Clinical Evaluation of a Custom Gene Panel as a Tool for Precision Male Infertility Diagnosis by Next-Generation Sequencing
Abstract
:1. Introduction
2. Results
2.1. Case 1
2.2. Case 2
2.3. Case 3
2.4. Case 4
2.5. Case 5
3. Discussion
4. Materials and Methods
4.1. Patients and Blood Samples
4.2. Gene Selection and Panel Design
4.3. Genetic Analysis and Variant Detection
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pereira, R.; Sá, R.; Barros, A.; Sousa, M. Major regulatory mechanisms involved in sperm motility. Asian J. Androl. 2015, 19, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Vanaken, G.J.; Bassinet, L.; Boon, M.; Mani, R.; Honoré, I.; Papon, J.-F.; Cuppens, H.; Jaspers, M.; Lorent, N.; Coste, A.; et al. Infertility in an adult cohort with primary ciliary dyskinesia: Phenotype–gene association. Eur. Respir. J. 2017, 50, 1700314. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Oliveira, M.E.; Santos, R.; Oliveira, E.; Barbosa, T.; Santos, T.; Gonçalves, P.; Ferraz, L.; Pinto, S.; Barros, A.; et al. Characterization of CCDC103 expression profiles: Further insights in primary ciliary dyskinesia and in human reproduction. J. Assist. Reprod. Genet. 2019, 36, 1683–1700. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.-H.; Feng, G.; Li, J.; Li, J.-X.; Gan, X.-Y.; Zhang, B.; Zhou, H.; Liu, Y. Predictive value of sperm morphology according to WHO Laboratory Manual for the Examination and Processing of Human Semen (5th Ed) on the outcomes of IVF-ET. Zhonghua nan ke xue Natl. J. Androl. 2013, 19, 414–417. [Google Scholar]
- Coutton, C.; Fissore, R.A.; Palermo, G.D.; Stouffs, K.; Touré, A. Male Infertility: Genetics, Mechanism, and Therapies. BioMed Res. Int. 2016, 2016, 7372362. [Google Scholar] [CrossRef]
- Zorrilla, M.; Yatsenko, A.N. The Genetics of Infertility: Current Status of the Field. Curr. Genet. Med. Rep. 2013, 1, 247–260. [Google Scholar] [CrossRef][Green Version]
- Matzuk, M.M.; Lamb, D.J. The biology of infertility: Research advances and clinical challenges. Nat. Med. 2008, 14, 1197–1213. [Google Scholar] [CrossRef]
- Semple, R.K.; Topaloglu, A.K. The recent genetics of hypogonadotrophic hypogonadism–novel insights and new questions. Clin. Endocrinol. 2010, 72, 427–435. [Google Scholar] [CrossRef]
- McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Wilson, C.M.; Griffin, J.E.; Wilson, J.D. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene. J. Clin. Investig. 1992, 90, 2097–2101. [Google Scholar] [CrossRef][Green Version]
- Damseh, N.; Quercia, N.; Rumman, N.; Dell, S.D.; Kim, R.H. Primary ciliary dyskinesia: Mechanisms and management. Appl. Clin. Genet. 2017, 10, 67–74. [Google Scholar] [CrossRef][Green Version]
- Parks, J.S. Congenital Hypopituitarism. Clin. Perinatol. 2018, 45, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Forti, G.; Krausz, C. Clinical review 100: Evaluation and treatment of the infertile couple. J. Clin. Endocrinol. Metab. 1998, 83, 4177–4188. [Google Scholar] [PubMed]
- Sikka, S.C.; Hellstrom, W.J. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian, J. Androl. 2016, 18, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.J.; Salas-Huetos, A.; Oud, M.S.; Aston, K.I.; Veltman, J.A. Disease gene discovery in male infertility: Past, present and future. Qual. Life Res. 2020, 1–13. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Paolacci, S.; Barbagallo, F.; Guerri, G.; Bertelli, M.; La Vignera, S.; Calogero, A.E. Next-generation sequencing: Toward an increase in the diagnostic yield in patients with apparently idiopathic spermatogenic failure. Asian, J. Androl. 2020. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Duca, Y.; La Vignera, S.; Calogero, A.E. New insights into the genetics of spermatogenic failure: A review of the literature. Qual. Life Res. 2019, 138, 125–140. [Google Scholar] [CrossRef]
