Muscular Response in ALS Patients during Maximal Bilateral Isometric Work of the Biceps Brachii until Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Measurements
- -
- Biceps brachii (BB), ventral medial and external part of the humerus;
- -
- Triceps brachii (TR), dorsal medial and internal part of the humerus;
- -
- Anterior rectus femoris (RF), central ventral portion of the femur;
- -
- Tibialis anterior (TA), 4 cm below the head of the fibula, longitudinal to it.
2.5. Statistical Analysis
2.6. Ethical Concerns
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Basal Activation (by Gender) | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | t/u | t/z | df | p-Value | |
BB-R (µV) | 83.8 | 64.2 | 129.2 | 76.7 | t | −1.51 | 21 | 0.146 |
BB-L (µV) | 19.8 | 8.2 | 30.0 | 20.2 | u | −1.18 | 21 | 0.239 |
TR-R (µV) | 19.0 | 6.1 | 25.9 | 14.5 | u | −0.92 | 20 | 0.356 |
TR-L (µV) | 18.6 | 10.8 | 29.8 | 17.1 | u | −1.45 | 20 | 0.147 |
RA-R (µV) | 5.8 | 2.0 | 16.6 | 9.5 | t | −3.96 | 13.4 | 0.002 |
RA-L (µV) | 11.6 | 5.5 | 26.7 | 16.2 | t | −3.12 | 15.4 | 0.007 |
TA-R (µV) | 8.0 | 5.3 | 10.9 | 6.7 | u | −0.73 | 20 | 0.468 |
TA-L (µV) | 14.7 | 8.8 | 20.3 | 17.5 | u | −0.46 | 20 | 0.644 |
Peak activation (by gender) | Female | Male | ||||||
M | SD | M | SD | t/u | t/z | df | p-Value | |
P1-R | 417.5 | 353.0 | 609.8 | 365.7 | t | −1.27 | 21 | 0.218 |
P2-R | 389.7 | 337.3 | 576.7 | 349.9 | t | −1.29 | 21 | 0.211 |
P3-R | 357.2 | 311.3 | 555.9 | 338.7 | t | −1.44 | 21 | 0.164 |
P4-R | 327.5 | 300.4 | 526.8 | 337.4 | t | −1.47 | 21 | 0.156 |
P5-R | 310.7 | 283.0 | 487.0 | 310.5 | t | −1.40 | 21 | 0.176 |
P1-L | 303.8 | 282.8 | 428.8 | 251.6 | t | −1.12 | 21 | 0.275 |
P2-L | 289.1 | 280.1 | 408.6 | 243.2 | u | −1.30 | 21 | 0.193 |
P3-L | 277.1 | 268.8 | 387.0 | 231.2 | u | −1.36 | 21 | 0.172 |
P4-L | 261.1 | 260.9 | 369.3 | 209.7 | u | −1.43 | 21 | 0.154 |
P5-L | 249.2 | 247.0 | 357.9 | 205.8 | u | −1.43 | 21 | 0.154 |
Peak activation (by onset type) | Spinal | Bulbar | ||||||
M | SD | M | SD | t/u | t | df | p-value | |
P1-R | 501.0 | 414.1 | 573.3 | 269.1 | t | −0.51 | 19.9 | 0.619 |
P2-R | 471.6 | 397.6 | 539.9 | 254.6 | t | −0.50 | 20.1 | 0.623 |
P3-R | 451.3 | 377.9 | 503.6 | 255.9 | t | −0.35 | 21 | 0.730 |
P4-R | 434.6 | 367.4 | 450.6 | 270.5 | t | −0.11 | 21 | 0.915 |
P5-R | 401.2 | 335.6 | 427.6 | 259.9 | t | −0.19 | 21 | 0.849 |
P1-L | 332.0 | 266.6 | 454.0 | 265.7 | t | −1.05 | 21 | 0.307 |
P2-L | 319.9 | 265.6 | 425.5 | 254.0 | t | −0.92 | 21 | 0.368 |
P3-L | 304.3 | 254.4 | 404.6 | 239.4 | t | −0.92 | 21 | 0.369 |
P4-L | 298.2 | 250.4 | 367.3 | 208.3 | t | −0.67 | 21 | 0.513 |
