Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
Abstract
1. Introduction
2. The Construction of a Hub Motor Dynamic Inertial Suspension Model
2.1. SRM Model
2.2. The Construction of an Unbalanced Radial Electromagnetic Force Model for a Hub Motor
3. The Construction of an HMDV Dynamic Inertial Suspension Model Based on the Generalized Ground-Hook Theory
3.1. Generalized Ground-Hook Theory
3.2. A Quarter Model of an HMDV Dynamic Inertial Suspension Based on the Generalized Ground-Hook Theory
4. The Parameter Optimization of the Impedance Transfer Function for the Generalized Ground-Hook Dynamic Inertial Suspension and Its Order Selection
4.1. The Parameter Optimization of the Impedance Transfer Function for the Generalized Ground-Hook Dynamic Inertial Suspension
4.2. The Selection of the Order for the Impedance Transfer Function of a Generalized Ground-Hook Dynamic Inertial Suspension
4.2.1. Time-Domain Analysis
4.2.2. Power Spectral Density Frequency-Domain Analysis
5. The Specific Implementation of the HMDV Generalized Ground-Hook Dynamic Inertial Suspension
5.1. Semi-Active Control of HMDV Generalized Ground-Hook Dynamic Inertial Suspension
5.2. The Analysis of the Phase–Frequency Characteristics of the HMDV Generalized Ground-Hook Dynamic Inertial Suspension
5.3. Deviation Correction After Semi-Active Control of HMDV Generalized Ground-Hook Dynamic Inertial Suspension
6. Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HMDV | hub motor-driven vehicle |
PSD | power spectral density |
SRM | switched reluctance motor |
RMS | root mean square |
MR | magnetorheological |
References
- Mok, Y.M.; Zhai, L.; Wang, C.; Zhang, X.; Hou, Y. A post impact stability control for four hub-motor independent-drive electric vehicles. IEEE Trans. Veh. Technol. 2021, 71, 1384–1396. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, L.; Li, Y. Coupling effects in hub motor and optimization for active suspension system to improve the vehicle and the motor performance. J. Sound Vib. 2020, 482, 115426. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Qiang, Y.; Xu, M.; Guan, C.; Zhou, Z. Structural topology and dynamic response analysis of an electric torque vectoring drive-axle for electric vehicles. Automot. Innov. 2022, 5, 164–179. [Google Scholar] [CrossRef]
- Hengst, J.; Werra, M.; Küçükay, F. Evaluation of transmission losses of various battery electric vehicles. Automot. Innov. 2022, 5, 388–399. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Cai, T.; Sun, W.; Xu, X.; Wang, S. Dual-pump Control Algorithm of Two-speed Powershift Transmissions in Electric Vehicles. Automot. Innov. 2022, 5, 57–69. [Google Scholar] [CrossRef]
- Huang, T.; Wang, J.; Pan, H.; Sun, W. Finite-time fault-tolerant integrated motion control for autonomous vehicles with prescribed performance. IEEE Trans. Transp. Electrif. 2022, 9, 4255–4265. [Google Scholar] [CrossRef]
- Miranda, M.H.; Silva, F.L.; Lourenço, M.A.; Eckert, J.J.; Silva, L.C. Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle. Energy 2022, 238, 121979. [Google Scholar] [CrossRef]
- Saravanakumar, D.; Sakthivel, G.; Jegadeeshwaran, R.; Pathi, J.L.; Kumar, M.M.; Muthuramalingam, T. Assessment of vehicle handling performance of drivers using machine learning algorithms. IEEE Access 2022, 10, 132288–132297. [Google Scholar] [CrossRef]
- Feng, H.; Tao, Y.; Feng, J.; Zhang, Y.; Xue, H.; Wang, T.; Xu, X.; Chen, P. Fault-Tolerant Collaborative Control of Four-Wheel-Drive Electric Vehicle for One or More In-Wheel Motors’ Faults. Sensors 2025, 25, 1540. [Google Scholar] [CrossRef]
- Tao, Y.; Ge, C.; Feng, H.; Xue, H.; Yao, M.; Tang, H.; Liao, Z.; Chen, P. A Novel Approach for Adaptively Separating and Extracting Compound Fault Features of the In-wheel Motor Bearing. ISA Trans. 2025, 159, 337–351. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Shen, Y.; Liu, Y.; Wang, W. Optimal design and dynamic control of the HMDV inertial suspension based on the ground-hook positive real network. Adv. Eng. Softw. 2022, 171, 103171. [Google Scholar] [CrossRef]
- Yang, X.; Song, H.; Shen, Y.; Liu, Y. Study on adverse effect suppression of hub motor driven vehicles with inertial suspensions. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2022, 236, 767–779. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Chen, X.; Li, R. Lightweight design of the planetary gear reducer of reduction drive hub motors. J. Phys. Conf. Ser. 2022, 2338, 012059. [Google Scholar] [CrossRef]