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.J.M.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef][Green Version]
- Bracke, A.; Peeters, K.; Punjabi, U.; Hoogewijs, D.; Dewilde, S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online 2018, 36, 327–339. [Google Scholar] [CrossRef][Green Version]
- Cariati, F.; Savarese, M.; D’Argenio, V.; Salvatore, F.; Tomaiuolo, R. The SEeMORE strategy: Single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin. Chem. Lab. Med. 2017, 56, 40–50. [Google Scholar] [CrossRef]
- Griffin, D.K.; Ogur, C. Chromosomal analysis in IVF: Just how useful is it? Reproduction 2018, 156, F29–F50. [Google Scholar] [CrossRef]
- Cariati, F.; D’Argenio, V.; Tomaiuolo, R. The evolving role of genetic tests in reproductive medicine. J. Transl. Med. 2019, 17, 267. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cooper, T.G.; Noonan, E.; Von Eckardstein, S.; Auger, J.; Baker, H.W.G.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T.; et al. World Health Organization reference values for human semen characteristics*‡. Hum. Reprod. Updat. 2009, 16, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Oud, M.S.; Volozonoka, L.; Smits, R.M.; Vissers, L.E.L.M.; Ramos, L.; Veltman, J.A. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 2019, 34, 932–941. [Google Scholar] [CrossRef][Green Version]
- Kusz-Zamelczyk, K.; Tomczyk, L.; Sajek, M.P.; Spik, A.; Latos-Bielenska, A.; Jedrzejczak, P.; Pawelczyk, L.; Jaruzelska, J. The highly conserved NANOS2 protein: Testis-specific expression and significance for the human male reproduction. Mol. Hum. Reprod. 2009, 15, 165–171. [Google Scholar] [CrossRef][Green Version]
- Jedidi, I.; Ouchari, M.; Yin, Q. Autosomal single-gene disorders involved in human infertility. Saudi, J. Biol. Sci. 2017, 25, 881–887. [Google Scholar] [CrossRef]
- Robay, A.; Abbasi, S.; Akil, A.; El-Bardisi, H.; Arafa, M.; Crystal, R.G.; Crystal, R.G. A systematic review on the genetics of male infertility in the era of next-generation sequencing. Arab. J. Urol. 2018, 16, 53–64. [Google Scholar] [CrossRef][Green Version]
- Yang, F.; Silber, S.; Leu, N.A.; Oates, R.D.; Marszalek, J.D.; Skaletsky, H.; Brown, L.G.; Rozen, S.G.; Page, D.C.; Wang, P.J. TEX 11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol. Med. 2015, 7, 1198–1210. [Google Scholar] [CrossRef]
- Merveille, A.-C.; Davis, E.E.; Becker-Heck, A.; Legendre, M.; Amirav, I.; Bataille, G.; Belmont, J.; Beydon, N.; Billen, F.; Clément, A.; et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2010, 43, 72–78. [Google Scholar] [CrossRef]
- Bartels, C.F.; Scacheri, C.; White, L.; Scacheri, P.C.; Bale, S. Mutations in the CHD7 Gene: The Experience of a Commercial Laboratory. Genet. Test. Mol. Biomark. 2010, 14, 881–891. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Philibert, P.; Zenaty, D.; Lin, L.; Soskin, S.; Audran, F.; Léger, J.; Achermann, J.C.; Sultan, C. Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: A French collaborative study. Hum. Reprod. 2007, 22, 3255–3261. [Google Scholar] [CrossRef] [PubMed]
