Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Variable Admittance Controller
3.2. Adaptive Control
3.3. VR Training Environment
4. Experiment
5. Results
5.1. Variable Stiffness Admittance Controller and VR Feedbacks
5.2. Tracking Performance of Adaptive Controller
5.3. Efficacy of RAAT
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.E.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Ochi, M.; Wada, F.; Saeki, S.; Hachisuka, K. Gait training in subacute non-ambulatory stroke patients using a full weight-bearing gait-assistance robot: A prospective, randomized, open, blinded-endpoint trial. J. Neurol. Sci. 2015, 353, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? a systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, I.J.; Parsons, M.W.; Neilson, C.; Carey, L.M. Task-specific training: Evidence for and translation to clinical practice. Occup. Ther. Int. 2009, 16, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Waddell, K.J.; Birkenmeier, R.L.; Moore, J.L.; Hornby, T.G.; Lang, C.E. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am. J. Occup. Ther. 2014, 68, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.Y.; Patterson, C.B.; Lang, C.E. Transfer of training between distinct motor tasks after stroke: Implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil. Neural Repair 2013, 27, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Colombo, R.; Pisano, F.; Micera, S.; Mazzone, A.; Delconte, C.; Carrozza, M.C.; Dario, P.; Minuco, G. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Puzzolante, L.; Zollo, L.; Dario, P.; Posteraro, F. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training. IEEE Trans. Haptics 2014, 7, 175–180. [Google Scholar] [CrossRef]
- Aprile, I.; Iacovelli, C.; Goffredo, M.; Cruciani, A.; Galli, M.; Simbolotti, C.; Pecchioli, C.; Padua, L.; Galafate, D.; Pournajaf, S.; et al. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: Clinical and gait outcomes from a pilot bi-centre study. NeuroRehabilitation 2019, 45, 201–212. [Google Scholar] [CrossRef]
- Tole, G.; Raymond, M.J.; Williams, G.; Clark, R.A.; Holland, A.E. Strength training to improve walking after stroke: How physiotherapist, patient and workplace factors influence exercise prescription. Physiother. Theory Pract. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Flansbjer, U.B. Muscle strength training, gait performance and physiotherapy after stroke. Minerva Med. 2008, 99, 353–368. [Google Scholar]
- Yi, Y.; Shim, J.S.; Oh, B.-M.; Seo, H.G. Grip strength on the unaffected side as an independent predictor of functional improvement after stroke. Am. J. Phys. Med. Rehabil. 2017, 96, 616–620. [Google Scholar] [CrossRef]
- Park, S.; Park, J.-Y. Grip strength in post-stroke hemiplegia. J. Phys. Ther. Sci. 2016, 28, 677–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washabaugh, E.P.; Krishnan, C. A wearable resistive robot facilitates locomotor adaptations during gait. Restor. Neurol. Neurosci. 2018, 36, 215–223. [Google Scholar] [CrossRef]
- Ouellette, M.M.; LeBrasseur, N.K.; Bean, J.F.; Phillips, E.; Stein, J.; Frontera, W.R.; Fielding, R.A. High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke 2004, 35, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Park, B.-S.; Kim, M.-Y.; Lee, L.-K.; Yang, S.-M.; Lee, W.-D.; Noh, J.-W.; Shin, Y.-S.; Kim, J.-H.; Lee, J.-U.; Kwak, T.-Y.; et al. The effects of a progressive resistance training program on walking ability in patients after stroke: A pilot study. J. Phys. Ther. Sci. 2015, 27, 2837–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vulpen, L.F.; de Groot, S.; Rameckers, E.; Becher, J.G.; Dallmeijer, A.J. Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehabil. Neural Repair 2017, 31, 827–841. [Google Scholar] [CrossRef]
- Wu, M.; Landry, J.M.; Schmit, B.D.; Hornby, T.G.; Yen, S.-C. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: A pilot study. Arch. Phys. Med. Rehabil. 2012, 93, 782–789. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, Z.G.; Cheng, L.; Wang, W.Q.; Chen, Y.X.; Hu, J.; Peng, L.; Wang, H.B. iLeg—A lower limb rehabilitation robot: A proof of concept. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 761–768. [Google Scholar] [CrossRef]