- Deng, Z.; Luo, X.; Liao, X.; Li, X.; Du, Z.; Hou, M.; Wei, H. Analysis and suppression of the negative effect of electromagnetic characteristics of wheel hub motor drive system on vehicle dynamics performance. Nonlinear Dyn. 2025, 113, 4425–4445. [Google Scholar] [CrossRef]
- Cui, L.; Mao, H.; Xue, X.; Ding, S.; Qiao, B. Optimized design and test for a pendulum suspension of the crop spray boom in dynamic conditions based on a six DOF motion simulator. Int. J. Agric. Biol. Eng. 2018, 11, 76–85. [Google Scholar]
- Cui, L.; Xue, X.; Le, F.; Mao, H.; Ding, S. Design and experiment of electro hydraulic active suspension for controlling the rolling motion of spray boom. Int. J. Agric. Biol. Eng. 2019, 12, 72–81. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Huang, R.; Yang, X.; Chen, J.; Chen, L.; Li, M. Vibration control of vehicle ISD suspension based on the fractional-order SH-GH stragety. Mech. Syst. Signal Process. 2025, 234, 112880. [Google Scholar] [CrossRef]
- Shen, Y.; Li, Z.; Tian, X.; Ji, K.; Yang, X. Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network. Fractal Fract. 2025, 9, 106. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Shen, Y.; Liu, Y.; Bui, V.; Qiu, D. Tradeoff analysis of the energy-harvesting vehicle suspension system employing inerter element. Energy 2024, 308, 132841. [Google Scholar] [CrossRef]
- Yuexia, C.; Long, C.; Wang, R.; Xing, X.; Yujie, S.; Yanling, L. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, S.-K.; Yang, Z.; Ni, Y.-Q.; Yang, Z.; Cheung, K.C. AT-PINN-HC: A refined time-sequential method incorporating hard-constraint strategies for predicting structural behavior under dynamic loads. Comput. Methods Appl. Mech. Eng. 2025, 436, 117691. [Google Scholar] [CrossRef]
- Valá ek, M.; Stejskal, V.; ika, Z.; Vaculin, O. Control concepts of semi-active damping of truck suspension for road friendliness. Veh. Syst. Dyn. 1998, 29, 766–771. [Google Scholar]
- Feng, Y.; Zhu, J.; Chai, H.; He, W.; Huang, L.; Wang, W. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry. Small 2023, 19, e2303416. [Google Scholar] [CrossRef]
- Parida, L.; Moharana, S.; Ferreira, V.M.; Giri, S.K.; Ascensão, G. A novel CNN-LSTM hybrid model for prediction of electro-mechanical impedance signal based bond strength monitoring. Sensors 2022, 22, 9920. [Google Scholar] [CrossRef]
- Tenreiro, A.F.G.; Lopes, A.M.; da Silva, L.F. A review of structural health monitoring of bonded structures using electromechanical impedance spectroscopy. Struct. Health Monit. 2022, 21, 228–249. [Google Scholar] [CrossRef]
- Bai, M.; Wang, J.; Sun, W. Coupled Control of Preview Active Suspension and Longitudinal Dynamics for Autonomous Vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 4656–4669. [Google Scholar] [CrossRef]
- Chen, G.; Du, G.; Xia, J.; Xie, X.; Wang, Z. Aperiodic Sampled-Data Control of Vehicle Active Suspension System: An Uncertain Discrete-Time Model Approach. IEEE Trans. Ind. Inform. 2024, 20, 6739–6750. [Google Scholar] [CrossRef]
- Yu, M.; Evangelou, S.A.; Dini, D. Advances in active suspension systems for road vehicles. Engineering 2024, 33, 160–177. [Google Scholar] [CrossRef]
- Fu, B.; Liu, B.; Di Gialleonardo, E.; Bruni, S. Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle. Veh. Syst. Dyn. 2023, 61, 2664–2688. [Google Scholar] [CrossRef]
- Ricco, M.; Alshawi, A.; Gruber, P.; Dhaens, M.; Sorniotti, A. Nonlinear model predictive control for yaw rate and body motion control through semi-active and active suspensions. Veh. Syst. Dyn. 2024, 62, 1587–1620. [Google Scholar] [CrossRef]
- Li, T.; Liao, Z.; Cai, Y. Physical modeling for digital twin of Continuous Damping Control damper. J. Manuf. Process. 2023, 99, 96–104. [Google Scholar] [CrossRef]
- Peng, T.; Chen, J.; Wang, S. Analysis and design of adjustable-gap double-side axial flux permanent magnet hysteresis damper. IEEE Trans. Ind. Electron. 2023, 71, 3514–3524. [Google Scholar] [CrossRef]
- Shmerling, A.; Gerdts, M. Short-horizon acceleration-predictive control for reducing lateral seismic inertia forces of inelastic frame structures using semi-active fluid viscous dampers. Comput. Struct. 2023, 281, 107032. [Google Scholar] [CrossRef]