- Mallepaly, R.; Butler, P.R.; Herati, A.S.; Lamb, D.J.; Vogt, P. Genetic Basis of Male and Female Infertility. Genet. Hum. Infertil. 2017, 21, 1–16. [Google Scholar] [CrossRef]
- Mobasheri, M.B.; Babatunde, K. Testicular miRNAs in relation to spermatogenesis, spermatogonial stem cells and cancer/testis genes. Sci. Afr. 2019, 3, e00067. [Google Scholar] [CrossRef]
- Xiong, H.Y.; Alipanahi, B.; Lee, L.J.; Bretschneider, H.; Merico, D.; Yuen, R.K.C.; Hua, Y.; Gueroussov, S.; Najafabadi, H.S.; Hughes, T.R.; et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 2014, 347, 1254806. [Google Scholar] [CrossRef][Green Version]
- Hopps, C.; Mielnik, A.; Goldstein, M.; Palermo, G.; Rosenwaks, Z.; Schlegel, P. Detection of sperm in men with Y chromosome microdeletions of the AZFa, AZFb and AZFc regions. Hum. Reprod. 2003, 18, 1660–1665. [Google Scholar] [CrossRef][Green Version]
- Neto, F.T.L.; Bach, P.V.; Najari, B.B.; Li, P.S.; Goldstein, M. Genetics of Male Infertility. Curr. Urol. Rep. 2016, 17, 1–12. [Google Scholar] [CrossRef]
- Miyamoto, T.; Minase, G.; Shin, T.; Ueda, H.; Okada, H.; Sengoku, K. Human male infertility and its genetic causes. Reprod. Med. Biol. 2017, 16, 81–88. [Google Scholar] [CrossRef]
- Adelman, C.A.; Petrini, J.H. ZIP4H (TEX11) Deficiency in the Mouse Impairs Meiotic Double Strand Break Repair and the Regulation of Crossing Over. PLoS Genet. 2008, 4, e1000042. [Google Scholar] [CrossRef][Green Version]
- Yatsenko, A.N.; Georgiadis, A.P.; Röpke, A.; Berman, A.J.; Jaffe, T.; Olszewska, M.; Westernströer, B.; Sanfilippo, J.; Kurpisz, M.; Rajkovic, A.; et al. X-Linked TEX11 Mutations, Meiotic Arrest, and Azoospermia in Infertile Men. N. Engl. J. Med. 2015, 372, 2097–2107. [Google Scholar] [CrossRef][Green Version]
- Zheng, K.; Yang, F.; Wang, P.J. Regulation of male fertility by X-linked genes. J. Androl. 2009, 31, 79–85. [Google Scholar] [CrossRef]
- Sha, Y.; Zheng, L.; Ji, Z.; Mei, L.; Ding, L.; Lin, S.; Wang, X.; Yang, X.; Li, P. A novel TEX11 mutation induces azoospermia: A case report of infertile brothers and literature review. BMC Med. Genet. 2018, 19, 63. [Google Scholar] [CrossRef][Green Version]
- Antony, D.; Becker-Heck, A.; Zariwala, M.A.; Schmidts, M.; Onoufriadis, A.; Forouhan, M.; Wilson, R.; Taylor-Cox, T.; Dewar, A.; Jackson, C.; et al. Mutations inCCDC39andCCDC40are the Major Cause of Primary Ciliary Dyskinesia with Axonemal Disorganization and Absent Inner Dynein Arms. Hum. Mutat. 2013, 34, 462–472. [Google Scholar] [CrossRef][Green Version]
- Balasubramanian, R.; Crowley, W.F. Reproductive endocrine phenotypes relating toCHD7mutations in humans. Am. J. Med. Genet. Part. C Semin Med. Genet. 2017, 175, 507–515. [Google Scholar] [CrossRef][Green Version]
- Pauli, S.; Von Velsen, N.; Burfeind, P.; Steckel, M.; Manz, J.; Buchholz, A.; Borozdin, W.; Kohlhase, J. CHD7 mutations causing CHARGE syndrome are predominantly of paternal origin. Clin. Genet. 2011, 81, 234–239. [Google Scholar] [CrossRef]
- Bouazoune, K.; Kingston, R.E. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl. Acad. Sci. USA 2012, 109, 19238–19243. [Google Scholar] [CrossRef][Green Version]
- Morohashi, K.; Honda, S.; Inomata, Y.; Handa, H.; Omura, T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 1992, 267, 17913–17919. [Google Scholar]
- Lin, L.; Achermann, J.C. Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex. Dev. 2008, 2, 200–209. [Google Scholar] [CrossRef][Green Version]
