.; Speake, P.; Jansson, T.; Johansson, M.; Powell, T.L. Regulation of Placental Transfer: The Na(+)/H(+) Exchanger—A Review. Placenta 2002, 23, S39–S46. [Google Scholar] [CrossRef]
- Sakuyama, H.; Katoh, M.; Wakabayashi, H.; Zulli, A.; Kruzliak, P.; Uehara, Y. Influence of Gestational Salt Restriction in Fetal Growth and in Development of Diseases in Adulthood. J. Biomed. Sci. 2016, 23, 12. [Google Scholar] [CrossRef] [Green Version]
- Touyz, R.M. Magnesium Supplementation as an Adjuvant to Synthetic Calcium Channel Antagonists in the Treatment of Hypertension. Med. Hypotheses 1991, 36, 140–141. [Google Scholar] [CrossRef]
- de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Al Alawi, A.M.; Al Badi, A.; Al Huraizi, A.; Falhammar, H. Magnesium: The Recent Research and Developments. Adv. Food Nutr. Res. 2021, 96, 193–218. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, D.; Łoźna, K.; Bronkowska, M. The Concentration of Selected Elements in the Placenta According to Selected Sociodemographic Factors and Their Effect on Birth Mass and Birth Length of Newborns. J. Trace Elem. Med. Biol. 2020, 58, 126425. [Google Scholar] [CrossRef] [PubMed]
- Altura, B.M.; Altura, B.T.; Carella, A. Magnesium Deficiency-Induced Spasms of Umbilical Vessels: Relation to Preeclampsia, Hypertension, Growth Retardation. Science 1983, 221, 376–378. [Google Scholar] [CrossRef]
- Dalton, L.M.; Ní Fhloinn, D.M.; Gaydadzhieva, G.T.; Mazurkiewicz, O.M.; Leeson, H.; Wright, C.P. Magnesium in Pregnancy. Nutr. Rev. 2016, 74, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Zarean, E.; Tarjan, A. Effect of Magnesium Supplement on Pregnancy Outcomes: A Randomized Control Trial. Adv. Biomed. Res. 2017, 6, 109. [Google Scholar] [CrossRef]
- Makrides, M.; Crowther, C.A. Magnesium Supplementation in Pregnancy. Cochrane Database Syst. Rev. 2000, 2, CD000937. [Google Scholar] [CrossRef]
- Sherwin, C.M.T.; Balch, A.; Campbell, S.C.; Fredrickson, J.; Clark, E.A.S.; Varner, M.; Stockmann, C.; Korgenski, E.K.; Bonkowsky, J.L.; Spigarelli, M.G. Maternal Magnesium Sulphate Exposure Predicts Neonatal Magnesium Blood Concentrations. Basic Clin. Pharmacol. Toxicol. 2014, 114, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Dudenhausen, J.W.; Maier, R.F. Perinatal Problems in Multiple Births. Dtsch. Arztebl. Int. 2010, 107, 663. [Google Scholar] [CrossRef]
- Latar, I.L.M.; Razali, N. The Desire for Multiple Pregnancy among Patients with Infertility and Their Partners. Int. J. Reprod. Med. 2014, 2014, 301452. [Google Scholar] [CrossRef] [Green Version]
- Heino, A.; Gissler, M.; Hindori-Mohangoo, A.D.; Blondel, B.; Klungsøyr, K.; Verdenik, I.; Mierzejewska, E.; Velebil, P.; Ólafsdóttir, H.S.; Macfarlane, A.; et al. Variations in Multiple Birth Rates and Impact on Perinatal Outcomes in Europe. PLoS ONE 2016, 11, 149252. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.; McEwan, A. Twins. Obstet. Gynaecol. Reprod. Med. 2007, 17, 289–295. [Google Scholar] [CrossRef]
- Chantanahom, N.; Phupongi, V. Clinical Risk Factors for Preeclampsia in Twin Pregnancies. PLoS ONE 2021, 16, e0249555. [Google Scholar] [CrossRef]
