Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. HAp Synthesis
2.2. Grafting Procedures
- (a)
- Simple mixing
- (b)
- Thermal induction
- (c)
- In situ grafting
2.3. Characterization
2.3.1. Powder Characterization
2.3.2. Protein Adsorption
2.3.3. Cell Adhesion
2.3.4. Cell Viability
3. Results
3.1. Structural, Morphological and Physic-Chemical Characterization
3.2. Protein Adsorption
3.3. Cell Adhesion
3.4. Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javadinejad, H.R.; Ebrahimi-Kahrizsangi, R. Thermal and Kinetic Study of Hydroxyapatite Formation by Solid-state Reaction. Int. J. Chem. Kinet. 2021, 53, 583–595. [Google Scholar] [CrossRef]
- Yelten-Yilmaz, A.; Yilmaz, S. Wet Chemical Precipitation Synthesis of Hydroxyapatite (HA) Powders. Ceram. Int. 2018, 44, 9703–9710. [Google Scholar] [CrossRef]
- Sinitsyna, O.V.; Veresov, A.G.; Kovaleva, E.S.; Kolen’ko, Y.V.; Putlyaev, V.I.; Tretyakov, Y.D. Synthesis of Hydroxyapatite by Hydrolysis of α-Ca3(PO4)2. Russ. Chem. Bull. 2005, 54, 79–86. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, K.; Li, Z.; Huang, S. Plate-like Hydroxyapatite Nanoparticles Synthesized by the Hydrothermal Method. J. Phys. Chem. Solids 2009, 70, 243–248. [Google Scholar] [CrossRef]
- Aguilar-Frutis, M.; Kumar, S.; Falcony, C. Spray-Pyrolyzed Hydroxyapatite Thin-Film Coatings. Surf. Coat. Technol. 2009, 204, 1116–1120. [Google Scholar] [CrossRef]
- Batista, H.A.; Silva, F.N.; Lisboa, H.M.; Costa, A.C.F.M. Modeling and Optimization of Combustion Synthesis for Hydroxyapatite Production. Ceram. Int. 2020, 46, 11638–11646. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-J. Hydroxyapatite Nanofibers Fabricated through Electrospinning and Sol–Gel Process. Ceram. Int. 2014, 40, 3361–3369. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Gong, H.; Jiang, X.; Wang, H.; Li, K. Effects of Synthesis Conditions on the Morphology of Hydroxyapatite Nanoparticles Produced by Wet Chemical Process. Powder Technol. 2010, 203, 315–321. [Google Scholar] [CrossRef]
- Mohd Pu’ad, N.A.S.; Abdul Haq, R.H.; Mohd Noh, H.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Synthesis Method of Hydroxyapatite: A Review. Mater. Today Proc. 2020, 29, 233–239. [Google Scholar] [CrossRef]
- Lavanya, P.; Vijayakumari, N. Fabrication of Poly (d, l—Alanine)/Minerals Substituted Hydroxyapatite Bio-Composite for Bone Tissue Applications. Mater. Discov. 2018, 11, 14–18. [Google Scholar] [CrossRef]
- Ignjatović, N.L.; Mančić, L.; Vuković, M.; Stojanović, Z.; Nikolić, M.G.; Škapin, S.; Jovanović, S.; Veselinović, L.; Uskoković, V.; Lazić, S.; et al. Rare-Earth (Gd3+,Yb3+/Tm3+, Eu3+) Co-Doped Hydroxyapatite as Magnetic, up-Conversion and down-Conversion Materials for Multimodal Imaging. Sci. Rep. 2019, 9, 16305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, H. Yb 3+/Ho 3+ Co-Doped Apatite Upconversion Nanoparticles to Distinguish Implanted Material from Bone Tissue. ACS Appl. Mater. Interfaces 2016, 8, 27458–27464. [Google Scholar] [CrossRef] [PubMed]
- Wiglusz, R.J.; Pozniak, B.; Zawisza, K.; Pazik, R. An Up-Converting HAP@β-TCP Nanocomposite Activated with Er 3+/Yb 3+ Ion Pairs for Bio-Related Applications. RSC Adv. 2015, 5, 27610–27622. [Google Scholar] [CrossRef]
- Grossner, T.; Haberkorn, U.; Gotterbarm, T. Evaluation of the Impact of Different Pain Medication and Proton Pump Inhibitors on the Osteogenic Differentiation Potential of HMSCs Using 99mTc-HDP Labelling. Life 2021, 11, 339. [Google Scholar] [CrossRef]
- Wang, Z.; Han, T.; Zhu, H.; Tang, J.; Guo, Y.; Jin, Y.; Wang, Y.; Chen, G.; Gu, N.; Wang, C. Potential Osteoinductive Effects of Hydroxyapatite Nanoparticles on Mesenchymal Stem Cells by Endothelial Cell Interaction. Nanoscale Res. Lett. 2021, 16, 67. [Google Scholar] [CrossRef]