- Liu, C.; Lai, S.-K.; Ni, Y.-Q.; Chen, L. Dynamic modelling and analysis of a physics-driven strategy for vibration control of railway vehicles. Veh. Syst. Dyn. 2025, 63, 1080–1110. [Google Scholar] [CrossRef]
- Saitoh, S. Hilbert spaces induced by Hilbert space valued functions. Proc. Am. Math. Soc. 1983, 89, 74–78. [Google Scholar] [CrossRef]
- O’Connell, T.C.; Wells, J.R.; Watts, O. A lumped-parameter off-axis-capable dynamic switched reluctance machine model including unbalanced radial forces. IEEE Trans. Energy Convers. 2014, 30, 161–174. [Google Scholar] [CrossRef]
- Deng, Z.; Li, X.; Liu, T.; Zhao, S. Modeling and suppression of unbalanced radial force for in-wheel motor driving system. J. Vib. Control 2022, 28, 3108–3119. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, T. Analytical Model for Evaluating Unbalanced Electromagnetic Forces in Switched Reluctance Hub Motors Under Air-Gap Eccentricity; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2024; pp. 2320–2345. [Google Scholar]
- Hu, S.; Zuo, S.; Liu, M.; Wu, H.; Liu, Z. Modeling and analysis of radial electromagnetic force and vibroacoustic behaviour in switched reluctance motors. Mech. Syst. Signal Process. 2020, 142, 106778. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Wang, P.; Liu, Y.; Wei, X.; Xu, Q.; Sun, H. Modeling and analysis of radial electromagnetic force and vibration characteristics based on deflection dual-stator switched reluctance generator. Micromachines 2022, 13, 1494. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Cai, J.; Yang, Y.; Liu, C. Decoupled Topologies and Radial Levitation Control of a Novel Permanent Magnet Biased Bearingless Switched Reluctance Motor. IEEE Trans. Ind. Electron. 2024, 72, 3370–3380. [Google Scholar] [CrossRef]
- Ma, T.; Deng, Z.; Liu, W.; Hou, M. A Numerical Method to Determine the Radial Electromagnetic Force of the Switched Reluctance Motor Under Air Gap Eccentricity. Machines 2024, 12, 823. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.; Deng, Z.; Li, K. Modeling and characteristic investigation of axial reluctance force for bearingless switched reluctance motor. IEEE Trans. Ind. Appl. 2021, 57, 5215–5226. [Google Scholar] [CrossRef]
- He, Y.-L.; Li, Y.; Zhang, W.; Xu, M.-X.; Bai, Y.-F.; Wang, X.-L.; Shi, S.-Z.; Gerada, D. Analysis of stator vibration characteristics in synchronous generators considering inclined static air gap eccentricity. IEEE Access 2022, 11, 7794–7807. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Teng, W.; Song, S.; Wang, Y. Dynamic characteristics analysis of energy storage flywheel motor rotor with air-gap eccentricity fault. J. Energy Storage 2024, 89, 111684. [Google Scholar] [CrossRef]
- Zhu, R.; Tong, X.; Han, Q.; He, K.; Wang, X.; Wang, X. Calculation and analysis of unbalanced magnetic pull of rotor under motor air gap eccentricity fault. Sustainability 2023, 15, 8537. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Lai, S.-K.; Chen, Z.; Chen, L. Frequency-dependent equivalent impedance analysis for optimizing vehicle inertial suspensions. Nonlinear Dyn. 2025, 113, 9373–9398. [Google Scholar] [CrossRef]
- Xu, S.; He, B. A compliance modeling method of flexible rotary joint for collaborative robot using passive network synthesis theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 4038–4048. [Google Scholar] [CrossRef]
- Pourpanah, F.; Wang, R.; Lim, C.P.; Wang, X.-Z.; Yazdani, D. A review of artificial fish swarm algorithms: Recent advances and applications. Artif. Intell. Rev. 2023, 56, 1867–1903. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, L.; Dong, M. Application of artificial fish swarm algorithm in LQR control for active suspension. In Proceedings of the 2022 13th Asian Control Conference (ASCC), Jeju, Republic of Korea, 4–7 May 2022; pp. 2406–2409. [Google Scholar]
- Mirza, A.F.; Mansoor, M.; Usman, M.; Ling, Q. Hybrid Inception-embedded deep neural network ResNet for short and medium-term PV-Wind forecasting. Energy Convers. Manag. 2023, 294, 117574. [Google Scholar] [CrossRef]
- ISO 8608; Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data. International Standards Organisation: Geneve, Switzerland, 2016.