P5-L | 287.6 | 239.0 | 353.9 | 207.8 | t | −0.66 | 21 | 0.516 |
M | SD | N | Mauchly’s W | ANOVA-Greenhouse–Geiser Correction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | X2 | gl | Sig. | ε | df | CM | F | p-Value | ||||
P1-R | 526.2 | 365.3 | 23 | 0.023 | 76.9 | 9 | <0.001 | 0.368 | 1.47 | 128,428.3 | 31.9 | <0.001 |
P2-R | 495.4 | 349.7 | 23 | |||||||||
P3-R | 469.5 | 335.2 | 23 | |||||||||
P4-R | 440.2 | 330.5 | 23 | |||||||||
P5-R | 410.4 | 305.5 | 23 | |||||||||
M | SD | N | W | X2 | gl | Sig. | ε | df | CM | F | p-Value | |
P1-L | 374.4 | 266.9 | 23 | 0.016 | 83.4 | 9 | <0.001 | 0.350 | 1.40 | 43,372.0 | 26.8 | <0.001 |
P2-L | 356.6 | 260.8 | 23 | |||||||||
P3-L | 339.2 | 248.6 | 23 | |||||||||
P4-L | 322.3 | 234.2 | 23 | |||||||||
P5-L | 310.7 | 226.1 | 23 |
Gender | Female | Male | ||
---|---|---|---|---|
BB-R | M | SD | M | SD |
Z1 | 186.3 | 91.6 | 395.0 | 317.4 |
Z2 | 319.6 | 222.7 | 658.5 | 654.3 |
Z3 | 216.5 | 151.1 | 374.0 | 191.0 |
BB-L | M | SD | M | SD |
Z1 | 186.5 | 102.7 | 347.6 | 190.5 |
Z2 | 213.7 | 156.4 | 377.1 | 282.7 |
Z3 | 210.3 | 140.7 | 364.4 | 303.3 |
Onset type | Spinal | Bulbar | ||
BB-R | M | SD | M | SD |
Z1 | 314.2 | 323.2 | 285.5 | 95.8 |
Z2 | 542.8 | 641.1 | 451.8 | 249.6 |
Z3 | 305.7 | 217.3 | 305.3 | 132.1 |
BB-L | M | SD | M | SD |
Z1 | 278.9 | 204.3 | 275.0 | 114.9 |
Z2 | 310.5 | 286.0 | 297.6 | 162.3 |
Z3 | 307.4 | 296.2 | 278.7 | 161.8 |
Right BB | |||||||||
---|---|---|---|---|---|---|---|---|---|
Muscle | M | SD | N | RM-ANOVA | Muscle | M | SD | N | RM-ANOVA |
BB-R Z1 | 152.3 | 189.5 | 23 | gl = 1.096; F = 9.737; p = 0.004 | BB-L Z1 | 21.2 | 17.1 | 23 | gl = 1.239; F = 17.019; p < 0.001 |
BB-R Z2 | 76.4 | 160.1 | 23 | BB-L Z2 | 108.1 | 92.4 | 23 | ||
BB-R Z3 | 26.0 | 15.9 | 23 | BB-L Z3 | 107.9 | 104.5 | 23 | ||
TR-R Z1 | 27.5 | 19.8 | 23 | gl = 1.165; F = 6.361; p = 0.015 | TR-L Z1 | 30.3 | 31.8 | 23 | gl = 1.450; F = 5.002; p = 0.021 |
TR-R Z2 | 27.9 | 27.0 | 23 | TR-L Z2 | 33.7 | 28.7 | 23 | ||
TR-R Z3 | 45.5 | 40.4 | 23 | TR-L Z3 | 40.0 | 37.8 | 23 | ||
RA-R Z1 | 14.8 | 16.5 | 23 | gl = 1.500; F = 2.620; p = 0.101 | RA-L Z1 | 22.0 | 18.0 | 23 | gl = 2; F = 2.877; p = 0.067 |
RA-R Z2 | 16.8 | 18.9 | 23 | RA-L Z2 | 19.4 | 16.8 | 23 | ||
RA-R Z3 | 18.5 | 20.5 | 23 | RA-L Z3 | 18.6 | 13.7 | 23 | ||
TA-R Z1 | 12.8 | 20.2 | 23 | gl = 1.461; F = 7.666; p = 0.004 | TA-L Z1 | 23.3 | 27.4 | 23 | gl = 2; F = 1.956; p = 0.154 |
TA-R Z2 | 18.5 | 24.0 | 23 | TA-L Z2 | 25.6 | 26.9 | 23 | ||
TA-R Z3 | 20.9 | 31.5 | 23 | TA-L Z3 | 28.1 | 32.5 | 23 | ||
Left BB | |||||||||
Muscle | M | SD | N | RM-ANOVA | Muscle | M | SD | N | RM-ANOVA |
