Influence of Artificial Turf Surface Stiffness on Athlete Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Surfaces
2.3. Data Collection
2.4. Statistics
3. Results
3.1. Reliability
3.2. Performance
3.3. Athlete Kinematics
3.4. Subjective Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Synthetic Turf Council. Synthetic Turf 360°: A Guide for Today’s Synthetic Turf. 2016. Available online: https://www.actglobal.com/research/STC-SyntheticTurf360.pdf (accessed on 9 December 2020).
- McMahon, T.A.; Greene, P.R. Fast running tracks. Sci. Am. 1978, 239, 112–121. [Google Scholar] [CrossRef]
- McMahon, T.A.; Greene, P.R. The influence of track compliance on running. J. Biomech. 1979, 12, 893–904. [Google Scholar] [CrossRef]
- Arampatzis, A.; Stafilidis, S.; Morey-Klapsing, G.; Brüggemann, G. Interaction of the human body and surfaces of different stiffness during drop jumps. Med. Sci. Sports Exerc. 2004, 36, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kerdok, A.E.; Biewener, A.A.; McMahon, T.A.; Weyand, P.G.; Herr, H.M. Energetics and mechanics of human running on surfaces of different stiffnesses. J. Appl. Physiol. 2002, 92, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firminger, C.R.; Bruce, O.L.; Wannop, J.W.; Stefanyshyn, D.J.; Edwards, W.B. Effect of Shoe and Surface Stiffness on Lower Limb Tendon Strain in Jumping. Med. Sci. Sports Exerc. 2019, 51, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Sterzing, T.; Lange, J.; Milani, T.L. Comprehensive evaluation of player-surface interaction on artificial soccer turf. Sports Biomech. 2010, 9, 193–205. [Google Scholar] [CrossRef]
- Stefanyshyn, D.J.; Wannop, J.W. Biomechanics research and sport equipment development. Sports Eng. 2015, 18, 191–202. [Google Scholar] [CrossRef]
- Ker, R.F.; Bennett, M.B.; Bibby, S.R.; Kester, R.C.; Alexander, R.M. The spring in the arch of the human foot. Nature 1987, 325, 147. [Google Scholar] [CrossRef]
- Baroud, G.; Nigg, B.M.; Stefanyshyn, D. Can athletic performance be enhanced by sport surfaces and sport shoes? In Proceedings of the International Society of Biomechanics XVIIth Congress, Calgary, AB, USA, 8–13 August 1999; Volume 237. [Google Scholar]
- Stefanyshyn, D.J.; Nigg, B.M. Influence of midsole bending stiffness on joint energy and jump height performance. Med. Sci. Sports Exerc. 2000, 32, 471. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.H.; Allen, J.B. Changes in net joint torques during accommodation to change in surface compliance in a drop jumping task. Hum. Mov. Sci. 1993, 12, 299–326. [Google Scholar] [CrossRef]
- Zanetti, E.M.; Bignardi, C.; Franceschini, G.; Audenino, A.L. Amateur football pitches: Mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications. J. Sports Sci. 2013, 31, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalambous, L.; und Wilkau, H.C.V.L.; Potthast, W.; Irwin, G. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration. J. Sport Health Sci. 2016, 5, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Society for Testing and Materials. End use products: Standard test method for impact attenuation of playing surface systems, other protective sport systems, and materials used for athletics, recreation, and play. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2016; Volume 15, pp. F355–F416. [Google Scholar]
- American Society for Testing and Materials. End use products: Standard specification for impact attenuation of turf playing systems as measured in the field. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2015; Volume 15, pp. F1936–F2010. [Google Scholar]
- Ross, R.; ALDuhishy, A.; González-Haro, C. Validation of the cosmed K4b2 portable metabolic system during running outdoors. J. Strength Cond. Res. 2020, 34, 124–133. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef]