- Di Gravio, C.; Lawande, A.; Potdar, R.D.; Sahariah, S.A.; Gandhi, M.; Brown, N.; Chopra, H.; Sane, H.; Kehoe, S.H.; Marley-Zagar, E.; et al. The Association of Maternal Age With Fetal Growth and Newborn Measures: The Mumbai Maternal Nutrition Project (MMNP). Reprod. Sci. 2019, 26, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.; Lalor, G.; Fletcher, H.; Potter, T.; Vutchkov, M.; Reid, M. Elements in Human Placentae in Jamaica. West Indian Med. J. 2010, 59, 479–485. [Google Scholar]
- de Angelis, P.; Miller, R.K.; Darrah, T.H.; Katzman, P.J.; Pressman, E.K.; Kent, T.R.; O’Brien, K.O. Elemental Content of the Placenta: A Comparison between Two High-Risk Obstetrical Populations, Adult Women Carrying Multiples and Adolescents Carrying Singletons. Environ. Res. 2017, 158, 553–565. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Malinowski, W.; Szymański, S.; Mularczyk, M.; Tomska, N.; Rotter, I.I. Interactions between 14 Elements in the Human Placenta, Fetal Membrane and Umbilical Cord. Int. J. Environ. Res. Public Health 2019, 16, 1615. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, M.L.; De Faria Barbosa, R.; Santo, R.E.; Da Silva Santos, F.; De Jesus, E.F.O.; Sardinha, F.L.D.C.; Tavares Do Carmo, M.D.G. Maternal-Fetal Distribution of Calcium, Iron, Copper, and Zinc in Pregnant Teenagers and Adults. Biol. Trace Elem. Res. 2011, 139, 126–136. [Google Scholar] [CrossRef]
- Doi, M.; Sultana Rekha, R.; Ahmed, S.; Okada, M.; Kumar Roy, A.; El Arifeen, S.; Ekström, E.C.; Raqib, R.; Wagatsuma, Y. Association between Calcium in Cord Blood and Newborn Size in Bangladesh. Br. J. Nutr. 2011, 106, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Khoushabi, F.; Shadan, M.R.; Miri, A.; Sharifi-Rad, J. Determination of Maternal Serum Zinc, Iron, Calcium and Magnesium During Pregnancy in Pregnant Women and Umbilical Cord Blood and Their Association with Outcome of Pregnancy. Mater. Sociomed. 2016, 28, 104. [Google Scholar] [CrossRef] [Green Version]
- Elizabeth, K.; Krishnann, V.; Vijayakumar, T. Umbilical Cord Blood Nutrients in Low Birth Weight Babies in Relation to Birth Weight & Gestational Age. Indian J. Med. Res. 2008, 128, 128–134. [Google Scholar] [PubMed]
- Bogden, J.D.; Thind, I.S.; Louria, D.B.; Caterini, H. Maternal and Cord Blood Metal Concentrations and Low Birth Weight—A Case-Control Study. Am. J. Clin. Nutr. 1978, 31, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Vuralli, D. Clinical Approach to Hypocalcemia in Newborn Period and Infancy: Who Should Be Treated? Int. J. Pediatr. 2019, 2019, 4318075. [Google Scholar] [CrossRef] [PubMed]
- Appelman-Dijkstra, N.M.; Ertl, D.A.; Carola Zillikens, M.; Rjenmark, L.; Winter, E.M. Hypercalcemia during Pregnancy: Management and Outcomes for Mother and Child. Endocrine 2021, 71, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Liebgott, B.; Srebrolow, G. Fetal Toxicity Caused by Excessive Maternal Dietary Calcium. J. Can Dent Assoc. 1989, 55, 129–133. [Google Scholar]
- Malas, N.; Shurideh, Z.M. Does Serum Calcium in Pre-Eclampsia and Normal Pregnancy Differ? Saudi Med. J. 2001, 22, 868–871. [Google Scholar]
