Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence
Abstract
:1. Introduction
2. Vitamin C Status in Patients with COVID-19
3. Randomised Controlled Trials with Intravenous Vitamin C
4. Retrospective Cohort Studies with Intravenous Vitamin C
5. Randomised Controlled Trials with Oral Vitamin C Supplementation
6. Case-Control Study of Oral Vitamin C Supplementation
7. Safety of Oral and Intravenous Vitamin C
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- WHO Coronavirus Disease 2019 (COVID-19) Situation Report as of 2 August 2021 (5:19pm CEST). Available online: https://covid19.who.int/ (accessed on 3 August 2021).
- Centres for Disease Control and Prevention Assessing Risk Factors for Severe COVID-19 Illness 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assessing-risk-factors.html (accessed on 18 August 2021).
- Carr, A.C. Vitamin C in pneumonia and sepsis. In Vitamin C: New Biochemical and Functional Insights; Chen, Q.V.M., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2020; pp. 115–135. [Google Scholar]
- Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, 12, 3760. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Rowe, S. Factors Affecting Vitamin C Status and Prevalence of Deficiency: A Global Health Perspective. Nutrients 2020, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, M.; Wang, Y.; Padayatty, S.J.; Morrow, J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA 2001, 98, 9842–9846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Critical Care 2017, 21, 300. [Google Scholar] [CrossRef] [Green Version]
- Long, C.L.; Maull, K.I.; Krishnan, R.S.; Laws, H.L.; Geiger, J.W.; Borghesi, L.; Franks, W.; Lawson, T.C.; Sauberlich, H.E. Ascorbic acid dynamics in the seriously ill and injured. J. Surg Res. 2003, 109, 144–148. [Google Scholar] [CrossRef]
- De Grooth, H.J.; Manubulu-Choo, W.P.; Zandvliet, A.S.; Spoelstra-de Man, A.M.E.; Girbes, A.R.; Swart, E.L.; Oudemans-van Straaten, H.M. Vitamin C Pharmacokinetics in Critically Ill Patients: A Randomized Trial of Four IV Regimens. Chest 2018, 153, 1368–1377. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Coordinated Global Research Roadmap: 2019 Novel Coronavirus; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Carr, A.C.; Spencer, E.; Dixon, L.; Chambers, S.T. Patients with Community Acquired Pneumonia Exhibit Depleted Vitamin C Status and Elevated Oxidative Stress. Nutrients 2020, 12, 1318. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Banerjee, S. Dehydroascorbic acid level in blood of patients suffering from various infectious diseases. Proc. Soc. Exp. Biol. Med. 1955, 88, 581–583. [Google Scholar] [CrossRef]
- Bakaev, V.V.; Duntau, A.P. Ascorbic acid in blood serum of patients with pulmonary tuberculosis and pneumonia. Int. J. Tuberc. Lung. Dis. 2004, 8, 263–266. [Google Scholar] [PubMed]
- Xing, Y.; Zhao, B.; Yin, L.; Guo, M.; Shi, H.; Zhu, Z.; Zhang, L.; He, J.; Ling, Y.; Gao, M.; et al. Vitamin C supplementation is necessary for patients with coronavirus disease: An ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J. Pharm. Biomed. Anal. 2021, 196, 113927. [Google Scholar] [CrossRef] [PubMed]
- Arvinte, C.; Singh, M.; Marik, P.E. Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study. Med. Drug Discov. 2020, 8, 100064. [Google Scholar] [CrossRef]
- Chiscano-Camón, L.; Ruiz-Rodriguez, J.C.; Ruiz-Sanmartin, A.; Roca, O.; Ferrer, R. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit. Care 2020, 24, 522. [Google Scholar] [CrossRef] [PubMed]
- Tomasa-Irriguible, T.M.; Bielsa-Berrocal, L. COVID-19: Up to 82% critically ill patients had low Vitamin C values. Nutr. J. 2021, 20, 66. [Google Scholar] [CrossRef]
- Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open. Med. 2021, 9, 2050312121991246. [Google Scholar] [CrossRef]
- Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy-Bien, J.P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Fowler, A.A.; Truwit, J.D.; Hite, R.D.; Morris, P.E.; DeWilde, C.; Priday, A.; Fisher, B.; Thacker, L.R.; Natarajan, R.; Brophy, D.F.; et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA 2019, 322, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; et al. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann. Int. Care 2021, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Roux-Lombard, P.; Grau, G.E.; Girardin, E.; Ricou, B.; Dayer, J.; Suter, P.M. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996, 24, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Dembra, S.; Dembra, P.; Bhawna, F.; Gul, A.; Ali, B.; Sohail, H.; Kumar, B.; Memon, M.K.; Rizwan, A. The Role of Vitamin C as Adjuvant Therapy in COVID-19. Cureus 2020, 12, e11779. [Google Scholar] [CrossRef]
- Jamali Moghadam Siahkali, S.; Zarezade, B.; Koolaji, S.; Seyed Alinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: A randomized open-label clinical trial. Eur. J. Med. Res. 2021, 26, 20. [Google Scholar] [CrossRef]
- Gao, D.; Xu, M.; Wang, G.; Lv, J.; Ma, X.; Guo, Y.; Zhang, D.; Yang, H.; Jiang, W.; Deng, F.; et al. The efficiency and safety of high-dose vitamin C in patients with COVID-19: A retrospective cohort study. Aging Al. N.Y. 2021, 13, 7020–7034. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Fan, D.; He, Y.; Zhu, Y.; Zheng, Q. High-dose intravenous vitamin C attenuates hyperinflammation in severe coronavirus disease 2019. Nutrition 2021, 91–92, 111405. [Google Scholar] [CrossRef]
- Xia, G.; Qin, B.; Ma, C.; Zhu, Y.; Zheng, Q. High-dose vitamin C ameliorates cardiac injury in COVID-19 pandemic: A retrospective cohort study. Aging Al. N.Y. 2021, 13, 20906–20914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Liu, M.; Liu, P.; Peng, Y.; Huang, J.; Li, M.; Wang, Y.; Xu, L.; Sun, S.; Qi, X.; et al. High Dose Intravenous Vitamin C for Preventing The Disease Aggravation of Moderate COVID-19 Pneumonia. A Retrospective Propensity Matched Before-After Study. Front. Pharmacol. 2021, 12, 519. [Google Scholar] [CrossRef]
- Suna, K.; Melahat, U.; Murat, Y.; Figen Ö, E.; Ayperi, Ö. Effect of high-dose intravenous vitamin C on prognosis in patients with SARS-CoV-2 pneumonia. Med. Clin. Barc. 2021. [Google Scholar] [CrossRef]
- Li, M.; Ching, T.H.; Hipple, C.; Lopez, R.; Sahibzada, A.; Rahman, H. Use of Intravenous Vitamin C in Critically Ill Patients With COVID-19 Infection. J. Pharm. Pract. 2021. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il'Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open. 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Carr, A.; Chalker, E. Vitamin C May Increase the Recovery Rate of Outpatient Cases of SARS-CoV-2 Infection by 70%: Reanalysis of the COVID A to Z Randomized Clinical Trial. Front. Immunol. 2021, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
- Hakamifard, A.; Soltani, R.; Maghsoudi, A.; Rismanbaf, A.; Aalinezhad, M.; Tarrahi, M.; Mashayekhbakhsh, S.; Dolatshahi, K. The effect of vitamin E and vitamin C in patients with COVID-19 pneumonia; a randomized controlled clinical trial. Immunopathol. Persa 2021, 7. [Google Scholar] [CrossRef]
- Al Sulaiman, K.; Aljuhani, O.; Saleh, K.B.; Badreldin, H.A.; Al Harthi, A.; Alenazi, M.; Alharbi, A.; Algarni, R.; Al Harbi, S.; Alhammad, A.M.; et al. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: A propensity score matched study. Sci. Rep. 2021, 11, 17648. [Google Scholar] [CrossRef]
- Behera, P.; Patro, B.K.; Singh, A.K.; Chandanshive, P.D.; Ravikumar, S.R.; Pradhan, S.K.; Pentapati, S.S.K.; Batmanabane, G.; Mohapatra, P.R.; Padhy, B.M.; et al. Role of ivermectin in the prevention of SARS-CoV-2 infection among healthcare workers in India: A matched case-control study. PLoS ONE 2021, 16, e0247163. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.M.; Hemilä, H.; Chalker, E.; Treacy, B. Vitamin C for preventing and treating the common cold. Cochran. Database Syst. Rev. 2007. [Google Scholar] [CrossRef] [Green Version]