- Yang, Y.; Liu, C.; Chen, L.; Zhang, X. Phase deviation of semi-active suspension control and its compensation with inertial suspension. Acta Mech. Sin. 2024, 40, 523367. [Google Scholar] [CrossRef]
- Makowski, M.; Knap, L. Reduction of wheel force variations with magnetorheological devices. J. Vib. Control 2014, 20, 1552–1564. [Google Scholar] [CrossRef]
- Strecker, Z.; Roupec, J.; Mazurek, I.; Machacek, O.; Kubik, M.; Klapka, M. Design of magnetorheological damper with short time response. J. Intell. Mater. Syst. Struct. 2015, 26, 1951–1958. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Sprung mass | /(kg) | 320 |
Stator mass of the motor | /(kg) | 45 |
Rotor mass of the motor | /(kg) | 30 |
Suspension spring stiffness | /(N/m) | 22,000 |
Tire equivalent stiffness | /(N/m) | 190,000 |
Motor equivalent stiffness | /(N/m) | 3,850,000 |
Suspension damping coefficient | /(N·s/m) | 1500 |
Motor clearance | /(mm) | 0.5 |
Optimized Parameters | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
4989.2 | 3138.1 | 3698.1 | 1450.2 | 3029.9 | |
4983 | 9216 | 3150 | 1271.6 | ||
16,598 | 3879.2 | 3130.5 | |||
5000 | 632.5 | ||||
4974.7 | |||||
10 | 560.2 | 2400 | 868.3 | 2118 | |
606.1 | 5 | 5 | 1484.7 | 1438.2 | |
313 | 365.6 | 1023.8 | 2416.7 | ||
20.3 | 5 | 524.3 | |||
626.1 | 5 | ||||
12.1 |
Suspension Type | Performance Parameters | |||||
---|---|---|---|---|---|---|
BA/(m/s2) | Improvement | SWS/(m) | Improvement | DTL/(N) | Improvement | |
Passive | 1.2866 | 0 | 0.0135 | 0 | 1122.9 | 0 |
Trad-GH | 1.9077 | −48% | 0.0083 | 38% | 878.05 | 22% |
S1 | 1.7772 | −38% | 0.0085 | 37% | 861.8 | 23% |
S2 | 1.6126 | −25% | 0.0090 | 33% | 889.3 | 21% |
S3 | 1.2614 | 2% | 0.0105 | 22% | 1030.3 | 8% |
S4 | 1.621 | −26% | 0.0089 | 34% | 887.49 | 21% |
S5 | 1.7676 | −37% | 0.0085 | 37% | 863.1 | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ping, Y.; Yang, X.; Yang, Y.; Shen, Y.; Zeng, S.; Dai, S.; Hong, J. Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control. Machines 2025, 13, 556. https://doi.org/10.3390/machines13070556
Ping Y, Yang X, Yang Y, Shen Y, Zeng S, Dai S, Hong J. Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control. Machines. 2025; 13(7):556. https://doi.org/10.3390/machines13070556
Chicago/Turabian StylePing, Yihong, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai, and Jingchen Hong. 2025. "Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control" Machines 13, no. 7: 556. https://doi.org/10.3390/machines13070556
APA StylePing, Y., Yang, X., Yang, Y., Shen, Y., Zeng, S., Dai, S., & Hong, J. (2025). Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control. Machines, 13(7), 556. https://doi.org/10.3390/machines13070556