- Ephraim, R.K.D.; Osakunor, D.N.M.; Denkyira, S.W.; Eshun, H.; Amoah, S.; Anto, E.O. Serum Calcium and Magnesium Levels in Women Presenting with Pre-Eclampsia and Pregnancy-Induced Hypertension: A Case-Control Study in the Cape Coast Metropolis, Ghana. BMC Pregnancy Childbirth 2014, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- DeSousa, J.; Tong, M.; Wei, J.; Chamley, L.; Stone, P.; Chen, Q. The Anti-Inflammatory Effect of Calcium for Preventing Endothelial Cell Activation in Preeclampsia. J. Hum. Hypertens. 2016, 30, 303–308. [Google Scholar] [CrossRef]
- Norman, J.; Politz, D.; Politz, L. Hyperparathyroidism during Pregnancy and the Effect of Rising Calcium on Pregnancy Loss: A Call for Earlier Intervention. Clin. Endocrinol. 2009, 71, 104–109. [Google Scholar] [CrossRef]
- Pal, R.; Bhadada, S.K.; Gupta, N.; Behera, A.; Aggarwal, N.; Aggarwal, A.; Raviteja, K.V.; Saikia, U.N.; Kaur, G.; Arvindbhai, S.M.; et al. Primary Hyperparathyroidism in Pregnancy: Observations from the Indian PHPT Registry. J. Endocrinol. Investig. 2021, 44, 1425–1435. [Google Scholar] [CrossRef]
- Rey, E.; Jacob, C.; Koolian, M.; Morin, F. Hypercalcemia in Pregnancy–A Multifaceted Challenge: Case Reports and Literature Review. Clin. Case Rep. 2016, 4, 1001. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Leaderer, B.P. Relationship Between Birth Weight and Exposure to Airborne Fine Particulate Potassium and Titanium During Gestation. Environ. Res. 2012, 117, 83. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhang, Y.; Yin, B.; Wen, J.; Cheng, J.; Fu, X. The Expression and Function of KCNQ Potassium Channels in Human Chorionic Plate Arteries from Women with Normal Pregnancies and Pre-Eclampsia. PLoS ONE 2018, 13, e0192122. [Google Scholar] [CrossRef] [Green Version]
- Wolak, T.; Sergienko, R.; Wiznitzer, A.; Ben Shlush, L.; Paran, E.; Sheiner, E. Low Potassium Level during the First Half of Pregnancy Is Associated with Lower Risk for the Development of Gestational Diabetes Mellitus and Severe Pre-Eclampsia. J. Matern. Fetal. Neonatal Med. 2010, 23, 994–998. [Google Scholar] [CrossRef]
- Shirazki, A.; Weintraub, Z.; Reich, D.; Gershon, E.; Leshem, M. Lowest Neonatal Serum Sodium Predicts Sodium Intake in Low Birth Weight Children. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 292, 1683–1689. [Google Scholar] [CrossRef]
- Roy-Clavel, E.; Picard, S.; St-Louis, J.; Brochu, M. Induction of Intrauterine Growth Restriction with a Low-Sodium Diet Fed to Pregnant Rats. Am. J. Obstet. Gynecol. 1999, 180, 608–613. [Google Scholar] [CrossRef]
- Vidonho, A.F.; Da Silva, A.A.; Catanozi, S.; Rocha, J.C.; Beutel, A.; Carillo, B.A.; Furukawa, L.N.S.; Campos, R.R.; De Toledo Bergamaschi, C.M.; Carpinelli, A.R.; et al. Perinatal Salt Restriction: A New Pathway to Programming Insulin Resistance and Dyslipidemia in Adult Wistar Rats. Pediatr. Res. 2004, 56, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Lagiou, P.; Mucci, L.; Tamimi, R.; Kuper, H.; Lagiou, A.; Hsieh, C.C.; Trichopoulos, D. Micronutrient Intake during Pregnancy in Relation to Birth Size. Eur. J. Nutr. 2005, 44, 52–59. [Google Scholar] [CrossRef]
- Pazhayattil, G.S.; Rastegar, A.; Brewster, U.C. Approach to the Diagnosis and Treatment of Hyponatremia in Pregnancy. Am. J. Kidney Dis. 2015, 65, 623–627. [Google Scholar] [CrossRef]
- Dunne, J.; Tessema, G.A.; Pereira, G. The Role of Confounding in the Association between Pregnancy Complications and Subsequent Preterm Birth: A Cohort Study. BJOG 2022, 129, 890–899. [Google Scholar] [CrossRef]
