First- and Second-Order Centrodes of Both Coupler Links of Stephenson III Six-Bar Mechanisms
Abstract
:1. Introduction
2. Kinematic Analysis: Velocity and Acceleration Centers
3. Bresse’s Circles
4. First- and Second-Order Centrodes
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartenberg, R.S.; Denavit, J. Kinematic Synthesis of Linkages; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Hunt, K.H. Kinematic Geometry of Mechanisms; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Pennestrì, E.; Cera, M. Engineering Kinematics: Curvature Theory of Plane Motion; Independently Published: Roma, Italy, 2023. [Google Scholar]
- Rosenauer, N.; Willis, A.H. Kinematics of Mechanisms; Dover: New York, NY, USA, 1967. [Google Scholar]
- Dijksman, E.A. Motion Geometry of Mechanisms; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Chiang, C.H. Kinematics and Design of Planar Mechanisms; Krieger Publishing Company: Malabar, FL, USA, 2000. [Google Scholar]
- Hall, A.S., Jr. Kinematics and Linkage Design; Waveland Press: Prospect Heights, IL, USA, 1986. [Google Scholar]
- Figliolini, G.; Lanni, C.; Tomassi, L. First and Second Order Centrodes of Slider-Crank Mechanisms by Using Instantaneous Invariants. In Advances in Robot Kinematics: ARK 2022, 18th International Symposium on Advances in Robot Kinematics; Altuzarra, O., Kecskeméthy, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 303–310. [Google Scholar]
- Figliolini, G.; Lanni, C.; Tomassi, L. Synthesis and Analysis of Stephenson III Six-Bar Motion Generators with an Instantaneous Stop Link. ASME. J. Mech. Robotics. 2025, 17, 044510. [Google Scholar] [CrossRef]
- Maleki, M.; Babahaji, A.; Mohtat, A. Further Analytical Investigation into Centrodes of the Planar FBL: Symbolic Representations, Double Points, Tacnodes, Degenerate Forms. Mech. Mach. Theory 2009, 44, 739–750. [Google Scholar] [CrossRef]
- Rosenauer, N. Acceleration Center Curves. Aust. J. Appl. Sci. 1954, 5, 103–115. [Google Scholar]
- Condurache, D. A Generalization of the Bresse Properties in Higher-Order Kinematics. In Advances in Robot Kinematics: ARK 2024; Lenarčič, J., Husty, M., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Condurache, D. Higher-Order Acceleration Center and Vector Invariants of Rigid Body Motion. In Proceedings of the 5th Joint International Conference on Multibody System Dynamics (MSD 2018), Lisbon, Portugal, 24–28 June 2018. Paper No. 160. [Google Scholar]
- Figliolini, G.; Lanni, C.; Cirelli, M.; Pennestrì, E. Kinematic Properties of nth-Order Bresse Circles Intersections for a Crank-Driven Rigid Body. Mech. Mach. Theory 2023, 190, 105445. [Google Scholar] [CrossRef]
- Bisshopp, K.E. Note on Acceleration in Laminar Motion. J. Mech. 1969, 4, 235–242. [Google Scholar] [CrossRef]
- Csernák, G. Analysis of Pole Acceleration in Spatial Motions by the Generalization of Pole Changing Velocity. Acta Mech. 2019, 230, 2607–2624. [Google Scholar] [CrossRef]
- Plecnik, M.M.; McCarthy, J.M. Kinematic Synthesis of Stephenson III Six-Bar Function Generators. Mech. Mach. Theory 2016, 97, 112–126. [Google Scholar] [CrossRef]
- Plecnik, M.M.; McCarthy, J.M. Design of Stephenson Linkages That Guide a Point Along a Specified Trajectory. Mech. Mach. Theory 2016, 96, 38–51. [Google Scholar] [CrossRef]
- Chakraborty, D.; Rathi, A.; Singh, R.; Pathak, V.K.; Srivastava, A.K.; Sharma, A.; Saxena, K.K.; Kumar, G.; Kumar, S. External Six-Bar Mechanism Rehabilitation Device for Index Finger: Development and Shape Synthesis. Robot. Auton. Syst. 2023, 161, 104336. [Google Scholar] [CrossRef]
- Baskar, A.; Plecnik, M. Synthesis of Six-Bar Timed Curve Generators of Stephenson-Type Using Random Monodromy Loops. ASME J. Mech. Robot. 2021, 13, 011005. [Google Scholar] [CrossRef]
- Tomassi, L.; Lanni, C.; Figliolini, G. A Novel Design Method of Four-Bar Linkages Mimicking the Human Knee Joint in the Sagittal Plane. In Advances in Italian Mechanism Science. IFToMM Italy 2022; Niola, V., Gasparetto, A., Quaglia, G., Carbone, G., Eds.; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2022; Volume 122. [Google Scholar] [CrossRef]