- Sekido, R.; Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nat. Cell Biol. 2008, 453, 930–934. [Google Scholar] [CrossRef]
- Bashamboo, A.; Ferraz-De-Souza, B.; Lourenço, D.; Lin, L.; Sebire, N.J.; Montjean, D.; Bignon-Topalovic, J.; Mandelbaum, J.; Siffroi, J.-P.; Christin-Maitre, S.; et al. Human Male Infertility Associated with Mutations in NR5A1 Encoding Steroidogenic Factor 1. Am. J. Hum. Genet. 2010, 87, 505–512. [Google Scholar] [CrossRef][Green Version]
- Ferlin, A.; Rocca, M.S.; Vinanzi, C.; Ghezzi, M.; Di Nisio, A.; Foresta, C. Mutational screening of NR5A1 gene encoding steroidogenic factor 1 in cryptorchidism and male factor infertility and functional analysis of seven undescribed mutations. Fertil. Steril. 2015, 104, 163–169.e1. [Google Scholar] [CrossRef]
- Rocca, M.S.; Ortolano, R.; Menabò, S.; Baronio, F.; Cassio, A.; Russo, G.; Balsamo, A.; Ferlin, A.; Baldazzi, L. Mutational and functional studies on NR5A1 gene in 46,XY disorders of sex development: Identification of six novel loss of function mutations. Fertil. Steril. 2018, 109, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.C.; Aittomäki, K.; Borry, P.; Cornel, M.C.; De Wert, G.; Dondorp, W.; Geraedts, J.; Gianaroli, L.; Ketterson, K.; Liebaers, I.; et al. Recent developments in genetics and medically assisted reproduction: From research to clinical applications. Eur. J. Hum. Genet. 2017, 26, 12–33. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mau-Holzmann, U. Somatic chromosomal abnormalities in infertile men and women. Cytogenet. Genome Res. 2005, 111, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Chang, E.M.; Song, S.H.; Park, S.H.; Yoon, T.K.; Shim, S.H. Complex chromosomal rearrangements in infertile males: Complexity of rearrangement affects spermatogenesis. Fertil. Steril. 2011, 95, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Punab, M.; Poolamets, O.; Paju, P.; Vihljajev, V.; Pomm, K.; Ladva, R.; Korrovits, P.; Laan, M. Causes of male infertility: A 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum. Reprod. 2016, 32, 18–31. [Google Scholar] [CrossRef]
- GeneReviews® [Internet]; Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens, K.; Amemiya, A. (Eds.) University of Washington: Seattle, WA, USA, 1993–2020.
- Mattassi, R.; Manara, E.; Colombo, P.G.; Manara, S.; Porcella, A.; Bruno, G.; Bruson, A.; Bertelli, M. Variant discovery in patients with Mendelian vascular anomalies by next-generation sequencing and their use in patient clinical management. J. Vasc. Surg. 2018, 67, 922–932.e11. [Google Scholar] [CrossRef][Green Version]
- Marceddu, G.; Dallavilla, T.; Guerri, G.; Zulian, A.; Marinelli, C.; Bertelli, M. Analysis of machine learning algorithms as integrative tools for validation of next generation sequencing data. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8139–8147. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar]
Case | Gene (Transcript Isoform) | Variant Position | Variant | Zygosity | SNP ID | Polyphen-2 | SIFT | Mutation Taster | MAF (%) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | TEX11 (NM_001003811.1) | chrX:70554698 | c.2288T > C; p.Val763Ala | Hem | rs200139216 | Benign | Damaging | Polymorphism | 0.02% | [28] |
2 | CCDC39 (NM_181426.1) | chr3:180616671 | c.2431C > T; p.Arg811Cys | Het | rs574993914 | Probably damaging | Damaging | Disease-causing | 0.007% | / |
chr3:180659582 | c.610–2A > G | Het | rs756235547 | / | / | Disease-causing | 0.01% | [29] | ||