- Antonia Dröge, L.; Eidmann, J.; Aigner, A.; Frank, L.; Perschel, F.H.; Henrich, W.; Verlohren, S. Relevance of Maternal Sodium Level for Preeclampsia-Associated Adverse Pregnancy Outcomes. Pregnancy Hypertens. 2021, 25, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Anglim, B.; Levins, K.; Bussmann, N.; Imcha, M. Case Report: Severe Hyponatraemia Associated with Pre-Eclampsia. BMJ Case Rep. 2016, 2016, bcr2016215036. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.; Tong, A.; Hsu, C.D. Hypervolemic Hyponatremia as a Reversible Cause of Cardiopulmonary Arrest in a Postpartum Patient with Preeclampsia. Case Rep. Obstet. Gynecol. 2021, 2021, 8850725. [Google Scholar] [CrossRef] [PubMed]
- Powel, J.E.; Rosenthal, E.; Roman, A.; Chasen, S.T.; Berghella, V. Preeclampsia and Low Sodium (PALS): A Case and Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 249, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Birukov, A.; Andersen, L.B.; Herse, F.; Rakova, N.; Kitlen, G.; Kyhl, H.B.; Golic, M.; Haase, N.; Kräker, K.; Müller, D.N.; et al. Aldosterone, Salt, and Potassium Intakes as Predictors of Pregnancy Outcome, Including Preeclampsia. Hypertension 2019, 74, 391–398. [Google Scholar] [CrossRef]
- Osada, H.; Watanabe, Y.; Nishimura, Y.; Yukawa, M.; Seki, K.; Sekiya, S. Profile of Trace Element Concentrations in the Feto-Placental Unit in Relation to Fetal Growth. Acta Obstet. Gynecol. Scand. 2002, 81, 931–937. [Google Scholar] [CrossRef]
- Enaruna, N.O.; Ande, A.B.A.; Okpere, E.E. Clinical Significance of Low Serum Magnesium in Pregnant Women Attending the University of Benin Teaching Hospital. Niger. J. Clin. Pract. 2013, 16, 448–453. [Google Scholar] [CrossRef]
- Takaya, J.; Yamato, F.; Kaneko, K. Possible Relationship between Low Birth Weight and Magnesium Status: From the Standpoint of “Fetal Origin” Hypothesis. Magnes. Res. 2006, 19, 63–72. [Google Scholar]
- Komiya, Y.; Su, L.T.; Chen, H.C.; Habas, R.; Runnels, L.W. Magnesium and Embryonic Development. Magnes. Res. 2014, 27, 8. [Google Scholar] [CrossRef]
- Morton, A. Hypomagnesaemia and Pregnancy. Obstet. Med. 2018, 11, 67. [Google Scholar] [CrossRef]
- Fanni, D.; Gerosa, C.; Nurchi, V.M.; Manchia, M.; Saba, L.; Coghe, F.; Crisponi, G.; Gibo, Y.; Van Eyken, P.; Fanos, V.; et al. The Role of Magnesium in Pregnancy and in Fetal Programming of Adult Diseases. Biol. Trace Elem. Res. 2021, 199, 3647. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.N.; Cuffe, J.S.M.; Moritz, K.M.; Paravicini, T.M. Maternal Hypomagnesemia Causes Placental Abnormalities and Fetal and Postnatal Mortality. Placenta 2015, 36, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Rosner, J.Y.; Gupta, M.; McGill, M.; Xue, X.; Chatterjee, P.K.; Yoshida-Hay, M.; Robeson, W.; Metz, C.N. Magnesium Deficiency during Pregnancy in Mice Impairs Placental Size and Function. Placenta 2016, 39, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Darabadi, S.; Akbari, G. Evaluation of Magnesium Sulfate Effects on Fetus Development in Experimentally Induced Surgical Fetal Growth Restriction in Rat. J. Matern. Fetal. Neonatal Med. 2020, 33, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A. New Data on the Importance of Gestational Mg Deficiency. J. Am. Coll. Nutr. 2004, 23, 694S–700S. [Google Scholar] [CrossRef]