BB-R Z1 | 67.3 | 72.2 | 23 | gl = 1.434; F = 5.442; p = 0.016 | BB-L Z1 | 72.9 | 82.4 | 23 | gl = 1.432; F = 2.613; p = 0.104 |
BB-R Z2 | 30.8 | 42.2 | 23 | BB-L Z2 | 112.6 | 105.7 | 23 | ||
BB-R Z3 | 29.3 | 24.5 | 23 | BB-L Z3 | 85.4 | 100.4 | 23 | ||
TR-R Z1 | 26.7 | 23.3 | 23 | gl = 1.575; F = 0.890; p = 0.397 | TR-L Z1 | 32.3 | 29.7 | 23 | gl = 2; F = 4.177; p = 0.022 |
TR-R Z2 | 36.7 | 43.3 | 23 | TR-L Z2 | 42.2 | 38.9 | 23 | ||
TR-R Z3 | 36.9 | 37.7 | 23 | TR-L Z3 | 43.6 | 38.9 | 23 | ||
RA-R Z1 | 16.0 | 18.6 | 23 | gl = 1.386; F = 1.115; p = 0.321 | RA-L Z1 | 18.2 | 12.4 | 23 | gl = 1.012; F = 1.045; p = 0.319 |
RA-R Z2 | 18.6 | 21.1 | 23 | RA-L Z2 | 17.6 | 13.7 | 23 | ||
RA-R Z3 | 17.8 | 18.1 | 23 | RA-L Z3 | 27.3 | 51.3 | 23 | ||
TA-R Z1 | 17.1 | 22.7 | 23 | gl = 1.256; F = 1.787; p = 0.193 | TA-L Z1 | 27.0 | 34.9 | 23 | gl = 1.134; F = 2.574; p = 0.118 |
TA-R Z2 | 20.3 | 30.7 | 23 | TA-L Z2 | 27.2 | 35.5 | 23 | ||
TA-R Z3 | 21.4 | 28.7 | 23 | TA-L Z3 | 35.6 | 55.4 | 23 |
References
- Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Boumédiene, F.; Logroscino, G.; Couratier, P.; Babron, M.-C.; Leutenegger, A.-L.; Copetti, M.; Preux, P.-M.; Beghi, E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol. 2017, 46, 57–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logroscino, G.; Piccininni, M.; Marin, B.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Alahdab, F.; Asgedom, S.W.; Awasthu, A.; Chaiah, Y.; et al. Global, regional, and national burden of motor neuron diseases 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 1083–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chio, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E.; Eurals, F. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Huisman, M.H.B.; de Jong, S.W.; van Doormaal Perry, T.C.; Weinreich, S.S.; Schelhaas, H.J.; van der Kooi Anneke, J.; de Visser, M.; Veldink, J.H.; van den Berg, L.H. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Forbes, R.B.; Colville, S.; Swingler, R.J. The epidemiology of amyotrophic lateral sclerosis (ALS/MND) in people aged 80 or over. Age Ageing 2004, 33, 131–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradas, J.; Puig, T.; Rojas-García, R.; Viguera, M.L.; Gich, I.; Logroscino, G. Amyotrophic lateral sclerosis in Catalonia: A population based study. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.A.; Meng, L.; Kulke, S.F.; Rudnicki, S.A.; Wolff, A.A.; Bozik, M.E.; Malik, F.I.; Shefner, J.M. Association Between Decline in Slow Vital Capacity and Respiratory Insufficiency, Use of Assisted Ventilation, Tracheostomy, or Death in Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol. 2018, 75, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, T.L.; Weibull, C.E.; Fang, F.; Sandler, D.P.; Lambert, P.C.; Ye, W.; Kamel, F. Association of fractures with the incidence of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 419–425. