Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cockell, C.S. Astrobiology: Understanding Life in the Universe; Wiley-Blackwell: Oxford, UK, 2020. [Google Scholar]
- Harrison, J.P.; Gheeraert, N.; Tsigelnitskiy, D.; Cockell, C.S. The limits for life under multiple extremes. Trends Microbiol. 2013, 21, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Daniel, I.; Oger, P.; Winter, R. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 2006, 35, 858–875. [Google Scholar] [CrossRef] [PubMed]
- Oger, M.; Jebbar, M. The many ways of coping with pressure. Res. Microbiol. 2010, 161, 799–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meersmann, F.; Daniel, I.; Bartlett, D.H.; Winter, R.; Hazael, R.; McMillan, P.F. High-Pressure Biochemistry and Biophysics. Rev. Mineral. Geochem. 2013, 75, 607–648. [Google Scholar] [CrossRef] [Green Version]
- Clifford, S.M.; Lasue, J.; Heggy, E.; Boisson, J.; McGovern, P.; Max, M.D. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 2010, 115, E07001. [Google Scholar] [CrossRef]
- Orosei, R.; Lauro, S.E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Di Paolo, F.; Flamini, E.; Mattei, E.; Pajola, M.; et al. Radar evidence of subglacial liquid water on Mars. Science 2018, 361, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Orosei, R.; Ding, C.; Fa, W.; Giannopoulos, A.; Hérique, A.; Kofman, W.; Lauro, S.E.; Li, C.; Pettinelli, E.; Su, Y.; et al. The global search for liquid water on Mars from orbit: Current and future perspective. Life 2020, 10, 120. [Google Scholar] [CrossRef]
- Hecht, M.H.; Quinn, R.C.; West, S.J.; Young, S.M.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; DeFlores, L.P.; et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Laye, V.J.; DasSarma, S. An antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology 2018, 18, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Gault, S.; Jaworek, M.W.; Winter, R.; Cockell, C.S. High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Commun. Biol. 2020, 3, 550. [Google Scholar] [CrossRef]
- Lenton, S.; Rhys, N.H.; Towey, J.J.; Soper, A.K.; Dougan, L. Highly compressed water structure observed in a perchlorate aqueous solution. Nat. Commun. 2017, 8, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gault, S.; Cockell, C.S. Perchlorate Salts Exert a Dominant, Deleterious Effect on the Structure, Stability, and Activity of α-Chymotrypsin. Astrobiology 2021, 21, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Jahmidi-Azizi, N.; Oliva, R.; Gault, S.; Cockell, C.S.; Winter, R. The Effects of Temperature and Pressure on Protein-Ligand Binding in the Presence of Mars-relevant Salts. Biology 2021, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Jahmidi-Azizi, N.; Gault, S.; Cockell, C.S.; Oliva, R.; Winter, R. Ions in the Deep Subsurface of Earth, Mars and Icy Moons: Their Effects in Combination with Temperature and Pressure on tRNA-Ligand Binding, Int. J. Mol. Sci. 2021, 22, 10861. [Google Scholar] [CrossRef]
- Fetahaj, Z.; Ostermeier, L.; Cinar, H.; Oliva, R.; Winter, R. Biomolecular Condensates under Extreme Martian Salt Conditions. J. Am. Chem. Soc. 2021, 143, 5247–5259. [Google Scholar] [CrossRef]
- Kriegler, S.; Herzog, M.; Oliva, R.; Gault, S.; Cockell, C.S.; Winter, R. Structural Responses of Model Biomembranes to Mars-relevant Salts. Phys. Chem. Chem. Phys. 2021, 23, 14212–14223. [Google Scholar] [CrossRef]
- Dubins, D.N.; Lee, A.; Macgregor, R.B.; Chalikian, T.V. On the stability of double stranded nucleic acids. J. Am. Chem. Soc. 2001, 123, 9254–9259. [Google Scholar] [CrossRef]
- Son, I.; Shek, Y.L.; Dubins, D.N.; Chalikian, T.V. Hydration changes accompanying helix-to-coil DNA transitions. J. Am. Chem. Soc. 2014, 136, 4040–4047. [Google Scholar] [CrossRef]