- Kozuma, W.; Kon, K.; Kawakami, S.; Bobothike, A.; Iijima, H.; Shiota, M.; Kasugai, S. Osteoconductive Potential of a Hydroxyapatite Fiber Material with Magnesium: In Vitro and In Vivo Studies. Dent. Mater. J. 2019, 38, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Ma, G. Three Common Preparation Methods of Hydroxyapatite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 033057. [Google Scholar] [CrossRef]
- Veiga, A.; Castro, F.; Rocha, F.; Oliveira, A.L. Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Appl. Bio Mater. 2020, 3, 3441–3455. [Google Scholar] [CrossRef]
- Park, J.-W.; Hwang, J.-U.; Back, J.-H.; Jang, S.-W.; Kim, H.-J.; Kim, P.-S.; Shin, S.; Kim, T. High Strength PLGA/Hydroxyapatite Composites with Tunable Surface Structure Using PLGA Direct Grafting Method for Orthopedic Implants. Compos. B Eng. 2019, 178, 107449. [Google Scholar] [CrossRef]
- Lee, W.-H.; Loo, C.-Y.; Van, K.L.; Zavgorodniy, A.V.; Rohanizadeh, R. Modulating Protein Adsorption onto Hydroxyapatite Particles Using Different Amino Acid Treatments. J. R. Soc. Interface 2012, 9, 918–927. [Google Scholar] [CrossRef]
- Comeau, P.; Willett, T. Impact of Side Chain Polarity on Non-Stoichiometric Nano-Hydroxyapatite Surface Functionalization with Amino Acids. Sci. Rep. 2018, 8, 12700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jogiya, B.; Bhojani, A.; Solanki, P.; Jethva, H.O.; Joshi, M. Synthesis and Characterization of L-Alanine Functionalized Nano Hydroxyapatite. Mech. Mater. Sci. Eng. 2017, 13, 58–62. [Google Scholar]
- Fan, X.; Li, L.; Zhu, H.; Yan, L.; Zhu, S.; Yan, Y. Preparation, Characterization, and in Vitro and in Vivo Biocompatibility Evaluation of Polymer (Amino Acid and Glycolic Acid)/Hydroxyapatite Composite for Bone Repair. Biomed. Mater. 2021, 16, 025004. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-McQuire, R.; Chane-Ching, J.-Y.; Vignaud, E.; Lebugle, A.; Mann, S. Synthesis and Characterization of Amino Acid-Functionalized Hydroxyapatite Nanorods. J. Mater. Chem. 2004, 14, 2277. [Google Scholar] [CrossRef]
- Gao, W.M.; Ruan, C.X.; Chen, Y.F. Effects of Acidic Amino Acids on Hydroxyapatite Morphology. Key Eng. Mater. 2007, 336–338, 2096–2099. [Google Scholar] [CrossRef]
- Matsumoto, T.; Okazaki, M.; Inoue, M.; Sasaki, J.-I.; Hamada, Y.; Takahashi, J. Role of Acidic Amino Acid for Regulating Hydroxyapatite Crystal Growth. Dent. Mater. J. 2006, 25, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-H.; Loo, C.-Y.; Chrzanowski, W.; Rohanizadeh, R. Osteoblast Response to the Surface of Amino Acid-Functionalized Hydroxyapatite. J. Biomed. Mater. Res. A 2015, 103, 2150–2160. [Google Scholar] [CrossRef]
- Ignjatović, N.; Vranješ Djurić, S.; Mitić, Ž.; Janković, D.; Uskoković, D. Investigating an Organ-Targeting Platform Based on Hydroxyapatite Nanoparticles Using a Novel in Situ Method of Radioactive 125Iodine Labeling. Mater. Sci. Eng. C 2014, 43, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Neffe, A.T.; von Ruesten-Lange, M.; Braune, S.; Lützow, K.; Roch, T.; Richau, K.; Krüger, A.; Becherer, T.; Thünemann, A.F.; Jung, F.; et al. Multivalent Grafting of Hyperbranched Oligo- and Polyglycerols Shielding Rough Membranes to Mediate Hemocompatibility. J. Mater. Chem. B 2014, 2, 3626–3635. [Google Scholar] [CrossRef] [Green Version]
- Tavafoghi, M.; Cerruti, M. The Role of Amino Acids in Hydroxyapatite Mineralization. J. R. Soc. Interface 2016, 13, 20160462. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Miyajima, K.; Nakagaki, M.; Shimabayashi, S. Interactions of Aspartic Acid, Alanine and Lysine with Hydroxyapatite. Chem. Pharm. Bull. 1989, 37, 2897–2901. [Google Scholar] [CrossRef]
- Michelot, A.; Sarda, S.; Audin, C.; Deydier, E.; Manoury, E.; Poli, R.; Rey, C. Spectroscopic Characterisation of Hydroxyapatite and Nanocrystalline Apatite with Grafted Aminopropyltriethoxysilane: Nature of Silane–Surface Interaction. J. Mater. Sci. 2015, 50, 5746–5757. [Google Scholar] [CrossRef] [Green Version]