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Van Den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; Van Den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef]
- van Groenestijn, A.C.; Schröder, C.D.; van Eijk Ruben, P.A.; Veldink, J.H.; Kruitwagen-van Reenen, E.T.; Groothuis, J.T.; Grupstra, H.F.; Tepper, M.; van Vliet, R.O.; Visser-Meily, J.M.A.; et al. Aerobic Exercise Therapy in Ambulatory Patients with ALS: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2019, 33, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Lunetta, C.; Lizio, A.; Sansone, V.A.; Cellotto, N.M.; Maestri, E.; Bettinelli, M.; Gatti, V.; Melazzini, M.G.; Meola, G.; Corbo, M. Strictly monitored exercise programs reduce motor deterioration in ALS: Preliminary results of a randomized controlled trial. J. Neurol. 2016, 263, 52–60. [Google Scholar] [CrossRef]
- Clawson, L.L.; Cudkowicz, M.; Krivickas, L.; Brooks, B.R.; Sanjak, M.; Allred, P.; Atassi, N.; Swartz, A.; Steinhorn, G.; Uchil, A.; et al. A randomized controlled trial of resistance and endurance exercise in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 250–258. [Google Scholar] [CrossRef]
- Merico, A.; Cavinato, M.; Gregorio, C.; Lacatena, A.; Gioia, E.; Piccione, F.; Angelini, C. ERRATUM: Effects of combined endurance and resistance training in Amyotrophic Lateral Sclerosis: A pilot, randomized, controlled study. Eur. J. Transl. Myol. 2018, 28, 7842. [Google Scholar] [CrossRef]
- Meng, L.; Li, X.; Li, C.; Tsang, R.C.C.; Chen, Y.; Ge, Y.; Gao, Q. Effects of Exercise in Patients with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2020, 99, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Deguzman, L.; Flanagan, S.; Stecyk, S.; Montgomery, M. The Immediate Effects of Self-administered Dynamic Warm-up, Proprioceptive Neuromuscular Facilitation, and Foam Rolling on Hamstring Tightness. Athl. Train. Sports Health Care 2018, 10, 108–116. [Google Scholar] [CrossRef]
- Sznajder, J.; Barć, K.; Kuźma-Kozakiewicz, M. Physical activity in patients with amyotrophic lateral sclerosis: Prevalence, patients’ perspectives and relation to the motor performance. NeuroRehabilitation 2022, 50, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.H.; Glascow, N.; Barry, A.D.F.; Moll, T.; Harvey, C.; Klimentidis, Y.C.; Newell, M.; Zhang, S.; Snyder, M.P.; Cooper-Knock, J.; et al. Physical exercise is a risk factor for amyotrophic lateral sclerosis: Convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 2021, 68, 103397. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Mahameed, I.; Weiss, I.; Rosengarten, D.; Balmor, G.R.; Heching, M.; Kramer, M.R. Effects of a 12-week combined aerobic and strength training program in ambulatory patients with amyotrophic lateral sclerosis: A randomized controlled trial. J. Neurol. 2021, 268, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, Y.; Xuan, R.; Huang, J.; István, B.; Fekete, G.; Gu, Y. Mixed Comparison of Different Exercise Interventions for Function, Respiratory, Fatigue, and Quality of Life in Adults With Amyotrophic Lateral Sclerosis: Systematic Review and Network Meta-Analysis. Front. Aging Neurosci. 2022, 14, 919059. [Google Scholar] [CrossRef] [PubMed]
- Rosa Silva, J.P.; Santiago Júnior, J.B.; Dos Santos, E.L.; de Carvalho, F.O.; de França Costa, I.M.P.; de Mendonça, D.M.F. Quality of life and functional independence in amyotrophic lateral sclerosis: A systematic review. Neurosci. Biobehav. Rev. 2020, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Malakoutinia, F. Aerobic, resistance and combined exercise training for patients with amyotrophic lateral sclerosis: A systematic review and meta-analysis. Physiotherapy 2021, 113, 12–28. [Google Scholar] [CrossRef]
- Sanjak, M.; Konopacki, R.; Capasso, R.; Roelke, K.; Peper, S.; Houdek, A.; Waclawik, A.; Brooks, B. Dissociation between mechanical and myoelectrical manifestation of muscle fatigue in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2004, 5, 26–32. [Google Scholar] [CrossRef]
- Sanjak, M.; Brinkmann, J.; Belden, D.; Roelke, K.; Waclawik, A.; Neville, H.; Ringel, S.; Murphy, J.; Brooks, B. Quantitative assessment of motor fatigue in amyotrophic lateral sclerosis. J. Neurol. Sci. 2001, 191, 55–59. [Google Scholar] [CrossRef]
- Mausehund, L.; Skard, A.E.; Krosshaug, T. Muscle Activation in Unilateral Barbell Exercises: Implications for Strength Training and Rehabilitation. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S85–S94. [Google Scholar] [CrossRef] [PubMed]
- Divjak, M.; Sedej, G.; Murks, N.; Gerževič, M.; Marusic, U.; Pišot, R.; Šimunič, B.; Holobar, A. Inter-Person Differences in Isometric Coactivations of Triceps Surae and Tibialis Anterior Decrease in Young, but Not in Older Adults After 14 Days of Bed Rest. Front. Physiol. 2021, 12, 809243. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar] [PubMed]
- SENIAM. Sensor Locations. Available online: http://seniam.org/sensor_location.htm (accessed on 26 December 2017).