- Wilton, D.J.; Ghosh, M.; Chary, K.V.A.; Akasaka, K.; Williamson, M.P. Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids Res. 2008, 36, 4032–4037. [Google Scholar] [CrossRef] [Green Version]
- Girard, E.; Prangé, T.; Dhaussy, A.C.; Migianu-Griffoni, E.; Lecouvey, M.; Chervin, J.C.; Mezouar, M.; Kahn, R.; Fourme, R. Adaptation of the base-paired double-helix molecular architecture to extreme pressure. Nucleic Acids Res. 2007, 35, 4800–4808. [Google Scholar] [CrossRef] [Green Version]
- Winter, R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Ann. Rev. Biophys. 2019, 48, 441–461. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, K.; Matsuki, H. (Eds.) High Pressure Bioscience; Springer: New York, NY, USA, 2015. [Google Scholar]
- Fan, H.Y.; Shek, Y.L.; Amiri, A.; Dubins, D.N.; Heerklotz, H.; MacGregor, R.B.; Chalikian, T.V. Volumetric characterization of sodium-induced G-quadruplex formation. J. Am. Chem. Soc. 2011, 133, 4518–4526. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Sugimoto, N. Effect of pressure on thermal stability of G-Quadruplex DNA and double-stranded DNA structures. Molecules 2013, 18, 13297–13319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.; Sugimoto, N. Effect of pressure on the stability of G-quadruplex DNA: Thermodynamics under crowding conditions. Angew. Chem. Int. Ed. Engl. 2013, 52, 13774–13778. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Sugimoto, N. Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys. Chem. Chem. Phys. 2015, 17, 31004–31010. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Anders, C.; Erwin, N.; Winter, R. Osmolyte Effects on the Conformational Dynamics of a DNA Hairpin at Ambient and Extreme Environmental Conditions. Angew. Chem. Int. Ed. 2017, 56, 5045–5049. [Google Scholar] [CrossRef]
- Knop, J.-M.; Patra, S.; Harish, B.; Royer, C.; Winter, R. The Deep Sea Osmolyte TMAO and Macromolecular Crowders Rescue the Antiparallel Conformation of the Human Telomeric G-Quadruplex from Urea and Pressure Stress. Chem. Eur. J. 2018, 24, 14346–14351. [Google Scholar] [CrossRef]
- Sung, H.L.; Nesbitt, D.J. Single-Molecule Kinetic Studies of DNA Hybridization under Extreme Pressures. Phys. Chem. Chem. Phys. 2020, 22, 23491–23501. [Google Scholar] [CrossRef]
- Garcia, A.E.; Paschek, D. Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin. J. Am. Chem. Soc. 2008, 130, 815–817. [Google Scholar] [CrossRef]
- Patra, S.; Anders, C.; Schummel, P.H.; Winter, R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys. Chem. Chem. Phys. 2018, 20, 13159–13170. [Google Scholar] [CrossRef]
- Wozniak, A.K.; Schröder, G.F.; Grubmüller, H.; Seidel, C.A.M.; Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA 2008, 105, 18337–18342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Z.; Prohofsky, E.W. Theory of pressure-dependent melting of the DNA double helix: Role of strained hydrogen bonds. Phys. Rev. E 1993, 47, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N. Chemistry and Biology of Non-Canonical Nucleic Acids; Wiley: Weinheim, Germany, 2021. [Google Scholar]
- Tan, Z.-J.; Chen, S.-J. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys. J. 2006, 90, 1175–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knop, J.-M.; Mukherjee, S.K.; Gault, S.; Cockell, C.S.; Winter, R. Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions. Life 2022, 12, 677. https://doi.org/10.3390/life12050677
Knop J-M, Mukherjee SK, Gault S, Cockell CS, Winter R. Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions. Life. 2022; 12(5):677. https://doi.org/10.3390/life12050677
Chicago/Turabian StyleKnop, Jim-Marcel, Sanjib K. Mukherjee, Stewart Gault, Charles S. Cockell, and Roland Winter. 2022. "Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions" Life 12, no. 5: 677. https://doi.org/10.3390/life12050677