- Diab, N. A New Graphical Technique for Acceleration Analysis of Four-Bar Mechanisms Using the Instantaneous Center of Zero Acceleration. SN Appl. Sci. 2021, 3, 327. [Google Scholar] [CrossRef]
- Hwang, W.M.; Fan, Y.S. Polynomial Equations for the Loci of the Acceleration Pole of a Slider-Crank Mechanism. Mech. Mach. Theory 2008, 43, 123–137. [Google Scholar] [CrossRef]
- Kulkarni, A.; Tesar, D. Properties of Higher Order Instant Center: A Case Study of Classical Motions. ASME J. Mech. Robot. 2013, 5, 024501. [Google Scholar] [CrossRef]
- Viaña, J.; Petuya, V. A Proposal for a Formula of Absolute Pole Velocities Between Relative Poles. Mech. Mach. Theory 2017, 114, 74–84. [Google Scholar] [CrossRef]
- Bottema, O. Acceleration Axes in Spherical Kinematics. ASME J. Eng. Ind. 1965, 87, 150–153. [Google Scholar] [CrossRef]
- Veldkamp, G.R. Acceleration Axes and Acceleration Distribution in Spatial Motion. ASME J. Eng. Ind. 1969, 91, 147–150. [Google Scholar] [CrossRef]
- Rico Martínez, J.M.; Duffy, J. Determination of the Acceleration Center of a Rigid Body in Spatial Motion. Eur. J. Mech. A/Solids 1998, 17, 969–977. [Google Scholar] [CrossRef]
- Mohamed, M.G. Kinematics of Rigid Bodies in General Spatial Motion: Second-Order Motion Properties. Appl. Math. Model. 1997, 21, 471–479. [Google Scholar] [CrossRef]
- Desai, J.P.; Žefran, M.; Kumar, V. A Geometric Approach to Second and Higher Order Kinematic Analysis. In Advances in Robot Kinematics: Analysis and Control; Lenarčič, J., Husty, M.L., Eds.; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Condurache, D. Higher-Order Kinematics of Rigid Bodies. A Tensors Algebra Approach. In Interdisciplinary Applications of Kinematics; Kecskeméthy, A., Geu Flores, F., Carrera, E., Elias, D., Eds.; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2019; Volume 71. [Google Scholar]
- Condurache, D. Multidual Algebra and Higher-Order Kinematics. In New Trends in Mechanism and Machine Science: EuCoMeS 2020; Pisla, D., Corves, B., Vaida, C., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Roth, B.; Yang, A.T. Application of Instantaneous Invariants to the Analysis and Synthesis of Mechanisms. ASME J. Eng. Ind. 1977, 99, 97–103. [Google Scholar] [CrossRef]
- Bottema, O. Some Remarks on Theoretical Kinematics: I Instantaneous Invariants; II On the Application of Elliptic Functions in Kinematics. In Proceedings of the International Conference for Teachers of Mechanisms, Yale University; The Shoe String Press: New Haven, CT, USA, 1961. [Google Scholar]
- Gazo-Hanna, E.; Saber, A.; Amine, S. Design and Modeling of a Six-Bar Mechanism for Repetitive Tasks with Symmetrical End-Effector Motion. Eng. Technol. Appl. Sci. Res. 2024, 14, 16302–16310. [Google Scholar] [CrossRef]
- Kapsalyamov, A.; Brown, N.A.T.; Goecke, R.; Jamwal, P.K.; Hussain, S. Velocity Control of a Stephenson III Six-Bar Linkage-Based Gait Rehabilitation Robot Using Deep Reinforcement Learning. Neural Comput. Appl. 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figliolini, G.; Lanni, C.; Tomassi, L. First- and Second-Order Centrodes of Both Coupler Links of Stephenson III Six-Bar Mechanisms. Machines 2025, 13, 93. https://doi.org/10.3390/machines13020093
Figliolini G, Lanni C, Tomassi L. First- and Second-Order Centrodes of Both Coupler Links of Stephenson III Six-Bar Mechanisms. Machines. 2025; 13(2):93. https://doi.org/10.3390/machines13020093
Chicago/Turabian StyleFigliolini, Giorgio, Chiara Lanni, and Luciano Tomassi. 2025. "First- and Second-Order Centrodes of Both Coupler Links of Stephenson III Six-Bar Mechanisms" Machines 13, no. 2: 93. https://doi.org/10.3390/machines13020093
APA StyleFigliolini, G., Lanni, C., & Tomassi, L. (2025). First- and Second-Order Centrodes of Both Coupler Links of Stephenson III Six-Bar Mechanisms. Machines, 13(2), 93. https://doi.org/10.3390/machines13020093