- Huang, Y.; Song, R.; Argha, A.; Savkin, A.V.; Celler, B.G.; Su, S.W. Continuous description of human 3D motion intent through switching mechanism. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, Z.; He, B.; Zhao, C.-G.; Yao, W.; Xu, G.; Xie, J.; Cui, L. Attention-controlled assistive wrist rehabilitation using a low-cost EEG sensor. IEEE Sens. J. 2019, 19, 6497–6507. [Google Scholar] [CrossRef] [Green Version]
- Rosado, W.M.A.; Ortega, A.B.; Valdes, L.G.V.; Ascencio, J.R.; Beltran, C.D.G. Active rehabilitation exercises with a parallel structure ankle rehabilitation prototype. IEEE Lat. Am. Trans. 2017, 15, 786–794. [Google Scholar] [CrossRef]
- Saposnik, G.; Levin, M.; Stroke Outcome Res Canada, S. Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Bortone, I.; Leonardis, D.; Mastronicola, N.; Crecchi, A.; Bonfiglio, L.; Procopio, C.; Solazzi, M.; Frisoli, A. Wearable haptics and immersive virtual reality rehabilitation training in children with neuromotor impairments. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1469–1478. [Google Scholar] [CrossRef]
- Saposnik, G.; Teasell, R.; Mamdani, M.; Hall, J.; McIlroy, W.; Cheung, D.; Thorpe, K.E.; Cohen, L.G.; Bayley, M.; Stroke Outcome Res Canada, S. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation a pilot randomized clinical trial and proof of principle. Stroke 2010, 41, 1477–1484. [Google Scholar] [CrossRef] [Green Version]
- Jack, D.; Boian, R.; Merians, A.S.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Garrett, B.; Taverner, T.; Cordingley, E.; Sun, C. Immersive virtual reality health games: A narrative review of game design. J. Neuroeng. Rehabil. 2021, 18, 1–21. [Google Scholar] [CrossRef]
- Caldas, O.I.; Aviles, O.F.; Rodriguez-Guerrero, C. Effects of presence and challenge variations on emotional engagement in immersive virtual environments. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1109–1116. [Google Scholar] [CrossRef]
- Song, C.G.; Kim, J.Y.; Kim, N.G. A new postural balance control system for rehabilitation training based on virtual cycling. IEEE Trans. Inf. Technol. Biomed. 2004, 8, 200–207. [Google Scholar] [CrossRef]
- Tatemoto, T.; Tanaka, S.; Maeda, K.; Tanabe, S.; Kondo, K.; Yamaguchi, T. Skillful cycling training induces cortical plasticity in the lower extremity motor cortex area in healthy persons. Front. Neurosci. 2019, 13, 927. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.A.; Dolmage, T.E.; Mangovski-Alzamora, S.; Romano, J.; O’Brien, L.; Brooks, D.; Goldstein, R.S. One-legged cycle training for chronic obstructive pulmonary disease a pragmatic study of implementation to pulmonary rehabilitation. Ann. Am. Thoracic Soc. 2015, 12, 1490–1497. [Google Scholar] [CrossRef]
- Valent, L.; Dallmeijer, A.; Houdijk, H.; Slootman, H.J.; Janssen, T.W.; Van Der Woude, L.H.V. Effects of hand cycle training on wheelchair capacity during clinical rehabilitation in persons with a spinal cord injury. Disabil. Rehabil. 2010, 32, 2191–2200. [Google Scholar] [CrossRef]
- Bellman, M.J.; Downey, R.J.; Parikh, A.; Dixon, W.E. Automatic control of cycling induced by functional electrical stimulation with electric motor assistance. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1225–1234. [Google Scholar] [CrossRef]
- Meuleman, J.; van Asseldonk, E.; van Oort, G.; Rietman, H.; van der Kooij, H. LOPES II-design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, X.; Chen, B.; Wu, H. Development of a minimal-intervention-based admittance control strategy for upper extremity rehabilitation exoskeleton. IEEE Trans. Syst. Man Cybern.-Syst. 2018, 48, 1005–1016. [Google Scholar] [CrossRef]
- Culmer, P.R.; Jackson, A.E.; Makower, S.; Richardson, R.; Cozens, J.A.; Levesley, M.C.; Bhakta, B.B. A control strategy for upper limb robotic rehabilitation with a dual robot system. IEEE-ASME Trans. Mechatron. 2010, 15, 575–585. [Google Scholar] [CrossRef]
- Cousin, C.A.; Rouse, C.A.; Duenas, V.H.; Dixon, W.E. Controlling the cadence and admittance of a functional electrical stimulation cycle. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhou, Z.; Wang, L.; Xu, W.; Liu, Q.; Liu, A. Sensorless and adaptive admittance control of industrial robot in physical human-robot interaction. Rob. Comput. Integr. Manuf. 2018, 51, 158–168. [Google Scholar] [CrossRef]