- Hemilä, H.; Louhiala, P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savini, I.; Rossi, A.; Pierro, C.; Avigliano, L.; Catani, M.V. SVCT1 and SVCT2: Key proteins for vitamin C uptake. Amino Acids 2008, 34, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [CrossRef]
- Carr, A.C.; Cook, J. Intravenous Vitamin C for Cancer Therapy-Identifying the Current Gaps in Our Knowledge. Front. Physiol. 2018, 9, 1182. [Google Scholar] [CrossRef] [PubMed]
- Hudson, E.P.; Collie, J.T.; Fujii, T.; Luethi, N.; Udy, A.A.; Doherty, S.; Eastwood, G.; Yanase, F.; Naorungroj, T.; Bitker, L.; et al. Pharmacokinetic data support 6-hourly dosing of intravenous vitamin C to critically ill patients with septic shock. Crit. Care Resusc. 2019, 21, 236–242. [Google Scholar] [PubMed]
- Yanase, F.; Fujii, T.; Naorungroj, T.; Belletti, A.; Luethi, N.; Carr, A.C.; Young, P.J.; Bellomo, R. Harm of IV High-Dose Vitamin C Therapy in Adult Patients: A Scoping Review. Crit. Care Med. 2020, 48, e620–e628. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Sun, A.Y.; Chen, Q.; Espey, M.G.; Drisko, J.; Levine, M. Vitamin C: Intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS ONE 2010, 5, e11414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honore, P.M.; Spapen, H.D.; Marik, P.; Boer, W.; Oudemans-van Straaten, H. Dosing vitamin C in critically ill patients with special attention to renal replacement therapy: A narrative review. Ann. Int. Care 2020, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marik, P.E. Is intravenous vitamin C contraindicated in patients with G6PD deficiency? Crit. Care 2019, 23, 109. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Du, X.; Louie, R.F.; Kost, G.J. Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am. J. Clin. Pathol. 2000, 113, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, E.; Hooper, M.; Marik, P. Vitamin C And Point Of Care Glucose Measurements: A Retrospective, Observational Study. Chest 2018, 154, 255A. [Google Scholar] [CrossRef]
- Fontana, F.; Cazzato, S.; Giovanella, S.; Ballestri, M.; Leonelli, M.; Mori, G.; Alfano, G.; Ligabue, G.; Magistroni, R.; Cenacchi, G.; et al. Oxalate Nephropathy Caused by Excessive Vitamin C Administration in 2 Patients With COVID-19. Kidney Int. Rep. 2020, 5, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Anandh, U.; Gowrishankar, S.; Sharma, A.; Salama, A.; Dasgupta, I. Kidney transplant dysfunction in a patient with COVID - 19 infection: Role of concurrent Sars-Cov 2 nephropathy, chronic rejection and vitamin C-mediated hyperoxalosis: Case report. BMC Nephrol. 2021, 22, 91. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C. Is “Mega-Dose” IV Vitamin C Required for Septic and Critical Coronavirus Disease 2019 Patients? Crit. Care Med. 2021, 49, e477–e478. [Google Scholar] [CrossRef] [PubMed]
- Fowler, A.A.; Syed, A.A.; Knowlson, S.; Sculthorpe, R.; Farthing, D.; DeWilde, C.; Farthing, C.A.; Larus, T.L.; Martin, E.; Brophy, D.F.; et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Frommelt, M.A.; Kory, P.; Long, M.T. Letter on Update to the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) Protocol. Trials 2020, 21, 350. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Frommelt, M.A.; Ries, M.P.; Murray, M.; Osman, F.; Krause, B.M.; Kory, P. Early hydrocortisone, ascorbate and thiamine therapy for severe septic shock. Crit. Care Shock 2020, 23, 23–34. [Google Scholar]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long covid-mechanisms, risk factors, and management. Bmj 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Vollbracht, C.; Kraft, K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021, 13, 1154. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Chalker, E. Reanalysis of the Effect of Vitamin C on Mortality in the CITRIS-ALI Trial: Important Findings Dismissed in the Trial Report. Front. Med. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Outcomes in Vitamin C Studies. Available online: https://c19vitaminc.com/cmeta.html (accessed on 26 July 2021).