3 | CHD7 (NM_017780.3) | chr8:60821842 | c.2750C > T; p.Thr917Met | Het | rs1165711448 | Probably damaging | Damaging | Disease-causing | / | [30] |
4 | NR5A1 (NM_004959.4) | chr9:124491167 | c.1052C > T; p.Ala351Val | Het | rs759071081 | Probably damaging | Tolerated | Disease-causing | 0.005% | [31] |
5 | NR5A1 (NM_004959.4) | chr9:124491156 | c.1063G > A; p.Val355Met | Het | rs371701248 | Probably damaging | Damaging | Disease-causing | 0.01% | [31] |
Medium Coverage | Coverage >10X | |
---|---|---|
Case 1 | 317.7X | 98.5% |
Case 2 | 296.5X | 98.7% |
Case 3 | 539.2X | 98.9% |
Case 4 | 296.5X | 98.7% |
Case 5 | 286.7X | 91.3% |
Diagnostic Suspect | Sperm Parameters | FSH (IU/L) | Mean Testicular Volume (mL) * | Additional Data | |
---|---|---|---|---|---|
Case 1 | Primary spermatogenic defects | Oligoasthenozoospermia (6.6 mil/ejac) | 8.1 | 14.4 | // |
Case 2 | Primary ciliary dyskinesia | Azoospermia, then oligoasthenoteratozoospermia after scleroembolization | Unavailable | Unavailable | Right varicocele, dextrocardia, bronchiectasia, abnormal connecting piece, and absence of outer dynein arms in the sperm axoneme, abnormal number and position of peripheral microtubules and central pair in the respiratory cilia |
Case 3 | Central hypogonadism | Severe oligoasthenoteratozoospermia | Unavailable | 5.4 | Low gonadotropins, treated with testosterone replacement therapy, severe left varicocele |
Case 4 | Primary spermatogenic defects | Oligoteratozoospermia (21.5 mil/ejac) | 4.1 | 14.5 | // |
Case 5 | Primary spermatogenic defects | Oligoasthenozoospermia (11.5 mil/ejac) | 17.5 | 8 | Testicular hypotrophy |
Case 6 | Primary spermatogenic defects | Severe oligoasthenoteratozoospermia (<5 mil/ejac) | 6.11 | 12.7 | The patient was treated with FSH to increase the sperm number, but was unresponsive |
Case 7 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 8 | Primary spermatogenic defects | Azoospermia | 3.24 | 14.8 | The patient was counseled for testicular sperm extraction, with no result |
Case 9 | Congenital hypopituitarism | Azoospermia ** | 1.67 ** | 12.0 | The patient was counseled for therapy with gonadotropins. The couple opted for ART (Assisted Reproductive Technology) using sperm of a donor. Hence, testosterone was prescribed |
Case 10 | Primary spermatogenic defects | Mild oligozoospermia | 3.77 | 11.6 | // |
Case 11 | Primary spermatogenic defects | Azoospermia | 30.9 | 6.6 | Sertoli cell only syndrome was found in testicular histology |
Case 12 | Central hypogonadism | Criptozoospermia ** | <0.9 ** | 5.5 | The patient was responsive to treatment with gonadotropins |
Case 13 | Androgen insensitivity | Unavailable | Unavailable | Unavailable | The patient had abnormally high testosterone serum level. He has normal androgenization |
Case 14 | Primary spermatogenic defects | Severe oligoasthenoteratozoospermia (<5 mil/ejac) | 2.14 | 8.0 | // |
Case 15 | Primary spermatogenic defects | Moderate oligoasthenozoospermia (<15 mil/ejac) | 6.9 | 11.5 | The patient was unresponsive to treatment with FSH |
Case 16 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 17 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 18 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 19 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 20 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 21 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Case 22 | Primary spermatogenic defects | Unavailable | Unavailable | Unavailable | // |