- Aguirre-Ollinger, G.; Colgate, J.E.; Peshkin, M.A.; Goswami, A. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. Int. J. Rob. Res. 2011, 30, 486–499. [Google Scholar] [CrossRef]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE-ASME Trans. Mechatron. 2013, 18, 1799–1808. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, S.Q.; Li, X.; Zhu, G.; Meng, W.; Huang, X.; Veale, A.J. Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans. Ind. Electron. 2018, 65, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Cho, S.; Han, S. Practical time-delay control with adaptive gains for trajectory tracking of robot manipulators. IEEE Trans. Ind. Electron. 2018, 65, 5682–5692. [Google Scholar] [CrossRef]
- Ke, D.; Cong, S.; Kong, D.; Shen, H. Discrete-time direct model reference adaptive control application in a high-precision inertially stabilized platform. IEEE Trans. Ind. Electron. 2019, 66, 358–367. [Google Scholar]
- Lu, Y. Adaptive-fuzzy control compensation design for direct adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 2018, 26, 3222–3231. [Google Scholar] [CrossRef]
- Abou Harfouch, Y.; Yuan, S.; Baldi, S. An adaptive switched control approach to heterogeneous platooning with intervehicle communication losses. IEEE Trans. Control Netw. Syst. 2018, 5, 1434–1444. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, Q. Adaptive sliding mode control with parameter estimation and kalman filter for precision motion control of a piezo-driven microgripper. IEEE Trans. Control Syst. Technol. 2017, 25, 728–735. [Google Scholar] [CrossRef]
- Deng, M.; Kawashima, T. Adaptive nonlinear sensorless control for an uncertain miniature pneumatic curling rubber actuator using passivity and robust right coprime factorization. IEEE Trans. Control Syst. Technol. 2016, 24, 318–324. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Vladareanu, L.; Lin, M.; Vladareanu, V.; Li, Y. Detection of participation and training task difficulty applied to the multi-sensor systems of rehabilitation robots. Sensors 2019, 19, 4681. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lin, M.; Lin, Z.; Wang, X.; Niu, J.; Yu, H.; Zhang, L.; Vladareanu, L. Virtual reality training system based on lower limb rehabilitation robot. J. Eng. Technol. 2018, 7, 119–122. [Google Scholar]
S | H(cm) | W(kg) | TD | CT | BT(°C) RR (Beat per Minute) HR (Breath per Minute) | ||
---|---|---|---|---|---|---|---|
R | p | A | |||||
M | 178 | 72 | D | 6:04 | 36.8 | 36.9 | 36.81 |
16 | 23 | 18.89 | |||||
82 | 99 | 92.21 | |||||
M | 172 | 79 | D | 6:37 | 36.6 | 36.7 | 36.62 |
17 | 23 | 19.43 | |||||
84 | 101 | 93.76 | |||||
M | 183 | 86 | C | 7:01 | 36.5 | 36.7 | 36.57 |
16 | 25 | 20.18 | |||||
78 | 97 | 92.45 | |||||
F | 159 | 49 | E | 5:35 | 36.7 | 36.8 | 36.70 |
15 | 21 | 17.41 | |||||
74 | 90 | 80.47 | |||||
M | 179 | 87 | C | 6:21 | 36.4 | 36.6 | 36.46 |
18 | 25 | 22.14 | |||||
86 | 103 | 95.87 | |||||
M | 169 | 71 | N | 5:52 | 36.7 | 36.8 | 36.73 |
17 | 22 | 20.11 | |||||
81 | 97 | 91.28 | |||||
M | 177 | 65 | N | 5:48 | 36.2 | 36.3 | 36.21 |
15 | 23 | 17.78 | |||||
75 | 91 | 86.84 | |||||
F | 163 | 62 | E | 5:24 | 36.8 | 36.9 | 36.81 |
16 | 21 | 18.07 | |||||
78 | 92 | 85.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Wang, H.; Niu, J.; Tian, Y.; Wang, X.; Liu, G.; Sun, L. Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training. Machines 2021, 9, 301. https://doi.org/10.3390/machines9110301
Lin M, Wang H, Niu J, Tian Y, Wang X, Liu G, Sun L. Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training. Machines. 2021; 9(11):301. https://doi.org/10.3390/machines9110301
Chicago/Turabian StyleLin, Musong, Hongbo Wang, Jianye Niu, Yu Tian, Xincheng Wang, Guowei Liu, and Li Sun. 2021. "Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training" Machines 9, no. 11: 301. https://doi.org/10.3390/machines9110301
APA StyleLin, M., Wang, H., Niu, J., Tian, Y., Wang, X., Liu, G., & Sun, L. (2021). Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training. Machines, 9(11), 301. https://doi.org/10.3390/machines9110301