Population Location | Method | Findings | Reference |
---|---|---|---|
18 patients with ARDS 1 Barcelona, Spain. | Plasma HPLC-PDA 2 | 17 patients had <8 µM vitamin C 1 patient had 14 µM vitamin C | [23] |
21 ICU 3 patients Thornton, Colorado, USA | Serum | Total cohort (n = 21) had 22 µM vitamin C (45% were deficient, 70% were hypovitaminosis C) Survivors (n = 11) had 29 µM vitamin C Non-Survivors (n = 10) had 15 µM vitamin C | [22] |
31 hospitalised patients 51 healthy controlsShanghai, China | Plasma UHPLC-MS 4 | 6 patients (no IVC 5) had 11 µM vitamin C 25 patients given 100 mg/kg/day IVC had 76 µM 51 healthy controls had 52 µM vitamin C | [21] |
50 symptomatic patients 21 healthy controls Jigwa, Nigeria | Serum Colourimetric | Patients had 19 µM vitamin C Controls had 25 µM vitamin C | [25] |
9 ICU patients with severe pneumonia Liège, Belgium | Patients had 22 µM vitamin C (reference range: 35–86 µM) | [26] | |
67 patients with ARDS Barcelona, Spain | Plasma HPLC | Mean vitamin C concentration was 8 ± 3 µM 55 patients (82%) had values <23 µM 12 patients (18%) had values <6 µM | [24] |
Population Mean Age Location | Intervention Duration | Findings (IVC vs. Control) | Reference |
---|---|---|---|
54 patients with COVID-19-pneumonia and multiple organ injury Age = 67 ± 13 years Wuhan, Hubei, China | IVC 1 24 g/day (n = 27) or placebo (n= 29) for 7 days | Higher PaO2/FiO2 2 (229 vs. 151 mmHg, p = 0.01) Lower Interleukin-6 (19 vs. 158 pg/mL, p = 0.04) Lower ICU 3 and hospital mortality in patients with SOFA 4 scores ≥3 (4 vs. 10 days, p = 0.03) No difference in ventilation-free days (26.5 vs. 10.5 days, p = 0.56) | [28] |
150 patients with severe COVID-19 Age = 52–53 years Karachi, Pakistan | IVC 50 mg/kg/day + standard therapy or standard therapy (75 per group) | Patients became symptom-free earlier (7.1 ± 1.8 vs. 9.6 ± 2.1 days, p < 0.0001) Patients spent fewer days in the hospital (8.1 ± 1.8 vs. 10.7 ± 2.2 days, p < 0.0001) No difference in need for mechanical ventilation (16% vs. 20%, p = 0.4) No difference in mortality (9.3% vs. 14.6%, p = 0.3) | [30] |
60 patients with COVID-19 Age = 57–61 years Tehran, Iran | IVC 6 g/day + standard therapy or standard therapy (30 per group) for 5 days | Lower body temperature on 3rd day of hospitalisation (p = 0.001) Improvement in oxygen saturation on 3rd day of hospitalisation (p = 0.014) No differences in length of ICU stay or mortality | [31] |
Population Mean Age Location | Intervention Duration | Findings (IVC vs. Control) | Reference |
---|---|---|---|
76 patients with moderate to severe COVID-19 Age = 61 (52–71) years Xi’an, Shaanxi, China | IVC 1 6 g/12 h on first day, 6 g/day for following 4 days + standard therapy (n = 30) or standard therapy (n = 46) for 5 days | Improved oxygen support status (64% vs. 36%) Reduced risk of 28-day mortality (HR 2 = 0.14, 95% CI, 0.03–0.72, p = 0.037) Reduced CRP 3, PCT 4 and IL-8 5 concentrations | [32] |
110 patients with moderate COVID-19 pneumonia Age = 36 (31–47) years Shanghai, China | IVC 100 mg/kg/day + standard therapy or standard therapy (55 per group) for 7 days | Fewer patients progressing to severe type (4 vs. 12; RR 6 0.28 [0.08, 0.93], p = 0.03) Reduction in duration (p < 0.001) and incidence of SIRS 7 (p = 0.008) Lower CRP concentrations (p = 0.005) Lower activated partial thromboplastintime (p = 0.02) Higher CD4+ (helper) T cells (p = 0.0004) | [35] |