Male Condition | Location | Genes | OMIM # | REFSEQ | Gene Name | % Target Bases with Coverage ≥ 10X |
---|---|---|---|---|---|---|
Defects of primary spermatogenesis | 19q13.43 | AURKC | 603495 | NM_001015878 | aurora kinase C | 100.0% |
11q13.1 | CATSPER1 | 606389 | NM_053054 | cation channel sperm associated 1 | 100.0% | |
3q13.2 | CFAP44 | 617559 | NM_018338 | cilia and flagella-associated protein 44 | 100.0% | |
12q14.2 | DPY19L2 | 613893 | NM_173812 | dpy-19 like 2 | 100.0% | |
17q21.2 | KLHL10 | 608778 | NM_152467 | kelch like family member 10 | 100.0% | |
10q26.11 | NANOS1 | 608226 | NM_199461 | nanos C2HC-type zinc finger 1 | 39.45% | |
22q13.1 | PICK1 | 605926 | NM_012407 | protein interacting with PRKCA 1 | 99.75% | |
4q28.1 | PLK4 | 605031 | NM_014264 | polo like kinase 4 | 100.0% | |
16p13.3 | SEPTIN12 | 611562 | NM_144605 | septin 12 | 100.0% | |
9q34.3 | SOHLH1 | 610224 | NM_001012415 | spermatogenesis and oogenesis-specific basic helix-loop-helix 1 | 100.0% | |
20q11.21 | SUN5 | 613942 | NM_080675 | Sad1 and UNC84 domain-containing 5 | 85.74% | |
12q23.2 | SYCP3 | 604759 | NM_001177948 | synaptonemal complex protein 3 | 99.69% | |
Xp11 | TEX11 | 300311 | NM_001003811 | testis-expressed 11 | 96.43% | |
Yq11.221 | USP9Y | 400005 | NM_004654 | ubiquitin specific peptidase 9 Y-linked | 99.8% | |
7p12.2 | ZPBP | 608498 | NM_007009 | zona pellucida binding protein | 98.08% | |
1p22.1 | BRDT | 602144 | NM_001726 | bromodomain testis-associated | 100.0% | |
10q25.1 | CFAP43 | 617558 | NM_025145 | cilia and flagella-associated protein 43 | 98.45% | |
3p21.1 | DNAH1 | 603332 | NM_015512 | dynein axonemal heavy chain 1 | 100.0% | |
6q22.31 | HSF2 | 140581 | NM_004506 | heat shock transcription factor 2 | 100.0% | |
16p13.3 | MEIOB | 617670 | NM_152764 | meiosis specific with OB-fold | 100.0% | |
9q33.3 | NR5A1 | 184757 | NM_004959 | nuclear receptor subfamily 5 group A member 1 | 100.0% | |
12p12.3 | PLCZ1 | 608075 | NM_033123 | phospholipase C zeta 1 | 100.0% | |
Xq24 | RHOXF2 | 300447 | NM_032498 | Rhox homeobox family member 2 | 95.41% | |
6p21.31 | SLC26A8 | 608480 | NM_052961 | solute carrier family 26 member 8 | 100.0% | |
3q26.31 | SPATA16 | 609856 | NM_031955 | spermatogenesis associated 16 | 100.0% | |
10q26.3 | SYCE1 | 611486 | NM_130784 | synaptonemal complex central element protein 1 | 100.0% | |
18q11.2 | TAF4B | 601689 | NM_005640 | TATA-box binding protein-associated factor 4b | 98.17% | |
8p12 | TEX15 | 605795 | NM_001350162 | testis-expressed 15, meiosis, and synapsis-associated | 100.0% | |
17p13.2 | ZMYND15 | 614312 | NM_001136046 | zinc finger MYND-type containing 15 | 92.29% | |
Hypogonadotropic hypogonadism | Xp22.31 | ANOS1 | 300836 | NM_000216 | anosmin 1 | 95.4% |
2q31.2 | CCDC141 | 616031 | NM_173648 | coiled-coil domain-containing 141 | 99.89% | |
12q21.33 | DUSP6 | 602748 | NM_001946 | dual specificity phosphatase 6 | 100.0% | |
8p21.3 | FGF17 | 603725 | NM_003867 | fibroblast growth factor 17 | 100.0% | |
8p11.23 | FGFR1 | 136350 | NM_023110 | fibroblast growth factor receptor 1 | 100.0% | |
11p14.1 | FSHB | 136530 | NM_000510 | follicle-stimulating hormone subunit beta | 100.0% | |
4q13.2 | GNRHR | 138850 | NM_000406 | gonadotropin-releasing hormone receptor | 100.0% | |
3p14.3 | IL17RD | 606807 | NM_017563 | interleukin 17 receptor D | 100.0% | |