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography; Jones & Bartlett Publishers: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Perry, J. The contribution of dynamic electromyography to gait analysis. In Gait Analysis in the Science of Rehabilitation; DeLisa, J.A., Ed.; Diane Publishing: Darby, PA, USA, 1998; pp. 33–48. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.-I.; Shibuya, K.; Misawa, S.; Suichi, T.; Tsuneyama, A.; Kojima, Y.; Nakamura, K.; Kano, H.; Prado, M.; Kuwabara, S. Fasciculation intensity and limb dominance in amyotrophic lateral sclerosis: A muscle ultrasonographic study. BMC Neurol. 2022, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ji, H.; Hu, N. Cardiovascular comorbidities in amyotrophic lateral sclerosis: A systematic review. J. Clin. Neurosci. 2022, 96, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Yoshida, R.; Murakoshi, F.; Sasaki, Y.; Yahata, K.; Nosaka, K.; Nakamura, M. Effect of daily 3-s maximum voluntary isometric, concentric, or eccentric contraction on elbow flexor strength. Scand. J. Med. Sci. Sports 2022, 32, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Hernández-Belmonte, A.; Martínez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibáñez, J. Effects of range of motion on resistance training adaptations: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
- Streckmann, F.; Balke, M.; Cavaletti, G.; Toscanelli, A.; Bloch, W.; Décard, B.F.; Lehmann, H.C.; Faude, O. Exercise and Neuropathy: Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 1043–1065. [Google Scholar] [CrossRef]
- Gibbons, C.; Pagnini, F.; Friede, T.; Young, C.A. Treatment of fatigue in amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 2018, 1, CD011005. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.J.; Allodi, I.; Chaillou, T.; Schlittler, M.; Ivarsson, N.; Lanner, J.T.; Thams, S.; Hedlund, E.; Andersson, D.C. Intact single muscle fibres from SOD1G93A amyotrophic lateral sclerosis mice display preserved specific force, fatigue resistance and training-like adaptations. J. Physiol. 2019, 597, 3133–3146. [Google Scholar] [CrossRef]
- Latash, M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef] [PubMed]
- Reece, T.M.; Herda, T.J. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions. J. Neurophysiol. 2021, 125, 2094–2106. [Google Scholar] [CrossRef] [PubMed]
- Neltner, T.J.; Anders, J.P.V.; Keller, J.L.; Smith, R.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O. Velocity-Specific Coactivation and Neuromuscular Responses to Fatiguing, Reciprocal, Isokinetic, Forearm Flexion, and Extension Muscle Actions. J. Strength Cond. Res. 2022, 36, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Fan, Y.; Hao, Z.; Wang, J. Effect of local and general fatiguing exercises on disturbed and static postural control. J. Electromyogr. Kinesiol. 2021, 56, 102487. [Google Scholar] [CrossRef]
- Smith, C.M.; Housh, T.J.; Hill, E.C.; Keller, J.L.; Johnson, G.O.; Schmidt, R.J. Co-Activation, Estimated Anterior and Posterior Cruciate Ligament Forces, and Motor Unit Activation Strategies during the Time Course of Fatigue. Sports 2018, 6, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voet, N.B.M.; Saris, C.G.J.; Thijssen, D.H.J.; Bastiaans, V.; Sluijs, D.E.; Janssen Mariska, M.H.P. Surface Electromyography Thresholds as a Measure for Performance Fatigability During Incremental Cycling in Patients with Neuromuscular Disorders. Front. Physiol. 2022, 13, 821584. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Ranavolo, A.; Conforto, S.; Martino, G.; Draicchio, F.; Conte, C.; Varrecchia, T.; Bini, F.; Casali, C.; Pierelli, F.; et al. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis. Clin. Biomech. 2017, 48, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, E.; Vinceti, M.; Malagoli, C.; Fini, N.; Gessani, A.; Fasano, A.; Rizzi, R.; Sette, E.; Cavazza, S.; Fiocchi, A.; et al. High-frequency motor rehabilitation in amyotrophic lateral sclerosis: A randomized clinical trial. Ann. Clin. Transl. Neurol. 2019, 6, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Park, J.; Jeong, I.; Eun, S. Comparing the effects of multicomponent exercise with or without power training on the cardiorespiratory fitness, physical function, and muscular strength of patients with stroke: A randomized controlled trial. J. Sports Med. Phys. Fitness 2022, 62, 722–731. [Google Scholar] [CrossRef]
Sex | N | % |
---|---|---|
Male | 13 | 56.5 |
Female | 10 | 43.5 |
Onset type | N | % |
Bulbar (m) | 8 (5) | 34.8 |
Spinal (m) | 15 (8) | 65.2 |
M ± SD | Md (IQR) | |
Age (years) | 59 ± 10.53 | 58 (14.5) |
Disease duration (mos) | 24 ± 17.74 | 18 (23) |
Weight (Kg) | 68 ± 9.47 | 71 (15.4) |
Height (cm) | 166 ± 7.47 | 166 (13.5) |
BMI (Kg/m2) | 25 ± 2.71 | 25 (4.2) |
Female | MD | SD | t/w | t/z | df | p-Value |
---|---|---|---|---|---|---|
P1 R-L | 113.7 | 142.7 | t | 2.52 | 9 | 0.033 |
P2 R-L | 100.6 | 129.7 | w | −2.09 | 9 | 0.037 |
P3 R-L | 80.1 | 116.6 | w | −1.99 | 9 | 0.047 |
P4 R-L | 66.3 | 117.9 | w | −1.38 | 9 | 0.169 |
P5 R-L | 61.5 | 106.8 | w | −1.38 | 9 | 0.169 |
Male | MD | SD | t/w | t/z | df | p-Value |
P1 R-L | 181.0 | 231.6 | t | 2.82 | 12 | 0.016 |
P2 R-L | 168.0 | 215.2 | t | 2.82 | 12 | 0.016 |
P3 R-L | 168.9 | 205.4 | t | 2.96 | 12 | 0.012 |
P4 R-L | 157.5 | 210.7 | t | 2.70 | 12 | 0.019 |
P5 R-L | 129.1 | 185.9 | t | 2.50 | 12 | 0.028 |
Spinal onset | MD | SD | t/w | t | df | p-Value |
P1 R-L | 169.0 | 232.3 | t | 2.8 | 14 | 0.014 |
P2 R-L | 151.7 | 213.4 | t | 2.8 | 14 | 0.016 |
P3 R-L | 147.0 | 207.3 | t | 2.7 | 14 | 0.016 |
P4 R-L | 136.4 | 203.4 | t | 2.6 | 14 | 0.021 |
P5 R-L | 113.6 | 178.0 | t | 2.5 | 14 | 0.027 |
Bulbar onset | MD | SD | t/w | t | df | p-Value |
P1 R-L | 119.3 | 109.6 | t | 3.1 | 7 | 0.018 |
P2 R-L | 114.4 | 112.1 | t | 2.9 | 7 | 0.023 |
P3 R-L | 99.0 | 92.2 | t | 3.0 | 7 | 0.019 |
P4 R-L | 83.2 | 125.6 | t | 1.9 | 7 | 0.103 |
P5 R-L | 73.7 | 114.2 | t | 1.8 | 7 | 0.111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-Jimenez, J.; de la Rubia Ortí, J.E.; Martín Ruiz, J.; de Bernardo, N.; Proaño, B.; Villarón-Casales, C. Muscular Response in ALS Patients during Maximal Bilateral Isometric Work of the Biceps Brachii until Fatigue. Life 2022, 12, 1978. https://doi.org/10.3390/life12121978
Alarcón-Jimenez J, de la Rubia Ortí JE, Martín Ruiz J, de Bernardo N, Proaño B, Villarón-Casales C. Muscular Response in ALS Patients during Maximal Bilateral Isometric Work of the Biceps Brachii until Fatigue. Life. 2022; 12(12):1978. https://doi.org/10.3390/life12121978
Chicago/Turabian StyleAlarcón-Jimenez, Jorge, Jose Enrique de la Rubia Ortí, Julio Martín Ruiz, Nieves de Bernardo, Belén Proaño, and Carlos Villarón-Casales. 2022. "Muscular Response in ALS Patients during Maximal Bilateral Isometric Work of the Biceps Brachii until Fatigue" Life 12, no. 12: 1978. https://doi.org/10.3390/life12121978
APA StyleAlarcón-Jimenez, J., de la Rubia Ortí, J. E., Martín Ruiz, J., de Bernardo, N., Proaño, B., & Villarón-Casales, C. (2022). Muscular Response in ALS Patients during Maximal Bilateral Isometric Work of the Biceps Brachii until Fatigue. Life, 12(12), 1978. https://doi.org/10.3390/life12121978