232 patients with COVID-19-pneumonia Age = 60 ± 14 years Ankara, Turkey | IVC 2 g/day + standard therapy (n = 153) or standard therapy (n = 170) | Shorter length of hospital stay (7 vs. 8 d, p = 0.05) No difference in re-admission rate (p = 0.94), admission to ICU 8, need for advanced oxygen support (p = 0.49), and mortality (p = 0.52) Need for advanced medical treatment (p < 0.001) | [36] |
34 critically ill patients with COVID-19 Age = 65 ± 12 years New York, USA | IVC 1.5 g/6 h + standard therapy (n = 8) or standard therapy (n = 24) for 4 days | Higher rate of hospital mortality (19 [79%] vs. 7 [88%], p = 0.049) and SOFA scores (12 ± 3 vs. 8 ± 4, p < 0.005) No difference in daily vasopressor requirement or ICU length of stay | [37] |
236 patients with severe COVID-19 Age = 66 (57–73) years Wuhan, China | IVC 100 mg/kg/6 h on day 1 then 100 mg/kg/12 h for the next 5 days + standard therapy (n = 85) or standard therapy (n = 151) | Reduction in inflammatory markers (CRP, p = 0.032; IL-6, p = 0.005; TNF-α 9, p = 0.015) | [33] |
113 patients with severe COVID-19 and cardiac injury Age = 68 (59–77) years Wuhan, China | IVC 100 mg/kg/6 h on day 1 then 100 mg/kg/12 h for the next 5 days + standard therapy (n = 51) or standard therapy (n = 62) | IVC was associated with ameliorated cardiac injury (OR 2.42 [1.02, 5.73], p = 0.04) Reduced levels of inflammatory markers (CRP, IL-6, IL-8, TNF-α) at 21 days of hospitalisation | [34] |
Population Mean Age Location | Intervention Duration | Findings (Vitamin C vs. Control) | Reference |
---|---|---|---|
Randomised Controlled Trials | |||
214 patients with SARS-CoV-2 Age = 45 ± 15 years Ohio and Florida, USA | 8 g/day oral vitamin C or 50 mg/day zinc gluconate or vitamin C + zinc gluconate or standard care (n = 48–58 per group) for 10 days | 18% (1.2 day) decrease in time to 50% reduction of symptoms (p = 0.38) Vitamin C increased the rate of recovery by 71% (p = 0.036) | [38] |
[39] | |||
72 non-serious hospitalised patients Mean age = 36 years Isfahan, Iran | 1000 mg/day oral vitamin C (plus 400 IU/day vitamin E) or standard care (n = 34–38 per group) until hospital discharge or ICU admission | No differences in clinical improvement or duration of hospitalisation (p = 0.82) No patients died in the study | [40] |
Retrospective cohort study | |||
296 critically ill patients Age = 61 ± 15 Riyadh, Saudi Arabia | 1000 mg/day oral vitamin C or standard care (n = 148 per group) for approx. 11 days | No association with hospital or 30-day mortality, or organ injury Longer ICU and hospital length of stay Decreased incidence of thrombosis (6 vs. 13%, OR 0.42 [0.18–0.94], p = 0.03) | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holford, P.; Carr, A.C.; Zawari, M.; Vizcaychipi, M.P. Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life 2021, 11, 1166. https://doi.org/10.3390/life11111166
Holford P, Carr AC, Zawari M, Vizcaychipi MP. Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life. 2021; 11(11):1166. https://doi.org/10.3390/life11111166
Chicago/Turabian StyleHolford, Patrick, Anitra C. Carr, Masuma Zawari, and Marcela P. Vizcaychipi. 2021. "Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence" Life 11, no. 11: 1166. https://doi.org/10.3390/life11111166
APA StyleHolford, P., Carr, A. C., Zawari, M., & Vizcaychipi, M. P. (2021). Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life, 11(11), 1166. https://doi.org/10.3390/life11111166