19p13.3 | KISS1R | 604161 | NM_032551 | KISS1 receptor | 84.84% | |
9q34.3 | NSMF | 608137 | NM_015537 | NMDA receptor synaptonuclear signaling and neuronal migration factor | 95.03% | |
3p13 | PROK2 | 607002 | NM_021935 | prokineticin 2 | 97.67% | |
7q21.11 | SEMA3A | 603961 | NM_006080 | semaphorin 3A | 100.0% | |
9q34.3 | SOHLH1 | 610224 | NM_001012415 | spermatogenesis and oogenesis-specific basic helix-loop-helix 1 | 100.0% | |
5q31.3 | SPRY4 | 607984 | NM_030964 | sprouty RTK-signaling antagonist 4 | 98.25% | |
5q31.3 | SRA1 | 603819 | NM_001035235 | steroid receptor RNA activator 1 | 100.0% | |
4q24 | TACR3 | 162332 | NM_001059 | tachykinin receptor 3 | 100.0% | |
19q13.2 | AXL | 109135 | NM_021913 | AXL receptor tyrosine kinase | 100.0% | |
8q12.2 | CHD7 | 608892 | NM_017780 | chromodomain helicase DNA binding protein 7 | 99.54% | |
7q31.32 | FEZF1 | 613301 | NM_001024613 | FEZ family zinc finger 1 | 96.46% | |
10q24.32 | FGF8 | 600483 | NM_033163 | fibroblast growth factor 8 | 93.16% | |
20p12.1 | FLRT3 | 604808 | NM_198391 | fibronectin leucine rich transmembrane protein 3 | 100.0% | |
8p21.2 | GNRH1 | 152760 | NM_001083111 | gonadotropin-releasing hormone 1 | 100.0% | |
2q14.3 | HS6ST1 | 604846 | NM_004807 | heparan sulfate 6-O-sulfotransferase 1 | 96.3% | |
1q32.1 | KISS1 | 603286 | NM_002256 | KiSS-1 metastasis suppressor | 100.0% | |
19q13.33 | LHB | 152780 | NM_000894 | luteinizing hormone subunit beta | 100.0% | |
20p12.3 | PROKR2 | 607123 | NM_144773 | prokineticin receptor 2 | 100.0% | |
7q21.11 | SEMA3E | 608166 | NM_012431 | semaphorin 3E | 100.0% | |
22q13.1 | SOX10 | 602229 | NM_006941 | SRY-box transcription factor 10 | 100.0% | |
12q13.3 | TAC3 | 162330 | NM_013251 | tachykinin precursor 3 | 100.0% | |
10q26.12 | WDR11 | 606417 | NM_018117 | WD repeat domain 11 | 100.0% | |
Androgen insensitivity | Xq12 | AR | 313700 | NM_000044 | androgen receptor | 100.0% |
Congenital hypopituitarism | 2q14.2 | GLI2 | 165230 | NM_005270 | GLI family zinc finger 2 | 91.92% |
9q34.3 | LHX3 | 600577 | NM_014564 | LIM homeobox 3 | 81.51% | |
14q22.3 | OTX2 | 600037 | NM_172337 | orthodenticle homeobox 2 | 100.0% | |
5q35.3 | PROP1 | 601538 | NM_006261 | PROP paired-like homeobox 1 | 95.99% | |
3p14.3 | HESX1 | 601802 | NM_003865 | HESX homeobox 1 | 100.0% | |
1q25.2 | LHX4 | 602146 | NM_033343 | LIM homeobox 4 | 100.0% | |
3p11.2 | POU1F1 | 173110 | NM_000306 | POU class 1 homeobox 1 | 100.0% | |
Xq27.1 | SOX3 | 313430 | NM_005634 | SRY-box transcription factor 3 | 70.12% | |
Primary ciliary dyskinesia | 10p12.1 | ARMC4 | 615408 | NM_001290020 | armadillo repeat-containing 4 | 99.65% |
17q21.31 | CCDC103 | 614677 | NM_213607 | coiled-coil domain-containing 103 | 100.0% | |
19p13.2 | CCDC151 | 615956 | NM_145045 | coiled-coil domain-containing 151 | 99.13% | |
17q25.3 | CCDC40 | 613799 | NM_017950 | coiled-coil domain-containing 40 | 98.52% | |
5q11.2 | CCNO | 607752 | NM_021147 | cyclin O | 100.0% | |
21q22.11 | CFAP298 | 615494 | NM_021254 | cilia and flagella-associated protein 298 | 100.0% | |
14q21.3 | DNAAF2 | 612517 | NM_018139 | dynein axonemal assembly factor 2 | 95.63% | |
19q13.42 | DNAAF3 | 614566 | NM_178837 | dynein axonemal assembly factor 3 | 89.24% | |
7p22.3 | DNAAF5 | 614864 | NM_017802 | dynein axonemal assembly factor 5 | 78.93% | |
7p15.3 | DNAH11 | 603339 | NM_001277115 | dynein axonemal heavy chain 11 | 99.94% | |
6p21.2 | DNAH8 | 603337 | NM_001206927 | dynein axonemal heavy chain 8 | 99.93% | |