- Carifio, J.; Perla, R. Resolving the 50-year debate around using and misusing Likert scales. Med Educ. 2008, 42, 1150–1152. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Dunlap, W.P.; Crtina, J.M.; Vaslow, J.B.; Burke, M.J. Meta-analysis of experiments with matched groups or repeated measures designs. Psychol. Methods 1996, 1, 170–177. [Google Scholar] [CrossRef]
- Hardin, E.C.; Van Den Bogert, A.J.; Hamill, J. Kinematic adaptations during running: Effects of footwear, surface, and duration. Med. Sci. Sports Exerc. 2004, 36, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.J.; Collop, A.C.; Batt, M.E. Surface effects on ground reaction forces and lower extremity kinematics in running. Med. Sci. Sports Exerc. 2000, 32, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Gains, G.L.; Swedenhjelm, A.N.; Mayhew, J.L.; Bird, H.M.; Houser, J.J. Comparison of speed and agility performance of college football players on field turf and natural grass. J. Strength Cond. Res. 2010, 24, 2613–2617. [Google Scholar] [CrossRef] [PubMed]
- Schrier, N.M.; Wannop, J.W.; Lewinson, R.T.; Worobets, J.; Stefanyshyn, D. Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Sci. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Serrano, C.; Sánchez-Sánchez, J.; López-Fernández, J.; Hernando, E.; Gallardo, L. Influence of the playing surface on changes of direction and plantar pressures during an agility test in youth futsal players. Eur. J. Sport Sci. 2020, 20, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Greene, P.R. Sprinting with banked turns. J. Biomech. 1987, 20, 667–680. [Google Scholar] [CrossRef]
- Luo, G.; Stefanyshyn, D.J. Ankle moment generation and maximum-effort curved sprinting performance. J. Biomech. 2012, 45, 2763–2768. [Google Scholar] [CrossRef]
- Luo, G.; Stergiou, P.; Worobets, J.; Nigg, B.; Stefanyshyn, D. Improved footwear comfort reduces oxygen consumption during running. Footwear Sci. 2009, 1, 25–29. [Google Scholar] [CrossRef]
# | Name | Change in Stiffness from Control (%) | Peak Deceleration (m/s2) | Carpet Fiber Density | Shock Pad | Bottom Layer | Mix | Top Layer |
---|---|---|---|---|---|---|---|---|
1 | Softest | −50 | 559 | 1220 g/m2 | Expanded Polypropylene (15 mm thick) | 4.88 kg/m2 sand | 25.3 kg/m2 sand, 12.7 kg/m2 cryo rubber 14–30 | 1.95 kg/m2 cryo rubber 10–14 |
2 | Softer | −34 | 746 | 1220 g/m2 | Cross-linked Polyethylene Foam (24 mm thick) | 4.88 kg/m2 sand | 25.3 kg/m2 sand12.7 kg/m2 cryo rubber 14–30 | 1.95 kg/m2 cryo rubber 10–14 |
3 | Soft | −16 | 971 | 1220 g/m2 | Therma-plastic (12 mm thick) | 4.88 kg/m2 sand | 25.3 kg/m2 sand, 12.7 kg/m2 cryo rubber 14–30 | 1.95 kg/m2 cryo rubber 10–14 |
4 | Control | 0 | 1118 | 1220 g/m2 | No | 4.88 kg/m2 sand | 25.3 kg/m2 sand, 12.7 kg/m2 cryo rubber 14–30 | 1.95 kg/m2 cryo rubber 10–14 |
5 | Stiff | +17 | 1315 | 915 g/m2 | No | 4.88 kg/m2 sand | 25.3 kg/m2 sand, 12.7 kg/m2 cryo rubber 20–50 | 1.95 kg/m2 cryo rubber 14–30 |
Softest | Softer | Soft | Control | Stiff | |
---|---|---|---|---|---|
Sprint | 0.867 (0.719–0.948) | 0.886 (0.739–0.959) | 0.934 (0.853–0.975) | 0.886 (0.739–0.959) | 0.857 (0.702–0.944) |
Agility | 0.988 (0.972–0.995) | 0.983 (0.960–0.994) | 0.868 (0.772–0.949) | 0.948 (0.875–0.982) | 0.991 (0.981–0.997) |
Jump | 0.994 (0.983–0.998) | 0.991 (0.979–0.997) | 0.990 (0.977–0.997) | 0.990 (0.973–0.996) | 0.988 (0.971–0.996) |
Softest | Softer | Soft | Control | Stiff | |
---|---|---|---|---|---|
Oxygen Consumption (L/min/kg) | 38.5 ± 4.6 | 38.0 ± 4.8 (ES = 0.49) | 38.1 ± 4.7 (ES = 0.47) | 39.1 ± 4.3 | 38.3 ± 5.3 |
10 m Sprint Time (s) | 2.10 ± 0.11 | 2.10 ± 0.12 | 2.10 ± 0.13 | 2.11 ± 0.13 | 2.11 ± 0.13 |