- Brym, S. Comparison IR Spectra of Alanine CH 3 CH(NH 2 )COOH and Alanine CD 3 CH(NH 2 )COOH. J. Phys. Conf. Ser. 2017, 810, 012026. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, D.; Neacsu, A.; Contineanu, I.; Teodorescu, F.; Tănăsescu, S. Thermochemical Properties of L-Alanine Nitrate and l-Alanine Ethyl Ester Nitrate. J. Therm. Anal. Calorim. 2014, 118, 731–737. [Google Scholar] [CrossRef]
- Anitha, P.; Muruganantham, N. Growth and Characterization of L-Alanine Crystals Using FT-IR, UV Visible Spectra. Int. J. Sci. Res. 2014, 3, 51–56. [Google Scholar]
- Cai, Y.H.; Xu, Q.; Tang, Y.; Luo, W.; Zhang, S.W.; Hao, H.T. Effects of Alanine Methyl Ester Hydrochlorides on Thermal Behaviour of Biodegradable Poly(L-Lactic Acid). Asian J. Chem. 2013, 25, 1749. [Google Scholar] [CrossRef]
- Yablokov, V.Y.; Smel’tsova, I.L.; Zelyaev, I.A.; Mitrofanova, S.V. Studies of the Rates of Thermal Decomposition of Glycine, Alanine, and Serine. Russ. J. Gen. Chem. 2009, 79, 1704–1706. [Google Scholar] [CrossRef]
- Olafsson, P.G.; Bryan, A.M. Evaluation of Thermal Decomposition Temperatures of Amino Acids by Differential Enthalpic Analysis. Mikrochim. Acta 1970, 58, 871–878. [Google Scholar] [CrossRef]
- Rodante, F.; Marrosu, G.; Catalani, G. Thermal Analysis of Some α-Amino Acids with Similar Structures. Thermochim. Acta 1992, 194, 197–213. [Google Scholar] [CrossRef]
- Shan, Y.; Qin, Y.; Chuan, Y.; Li, H.; Yuan, M. The Synthesis and Characterization of Hydroxyapatite-β-Alanine Modified by Grafting Polymerization of γ-Benzyl-L-Glutamate-N-Carboxyanhydride. Molecules 2013, 18, 13979–13991. [Google Scholar] [CrossRef]
- Felgueiras, H.P.; Antunes, J.C.; Martins, M.C.L.; Barbosa, M.A. Fundamentals of protein and cell interactions in biomaterials. In Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair, 1st ed.; Barbosa, M.A., Martins, M.C.L., Eds.; Woodhead Publishing: Cambridge, UK; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 1–27. [Google Scholar]
- Boanini, E.; Torricelli, P.; Gazzano, M.; Giardino, R.; Bigi, A. Nanocomposites of Hydroxyapatite with Aspartic Acid and Glutamic Acid and Their Interaction with Osteoblast-like Cells. Biomaterials 2006, 27, 4428–4433. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, C.; Hong, Y.; Zhang, X. A Review of Protein Adsorption on Bioceramics. Interface Focus 2012, 2, 259–277. [Google Scholar] [CrossRef] [PubMed]
Protein Adsorption (%) | ||||
---|---|---|---|---|
Sample | 5 mg–10 min | 5 mg–30 min | 10 mg–10 min | 10 mg–30 min |
HAp | −20.16 | −50.08 | −147.4 | −118.36 |
SMA | −8.12 | −16.75 | −8.28 | −5.96 |
SME | 14.15 | 23.32 | 19.68 | 32.8 |
TTA | −279.92 | −280.16 | −366 | −329.8 |
TTE | −48.28 | −25.72 | −98.8 | −84.48 |
ISA | 16.2 | 26.08 | 0 | 36.32 |
ISE | 26.16 | 34.88 | 36.4 | 50.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorm, B.C.; Iemma, M.R.C.; Neto, B.D.; Francisco, R.C.L.; Dinić, I.; Ignjatović, N.; Marković, S.; Vuković, M.; Škapin, S.; Trovatti, E.; et al. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. Life 2023, 13, 116. https://doi.org/10.3390/life13010116
Dorm BC, Iemma MRC, Neto BD, Francisco RCL, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, et al. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. Life. 2023; 13(1):116. https://doi.org/10.3390/life13010116
Chicago/Turabian StyleDorm, Bruna Carolina, Mônica Rosas Costa Iemma, Benedito Domingos Neto, Rauany Cristina Lopes Francisco, Ivana Dinić, Nenad Ignjatović, Smilja Marković, Marina Vuković, Srečo Škapin, Eliane Trovatti, and et al. 2023. "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" Life 13, no. 1: 116. https://doi.org/10.3390/life13010116