17q25.1 | DNAI2 | 605483 | NM_023036 | dynein axonemal intermediate chain 2 | 100.0% | |
14q24.3 | DNAL1 | 610062 | NM_031427 | dynein axonemal light chain 1 | 100.0% | |
16q24.3 | GAS8 | 605178 | NM_001481 | growth arrest specific 8 | 98.09% | |
8q24.22 | LRRC6 | 614930 | NM_012472 | leucine rich repeat-containing 6 | 100.0% | |
7p14.1 | NME8 | 607421 | NM_016616 | NME/NM23 family member 8 | 100.0% | |
21q22.3 | RSPH1 | 609314 | NM_080860 | radial spoke head component 1 | 100.0% | |
6q22.1 | RSPH4A | 612647 | NM_001010892 | radial spoke head component 4A | 100.0% | |
8q22.2 | SPAG1 | 603395 | NM_172218 | sperm associated antigen 1 | 94.7% | |
17q21.2 | TTC25 | 617095 | NM_031421 | tetratricopeptide repeat domain 25 | 90.46% | |
3p14.2 | CFAP20DC | 300572 | NM_198463 | CFAP20 domain-containing | 100.0% | |
19q13.33 | CCDC114 | 615038 | NM_144577 | coiled-coil domain-containing 114 | 100.0% | |
3q26.33 | CCDC39 | 613798 | NM_181426 | coiled-coil domain-containing 39 | 100.0% | |
12q13.12 | CCDC65 | 611088 | NM_033124 | coiled-coil domain-containing 65 | 100.0% | |
1q41 | CENPF | 600236 | NM_016343 | centromere protein F | 100.0% | |
16q24.1 | DNAAF1 | 613190 | NM_178452 | dynein axonemal assembly factor 1 | 100.0% | |
15q21.3 | DNAAF4 | 608706 | NM_130810 | dynein axonemal assembly factor 4 | 100.0% | |
3p21.1 | DNAH1 | 603332 | NM_015512 | dynein axonemal heavy chain 1 | 100.0% | |
5p15.2 | DNAH5 | 603335 | NM_001369 | dynein axonemal heavy chain 5 | 99.82% | |
9p13.3 | DNAI1 | 604366 | NM_012144 | dynein axonemal intermediate chain 1 | 100.0% | |
11q13.4 | DNAJB13 | 610263 | NM_153614 | DnaJ heat shock protein family (Hsp40) member B13 | 100.0% | |
2p23.3 | DRC1 | 615288 | NM_145038 | dynein regulatory complex subunit 1 | 93.24% | |
16q22.2 | HYDIN | 610812 | NM_001270974 | HYDIN axonemal central pair apparatus protein | 98.92% | |
5q11.2 | MCIDAS | 614086 | NM_001190787 | multiciliate differentiation and DNA synthesis associated cell cycle protein | 100.0% | |
Xq22.3 | DNAAF6 | 300933 | NM_001169154 | dynein axonemal assembly factor 6 | 100.0% | |
6q25.3 | RSPH3 | 615876 | NM_031924 | radial spoke head 3 | 100.0% | |
6p21.1 | RSPH9 | 612648 | NM_152732 | radial spoke head component 9 | 100.0% | |
2q35 | STK36 | 607652 | NM_015690 | serine/threonine kinase 36 | 100.0% | |
3p21.31 | ZMYND10 | 607070 | NM_015896 | zinc finger MYND-type-containing 10 | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannarella, R.; Precone, V.; Guerri, G.; Busetto, G.M.; Di Renzo, G.C.; Gerli, S.; Manara, E.; Dautaj, A.; Bertelli, M.; Calogero, A.E. Clinical Evaluation of a Custom Gene Panel as a Tool for Precision Male Infertility Diagnosis by Next-Generation Sequencing. Life 2020, 10, 242. https://doi.org/10.3390/life10100242
Cannarella R, Precone V, Guerri G, Busetto GM, Di Renzo GC, Gerli S, Manara E, Dautaj A, Bertelli M, Calogero AE. Clinical Evaluation of a Custom Gene Panel as a Tool for Precision Male Infertility Diagnosis by Next-Generation Sequencing. Life. 2020; 10(10):242. https://doi.org/10.3390/life10100242
Chicago/Turabian StyleCannarella, Rossella, Vincenza Precone, Giulia Guerri, Gian Maria Busetto, Gian Carlo Di Renzo, Sandro Gerli, Elena Manara, Astrit Dautaj, Matteo Bertelli, and Aldo Eugenio Calogero. 2020. "Clinical Evaluation of a Custom Gene Panel as a Tool for Precision Male Infertility Diagnosis by Next-Generation Sequencing" Life 10, no. 10: 242. https://doi.org/10.3390/life10100242