- Zhang, Y.; Xun, P.; Chen, C.; Lu, L.; Shechter, M.; Rosanoff, A.; He, K. Magnesium Levels in Relation to Rates of Preterm Birth: A Systematic Review and Meta-Analysis of Ecological, Observational, and Interventional Studies. Nutr. Rev. 2021, 79, 188. [Google Scholar] [CrossRef]
- Kovo, M.; Mevorach-Zussman, N.; Khatib, N.; Ginsberg, Y.; Divon, M.; Weiner, Z.; Bar, J.; Beloosesky, R. The Effects of Magnesium Sulfate on the Inflammatory Response of Placentas Perfused With Lipopolysaccharide: Using the Ex Vivo Dual-Perfused Human Single-Cotyledon Model. Reprod. Sci. 2018, 25, 1224–1230. [Google Scholar] [CrossRef]
- Goossens, J.; Beeckman, D.; Van Hecke, A.; Delbaere, I.; Verhaeghe, S. Preconception Lifestyle Changes in Women with Planned Pregnancies. Midwifery 2018, 56, 112–120. [Google Scholar] [CrossRef]
- Jaddoe, V.W.V.; Troe, E.J.W.M.; Hofman, A.; Mackenbach, J.P.; Moll, H.A.; Steegers, E.A.P.; Witteman, J.C.M. Active and Passive Maternal Smoking during Pregnancy and the Risks of Low Birth weight and Preterm Birth: The Generation R Study. Paediatr. Perinat. Epidemiol. 2008, 22, 162–171. [Google Scholar] [CrossRef]
- Ko, T.J.; Tsai, L.Y.; Chu, L.C.; Yeh, S.J.; Leung, C.; Chen, C.Y.; Chou, H.C.; Tsao, P.N.; Chen, P.C.; Hsieh, W.S. Parental Smoking during Pregnancy and Its Association with Low Birth Weight, Small for Gestational Age, and Preterm Birth Offspring: A Birth Cohort Study. Pediatr. Neonatol. 2014, 55, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Soneji, S.; Beltrán-Sánchez, H. Association of Maternal Cigarette Smoking and Smoking Cessation With Preterm Birth. JAMA Netw. Open. 2019, 2, e192514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarczuk, N.; Milner, A.; Greenough, A. The Role of Maternal Smoking in Sudden Fetal and Infant Death Pathogenesis. Front. Neurol. 2020, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Hulman, A.; Lutsiv, O.; Park, C.K.; Krebs, L.; Beyene, J.; McDonald, S.D. Are Women Who Quit Smoking at High Risk of Excess Weight Gain throughout Pregnancy? BMC Pregnancy Childbirth 2016, 16, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegboye, A.R.A.; Rossner, S.; Neovius, M.; Lourenço, P.M.C.; Linné, Y. Relationships between Prenatal Smoking Cessation, Gestational Weight Gain and Maternal Lifestyle Characteristics. Women Birth 2010, 23, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Collins, J. Global Epidemiology of Multiple Birth. Reprod. Biomed. 2007, 15 (Suppl. 3), 45–52. [Google Scholar] [CrossRef] [PubMed]
Parameter | AM ± SD | Med | Range | |
---|---|---|---|---|
maternal characteristics: | ||||
age (years) | 31.0 ± 4.8 | 31 | 21–41 | |
weight (kg) before pregnancy | 66.7 ± 16.4 | 63 | 45–134 | |
weight (kg) before delivery | 84.4 ± 18.3 | 82 | 58–140 | |
weight gain during pregnancy | 18.7 ± 8.6 | 16.0 | 8–38 | |
neonatal characteristics: | ||||
length of pregnancy (weeks) | 34.6 ± 2.5 | 35 | 26–38 | |
birth weight (g) | 2247 ± 497 | 2330 | 690–3350 | |
length (cm) | 47.8 ± 4.3 | 48 | 29–55 | |
head circumference (cm) | 31.9 ± 2.2 | 32 | 24–37 | |
shoulder width (cm) | 29.1 ± 3.0 | 29 | 18–36 | |
placenta weight (g) | dichorionic diamniotic twins pregnancy (n = 40) | 1102 ± 293 | 1200 | 510–1300 |
