# Development of Cutting Force Model and Process Maps for Power Skiving Using CAD-Based Modelling

## Abstract

**:**

## 1. Introduction

## 2. State of the Art

## 3. Power Skiving Process Kinematics

_{at}is the helix angle of the cutting tool, h

_{ag}the helix angle of the workgear and Σ the inclination angle.

_{1}. Because of the helix angle of the tool, an additional cutting speed exists. This cutting speed, presented as V

_{c}, is responsible for the cutting motion in the process as it provides the main cutting speed for power skiving. By adding the two vectors, the cutting speed of the process can be calculated (V

_{2}).

_{at}), the pressure angle (a

_{n}), the secondary rake angle (τ), the primary rake angle (γ), the number of teeth of the tool (z

_{t}) and the module of the gear (m

_{n}). The workgear parameters include the helix angle (h

_{ag}), the module (m

_{n}) and the number of teeth of the gear (z

_{g}). Finally, the process parameters include the cutting speed (v

_{c}), the cutting feed (f

_{a}) and the depth of cut.

## 4. Simulation Model

## 5. Simulation Validation

## 6. Effect of Process Parameters on Cutting Forces

## 7. Development of Power Skiving Process Maps

_{a}= 0.6 mm/wrev are presented in Figure 12, Figure 13, Figure 14 and Figure 15. The feedrate had a minimum effect in the macro geometry of the chip, as is presented in Figure 10. In all cases, the first depth of cut produced large chips with a general U-shaped form with the leading flank having a heavier chip load and the maximum chip thickness towards the final revolving positions. Consecutive passes tend to generate a Z- or M-type chip geometries with different widths directly linked with the depth of cut. One aspect worth noting is the increase in the chip length as the machining strategy 5 progresses.

## 8. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Karpuschewski, B.; Knoche, H.-J.; Hipke, M. Gear finishing by abrasive processes. CIRP Ann. Manuf. Technol.
**2008**, 57, 621–640. [Google Scholar] [CrossRef] - Industrial study 3320 “World Gears”; Freedonia: Cleveland, OH, USA, 2015.
- Global Gear Technology Market by Technology by Geographic Scope and Forecast; Verified Market Research: Lewes, DE, USA, 2021; Available online: https://www.verifiedmarketresearch.com/product/gear-technology-market/ (accessed on 10 April 2021).
- Pittler von, W. Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs. Germany Patent Application DE243514C, 16 February 1912. [Google Scholar]
- Stadtfeld, H.J. Power skiving of cylindrical gears on different machine platforms. Gear Technol.
**2014**, 31, 52–62. [Google Scholar] - Bouzakis, K.D.; Lili, E.; Michailidis, N.; Friderikos, O. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Ann. Manuf. Technol.
**2008**, 57, 676–696. [Google Scholar] [CrossRef] - Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.; Denkena, B.; Lazoglu, I. Virtual process systems for part machining operations. Ann. CIRP
**2014**, 63, 585–605. [Google Scholar] [CrossRef] - Meijer, A.; Bergmann, J.A.; Krebs, E.; Biermann, D.; Wiederkehr, P. Analytical and Simulation-Based Prediction of Surface Roughness for Micromilling Hardened HSS. J. Manuf. Mater. Process.
**2019**, 3, 70. [Google Scholar] [CrossRef] [Green Version] - Tapoglou, N.; Antoniadis, A. 3-Dimenstional Kinematics Simulation of Face Milling. Measurement
**2012**, 45, 1396–1405. [Google Scholar] [CrossRef] - Kyratsis, P.; Tzotzis, A.; Markopoulos, A.; Tapoglou, N. CAD-Based 3D-FE Modelling of AISI-D3 Turning with Ceramic Tooling. Machines
**2021**, 9, 4. [Google Scholar] [CrossRef] - Chang, Z.; Chen, Z.; Mo, R.; Zhang, D.; Deng, Q. An accurate and efficient approach to geometric modeling of undeformed chips in five-axis CNC milling. Comput. Aided Des.
**2017**, 88, 42–59. [Google Scholar] [CrossRef] - Tapoglou, N.; Antoniadis, A. CAD-Based Calculation of Cutting Force Components in Gear Hobbing. J. Manuf. Sci. Eng.
**2012**, 134, 031009–1-8. [Google Scholar] - Antoniadis, A. Gear skiving-CAD simulation approach. Comput. Aided Des.
**2012**, 44, 611–616. [Google Scholar] [CrossRef] - Sabkhi, N.; Nouari, M.; Moufki, A. Mechanistic approach applied to the gear hobbing process. Adv. Mater. Process. Technol.
**2017**, 3, 45–51. [Google Scholar] [CrossRef] - Erkorkmaz, K.; Katz, A.; Hosseinkhani, Y.; Plakhotnik, D.; Stautner, M.; Ismail, F. Chip geometry and cutting forces in gear shaping. CIRP Ann. Manuf. Technol.
**2016**, 65, 133–136. [Google Scholar] [CrossRef] - Klocke, F.; Kobialka, C. Possibilities for Reducing Production Costs in Cylindrical Gear Hobbing and Shaping. In Proceedings of the 4th World Congress on Gearing and Power Transmission, Paris, France, 16–18 March 1999; pp. 1609–1620. [Google Scholar]
- Abler, J.; Felten, K.; Kobialka, C.; Lierse, T.; Mundt, A.; Pomp, J.; Sulzer, G. Gear Cutting Technology; Practice Hand Book; Liebherr GmbH: Kempten, Germany, 2004. [Google Scholar]
- Tapoglou, N. Calculation of chip and gear geometry in power skiving using a CAD based simulation. Int. J. Adv. Manuf. Technol.
**2019**, 100, 1779–1785. [Google Scholar] [CrossRef] [Green Version] - Koenig, W.; Bouzakis, K.-D. Chip Formation in Gear-Shaping. Ann. CIRP
**1977**, 25, 17–20. [Google Scholar] - Bouzakis, K.-D.; Friderikos, O.; Tsiafis, I. FEM-supported Simulation of Chip Formation and Flow in Gear Hobbing of Spur and Helical Gears. CIRP J. Manuf. Sci. Technol.
**2008**, 1, 18–26. [Google Scholar] [CrossRef] - Guo, E.; Hong, R.; Huang, X.; Fang, C. Research on the cutting mechanism of cylindrical gear power skiving. Int. J. Adv. Manuf. Technol.
**2015**, 79, 541–550. [Google Scholar] [CrossRef] - Guo, E.; Hong, R.; Huang, X.; Fang, C. A novel power skiving method using the common shaper cutter. Int. J. Adv. Manuf. Technol.
**2016**, 83, 157–165. [Google Scholar] [CrossRef] - Guo, E.; Hong, R.; Huang, X.; Fang, C. Research on the design of skiving tool for machining involute gears. J. Mech. Sci. Technol.
**2014**, 28, 5107–5115. [Google Scholar] [CrossRef] - Guo, E.; Ren, N.; Liu, Z.; Zheng, X. Influence of sensitive pose errors on tooth deviation of cylindrical gear in power skiving. Adv. Mech. Eng.
**2019**, 11. [Google Scholar] [CrossRef] - Tsai, C.Y. Mathematical model for design and analysis of power skiving tool for involute gear cutting. Mech. Mach. Theory
**2016**, 101, 195–208. [Google Scholar] [CrossRef] - Tsai, C.Y.; Lin, P.D. Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center. Int. J. Adv. Manuf. Technol.
**2018**, 95, 609–623. [Google Scholar] [CrossRef] - Shin, Y.P.; Li, Y.J. A Novel Method for Producing a Conical Skiving Tool with Error-Free Flank Faces for Internal Gear Manufacture. J. Mech. Des.
**2018**, 140, 043302. [Google Scholar] - Ren, Z.; Fang, Z.; Kobayashi, G.; Kizaki, T.; Sugita, N.; Nishikawa, T.; Kugo, J.; Nabata, E. Influence of tool eccentricity on surface roughness in gear skiving. Precis. Eng.
**2020**, 63, 170–176. [Google Scholar] [CrossRef] - McCloskey, P.; Katz, A.; Berglind, L.; Erkorkmaz, K.; Ozturk, E.; Ismail, F. Chip geometry and cutting forces in gear power skiving. CIRP Ann.
**2019**, 68, 109–112. [Google Scholar] [CrossRef] - Inui, M.; Huang, Y.; Onozuka, H.; Umezu, N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manuf.
**2020**, 48, 520–527. [Google Scholar] [CrossRef] - Kienzle, O.; Victor, H. Spezifische schnittkräfte bei der metallbearbeitung. Werkstattstech. Masch.
**1957**, 47, 224–225. [Google Scholar] - Jansen, W. Leistungssteigerung und Verbesserung der Fertigungsgenauigkeit beim Wälzschälen von Innenverzahnungen. Ph. D. Thesis, RWTH Aachen, Aachen, Germany, 1980. [Google Scholar]