5-10-5 Agility Time (s) | 4.95 ± 0.27 (ES = 0.57) | 4.98 ± 0.30 | 4.95 ± 0.28 | 5.01 ± 0.27 | 4.98 ± 0.23 |
Vertical Jump and Reach Height (cm) | 63.0 ± 12.7 | 63.6 ± 13.9 | 63.8 ± 12.8 (ES = 0.60) | 62.3 ± 12.6 | 63.1 ± 11.7 |
Joint | Variable | Control | Softest |
---|---|---|---|
Ankle | Peak Dorsiflexion Angle (°) | 30.9 ± 9.5 | 31.4 ± 10.3 |
Peak Dorsiflexion Angular Velocity (°/s) | 927 ± 289 | 929 ± 281 | |
Peak Plantarflexion Angle (°) | 24.6 ± 13.3 | 22.2 ± 11.6 (ES = 0.54) | |
Peak Plantarflexion Angular Velocity (°/s) | 767 ± 246 | 794 ± 231 | |
Knee | Peak Flexion Angle (°) | 110 ± 7 | 109 ± 8 |
Peak Flexion Angular Velocity (°/s) | 962 ± 286 | 903 ± 216 | |
Peak Extension Angular Velocity (°/s) | 706 ± 292 | 654 ± 297 | |
Hip | Peak Flexion Angle (°) | 75 ± 14 | 77 ± 20 |
Peak Flexion Angular Velocity (°/s) | 379 ± 101 | 346 ± 99 | |
Peak Extension Angular Velocity (°/s) | 605 ± 229 | 599 ± 224 | |
Trunk | Lean Angle at Takeoff (°) | 3.9 ± 9.8 | 6.4 ± 8.7 (ES = 0.55) |
center of Mass Velocity | center of Mass Velocity at Touchdown (m/s) | 3.3 ± 0.4 | 3.5 ± 0.4 (ES = 0.58) |
Joint | Variable | Control | Soft |
---|---|---|---|
Ankle | Peak Dorsiflexion Angle (°) | 31.7 ± 7.8 | 33.2 ± 6.1 |
Peak Dorsiflexion Angular Velocity (°/s) | 373 ± 130 | 472 ± 252 (ES = 0.57) | |
Peak Plantarflexion Angle (°) | 39.2 ± 7.4 | 39.9 ± 8.6 | |
Peak Plantarflexion Angular Velocity (°/s) | 1390 ± 242 | 1444 ± 272 | |
Knee | Peak Flexion Angle (°) | 85.9 ± 10.5 | 87.6 ± 8.1 |
Peak Flexion Angular Velocity (°/s) | 595 ± 148 | 601 ± 168 | |
Peak Extension Angular Velocity (°/s) | 1128 ± 158 | 1159 ± 172 (ES = 0.54) | |
Hip | Peak Flexion Angle (°) | 63.0 ± 10.7 | 61.2 ± 10.7 |
Peak Flexion Angular Velocity (°/s) | 338 ± 100 | 294 ± 1038 | |
Peak Extension Angular Velocity (°/s) | 548 ± 117 | 545 ± 129 | |
center of Mass Velocity | center of Mass Velocity at Takeoff (m/s) | 3.2 ± 0.5 | 3.3 ± 0.5 (ES = 0.62) |
Testing Session | Softest | Softer | Soft | Control | Stiff | |
---|---|---|---|---|---|---|
Cushioning | Running | 2.6 ± 1.1 | 3.1 ± 0.8 | 3.5 ± 1.0 | 3.1 ± 0.9 | 3.6 ± 1.0 (Effect Size (ES) = 0.66) |
Sprint/Agility/Jump | 2.6 ± 0.9 | 2.7 ± 0.8 | 3.1 ± 0.9 | 2.8 ± 0.9 | 2.9 ± 0.9 | |
Cushioning Comfort | Running | 3.4 ± 0.8 | 3.4 ± 1.0 | 3.4 ± 0.8 | 3.2 ± 0.7 | 2.7 ± 1.2 (ES = 0.76) |
Sprint/Agility/Jump | 3.7 ± 0.9 | 3.5 ± 0.7 | 3.3 ± 0.6 | 3.6 ± 0.6 | 3.6 ± 0.7 | |
Performance | Running | 3.3 ± 1.0 | 3.1 ± 1.1 | 3.4 ± 1.1 | 3.4 ± 1.1 | 2.9 ± 1.2 (ES = 0.86) |
Sprinting | 3.6 ± 0.8 | 3.4 ± 0.9 | 3.6 ± 0.9 | 3.5 ± 0.9 | 3.5 ± 0.8 | |
Agility | 3.2 ± 0.6 | 2.9 ± 0.8 | 3.5 ± 0.9 | 3.1 ± 0.9 | 3.1 ± 0.8 | |
Jumping | 3.8 ± 0.7 | 3.4 ± 0.9 | 3.4 ± 0.8 | 3.5 ± 0.8 | 3.7 ± 0.8 | |
Overall Surface Rating | Running | 3.3 ± 0.6 | 3.3 ± 0.9 | 3.4 ± 0.8 | 3.3 ± 0.6 | 2.9 ± 1.0 |
Sprint/Agility/Jump | 3.7 ± 0.8 (ES = 0.58) | 3.2 ± 0.9 | 3.1 ± 0.6 | 3.4 ± 0.7 | 3.6 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannop, J.; Kowalchuk, S.; Esposito, M.; Stefanyshyn, D. Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life 2020, 10, 340. https://doi.org/10.3390/life10120340
Wannop J, Kowalchuk S, Esposito M, Stefanyshyn D. Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life. 2020; 10(12):340. https://doi.org/10.3390/life10120340
Chicago/Turabian StyleWannop, John, Shaylyn Kowalchuk, Michael Esposito, and Darren Stefanyshyn. 2020. "Influence of Artificial Turf Surface Stiffness on Athlete Performance" Life 10, no. 12: 340. https://doi.org/10.3390/life10120340
APA StyleWannop, J., Kowalchuk, S., Esposito, M., & Stefanyshyn, D. (2020). Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life, 10(12), 340. https://doi.org/10.3390/life10120340