monochorionic diamniotic twins pregnancy (n = 11) | 1160 ± 230 | 1200 | 800–1400 | |
monochorionic monoamniotic twins pregnancy (n = 1) | 420 | 420 | 420 | |
dichorionic triamniotic triplets pregnancy (n = 3) | 700 ± 57.7 | 700 | 650–750 | |
trichorionic triamniotic triplets pregnancy (n = 2) | 571 ± 212 | 642 | 280–780 |
Centiles for Length (cm) | Boys | Girls | Total | Centiles for Birth Weight (kg) | Boys | Girls | Total |
---|---|---|---|---|---|---|---|
>3 or <97 | 40 | 50 | 90 | >3 or <97 | 51 | 59 | 110 |
<3 or >97 | 14 | 15 | 29 | <3 or >97 | 3 | 6 | 9 |
Element | Reference Values (mg/L) | Percentage of Reference Values |
---|---|---|
Ca | 145 ± 20 | 95.9 |
K | 15,170 ± 370 | 100.9 |
Na | 2100 ± 80 | 103.5 |
Mg | 960 ± 95 | 102.7 |
Placenta | Umbilical Cord | Fetal Membrane | |||||||
---|---|---|---|---|---|---|---|---|---|
AM ± SD | Med. | Range | AM ± SD | Med. | Range | AM ± SD | Med. | Range | |
Twins (n = 52) | |||||||||
Ca | 2498 ± 2020 | 1659 | 531–8802 | 937 ± 223 | 913 | 539–1571 | 1206 ± 1088 | 764 | 403–7448 |
K | 8895 ± 2038 | 8991 | 3928–14,466 | 6147 ± 1530 | 6015 | 3195–11,094 | 7440 ± 1999 | 7427 | 2959–12,713 |
Na | 9272 ± 1915 | 8899 | 4493–16,519 | 25,850 ± 6949 | 25,267 | 10,773–48,850 | 13,385 ± 3484 | 13,207 | 7913–21,879 |
Mg | 436 ± 110 | 421 | 229–808 | 322 ± 62.0 | 321 | 215–560 | 373 ± 112 | 362 | 180–839 |
Triplets (n = 5) | |||||||||
Ca | 2269 ± 1794 | 2004 | 823–7753 | 1140 ± 219 | 1192 | 774–1463 | 1544 ± 955 | 1313 | 486–3367 |
K | 8736 ± 1871 | 9317 | 5969–12,329 | 6410 ± 1440 | 5875 | 4874–9900 | 7589 ± 2111 | 7685 | 3511–11,177 |
Na | 9647 ± 1528 | 7267 | 7267–12,520 | 35,085 ± 8155 | 31,735 | 26,606–48,539 | 14,711 ± 4259 | 13,893 | 9835–22,296 |
Mg | 438 ± 79 | 473 | 326–530 | 369 ± 48.3 | 378 | 288–430 | 354 ± 61.2 | 349 | 278–450 |
Total (n = 57) | |||||||||
Ca | 2466 ± 1983 | 1748 | 530–8802 | 957 ± 230 | 927 | 539–1571 | 1 252 ± 1073 | 791 | 403–7448 |
K | 8873 ± 2009 | 8992 | 3928–14,466 | 6173 ± 1517 | 5985 | 3195–11,094 | 7460 ± 2005 | 7655 | 2959–12,713 |
Na | 9323 ± 1865 | 9007 | 4493–16,519 | 26,757 ± 7558 | 26,616 | 10,773–48,850 | 13,562 ± 3602 | 13,231 | 7913–22,296 |
Mg | 436 ± 106 | 423 | 229–808 | 326 ± 62.2 | 324 | 215–560 | 370 ± 107 | 362 | 180–839 |
CaUC (p) | CaFM (p) | KP (p) | KUC (p) | KFM (p) | MgP (p) | MgUC (p) | MgFM (p) | |
---|---|---|---|---|---|---|---|---|
CaFM | x | 0.47 (0.00) | 0.73 (0.00) | 0.27 (0.01) | 0.73 (0.00) | |||
CaP | 0.20 (0.00) | 0.78 (0.00) | ||||||
KUC | 0.67 (0.00) | x | 0.32 (0.00) | 0.33 (0.00) | 0.39 (0.00) | 0.45 (0.00) | ||
KFM | 0.73 (0.00) | 0.32 (0.00) | x | 0.62 (0.00) | 0.45 (0.00) | |||
NaP | 0.36 (0.00) | 0.34 (0.00) | 0.39 (0.00) | 0.50 (0.00) | 0.21 (0.04) | 0.48 (0.00) | ||
NaUC | 0.34 (0.00) | 0.22 (0.02) | 0.52 (0.00) | |||||
NaFM | −0.40 (0.00) | −0.16 (0.02) | ||||||
MgP | 0.27 (0.01) | 0.73 (0.00) | 0.33 (0.00) | 0.62 (0.00) | x | |||
MgUC | 0.81 (0.00) | 0.27 (0.00) | 0.39 (0.00) | x | 0.23 (0.02) | |||
MgFM | 0.73 (0.00) | 0.55 (0.00) | 0.45 (0.00) | 0.45 (0.00) | 0.23 (0.02) | x |
Head Circumference (p) | Infant Weight (p) | Infant Length (p) | Shoulder Width (p) | Centiles for Length (p) | Length of Pregnancy (p) | Placenta Weight (p) | Weight before Delivery (p) | Weight Gain during Pregnancy (p) | Weight before Pregnancy (p) | |