Parameter | Value |
---|---|

Work Gear | |

Number of teeth (z_{2}) | 126 |

Module (m_{n}) | 3 mm |

Pressure angle (a_{n}) | 20° |

Gear width (b) | 20 mm |

Helix angle (h_{ag}) | 0° |

Material | 42CrMo4V |

Cutter | |

Number of teeth (z_{1}) | 42 |

Module (m_{n}) | 3 mm |

Helix angle (h_{at}) | 30° |

Primary rake angle (γ) | 30° |

Secondary rake angle (τ) | 5° |

Process parameters | |

Inclination angle (Σ) | 30° |

Axial feed (f_{a}) | 0.2–1 mm/wrev |

Depth of cut (a_{p}) | 0.75–6.75 mm |

Strategy | Axial Feed (f_{a}) | Depth of Cut (a_{p}) |
---|---|---|

Strategy 1 | 0.2–1 mm/wrev | 6.75 mm |

Strategy 2 | 0.2–1 mm/wrev | 6, 0.75 mm |

Strategy 3 | 0.2–1 mm/wrev | 4, 2, 0.75 mm |

Strategy 4 | 0.2–1 mm/wrev | 2, 4, 0.75 mm |

Strategy 5 | 0.2–1 mm/wrev | 2, 2, 2, 0.75 mm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tapoglou, N.
Development of Cutting Force Model and Process Maps for Power Skiving Using CAD-Based Modelling. *Machines* **2021**, *9*, 95.
https://doi.org/10.3390/machines9050095

**AMA Style**

Tapoglou N.
Development of Cutting Force Model and Process Maps for Power Skiving Using CAD-Based Modelling. *Machines*. 2021; 9(5):95.
https://doi.org/10.3390/machines9050095

**Chicago/Turabian Style**

Tapoglou, Nikolaos.
2021. "Development of Cutting Force Model and Process Maps for Power Skiving Using CAD-Based Modelling" *Machines* 9, no. 5: 95.
https://doi.org/10.3390/machines9050095