---|---|---|---|---|---|---|---|---|---|---|
Neonatal characteristics | ||||||||||
centiles for birth weight | −0.34 (0.00) | 0.21 (0.02) | −0.34 (0.00) | −0.35 (0.00) | 0.28 (0.00) | −0.19 (0.04) | −0.25 (0.04) | |||
head circumference | x | −0.62 (0.00) | 0.57 (0.00) | 0.76 (0.00) | −0.42 (0.00) | 0.18 (0.05) | 0.21 (0.02) | 0.31 (0.01) | ||
infant weight | −0.62 (0.00) | x | −0.45 (0.00) | −0.63 (0.00) | −0.42 (0.00) | −0.36 (0.00) | −0.31 (0.01) | |||
infant length | 0.57 (0.00) | −0.45 (0.00) | x | 0.66 (0.00) | −0.49 (0.00) | 0.20 (0.03) | 0.28 (0.02) | |||
shoulder width | 0.76 (0.00) | −0.63 (0.00) | 0.66 (0.00) | x | −0.49 (0.00) | 0.23 (0.01) | 0.25 (0.01) | |||
Maternal characteristics | ||||||||||
weight before delivery | 0.21 (0.02) | −0.36 (0.00) | 0.20 (0.03) | 0.25 (0.01) | 0.22 (0.02) | x | 0.64 (0.00) | 0.81 (0.00) | ||
cigarette smoking before pregnancy | 0.32 (0.00) | |||||||||
age of the women | −0.20 (0.02) |
CaP (p) | CaUC (p) | CaFM (p) | KP (p) | KUC (p) | KFM (p) | NaP (p) | NaUC (p) | MgFM (p) | MgUC (p) | |
---|---|---|---|---|---|---|---|---|---|---|
length of pregnancy | 0.34 (0.00) | 0.34 (0.00) | 0.24 (0.01) | 0.22 (0.02) | 0.25 (0.01) | 0.20 (0.04) | 0.42 (0.00) | |||
infant weight | 0.20 (0.03) | 0.20 (0.03) | 0.26 (0.01) | |||||||
shoulder width | −0.23 (0.01) | −0.21 (0.03) | −0.26 (0.01) | −0.24 (0.01) | −0.23 (0.02) | −0.29 (0.01) | −0.25 (0.01) | −0.25 (0.01) | −0.29 (0.01) | |
infant length | −0.24 (0.01) | −0.20 (0.04) | −0.24 (0.01) | −0.22 (0.02) | −0.21 (0.03) | −0.20 (0.04) | −0.27 (0.01) | |||
centiles for length | 0.24 (0.01) | 0.22 (0.02) | ||||||||
placenta weight | 0.42 (0.00) | |||||||||
head circumference | −0.22 (0.02) | |||||||||
cigarette smoking before pregnancy | −0.24 (0.01) | −0.24 (0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzeszczak, K.; Kapczuk, P.; Kupnicka, P.; Cecerska-Heryć, E.; Kwiatkowski, S.; Chlubek, D.; Kosik-Bogacka, D. Calcium, Potassium, Sodium, and Magnesium Concentrations in the Placenta, Umbilical Cord, and Fetal Membrane from Women with Multiple Pregnancies. Life 2023, 13, 153. https://doi.org/10.3390/life13010153
Grzeszczak K, Kapczuk P, Kupnicka P, Cecerska-Heryć E, Kwiatkowski S, Chlubek D, Kosik-Bogacka D. Calcium, Potassium, Sodium, and Magnesium Concentrations in the Placenta, Umbilical Cord, and Fetal Membrane from Women with Multiple Pregnancies. Life. 2023; 13(1):153. https://doi.org/10.3390/life13010153
Chicago/Turabian StyleGrzeszczak, Konrad, Patrycja Kapczuk, Patrycja Kupnicka, Elżbieta Cecerska-Heryć, Sebastian Kwiatkowski, Dariusz Chlubek, and Danuta Kosik-Bogacka. 2023. "Calcium, Potassium, Sodium, and Magnesium Concentrations in the Placenta, Umbilical Cord, and Fetal Membrane from Women with Multiple Pregnancies" Life 13, no. 1: 153. https://doi.org/10.3390/life13010153
APA StyleGrzeszczak, K., Kapczuk, P., Kupnicka, P., Cecerska-Heryć, E., Kwiatkowski, S., Chlubek, D., & Kosik-Bogacka, D. (2023). Calcium, Potassium, Sodium, and Magnesium Concentrations in the Placenta, Umbilical Cord, and Fetal Membrane from Women with Multiple Pregnancies. Life, 13(1), 153. https://doi.org/10.3390/life13010153