The Impact of an Electric Machine Body on EM Wave Propagation in RTMS
Abstract
:1. Introduction
2. RTMS (Rotor Temperature Monitoring System) Design
3. Modeling Electromagnetic Propagation in a Rotating Machine
3.1. Modeling and Structure
- Rotor: The metal part of the machine.
- Stator: A complex composite made of various materials that differ widely between models or manufacturers. The associated electrical information is difficult to access and study.
- Flange: A steel component fixed to the stator with bolts or rods.
3.2. Monopole Antennae Design
3.3. Design of RN 171 Antennae
3.4. Monopole Antenna Performance
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Tavner, P.J. Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl. 2008, 2, 215–247. [Google Scholar] [CrossRef]
- Xiang, D.; Ran, L.; Tavner, P.; Yang, S.; Bryant, A.; Mawby, P. Condition monitoring power module solder fatigue using inverter harmonic identification. IEEE Trans. Power Electron. 2012, 27, 235–247. [Google Scholar] [CrossRef]
- Dorell, D.G. Detection of Rotor Eccentricity in Wound Rotor Induction Machines Using Pole-Specific Search Coils. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Ceban, A. Methode Globale de Diagnostic des Machines Electriques. Ph.D. Thesis, Universite d’Artois, Arras, France, 2012. [Google Scholar]
- Mahulkar, V.; McKay, S.; Adams, D.; Chaturvedi, A. System-of-systems modeling and simulation of a ship environment with wireless and intelligent maintenance technologies. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2009, 39, 1255–1270. [Google Scholar] [CrossRef]
- Larios, D.F.; Barbancho, J.; Rodriguez, G.; Sevillano, J.L.; Molina, F.J.; Leon, C. Energy efficient wireless sensor network communications based on computational intelligent data fusion for environmental monitoring. IET Commun. 2012, 6, 2189–2197. [Google Scholar] [CrossRef]
- Brahim, S.B.; Bouallegue, R.; David, J.; Vuong, T.H. Path Loss Characteristics for Wireless Communication System in Rotating Electrical Machine. In Proceedings of the 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Crans-Montana, Switzerland, 23–25 March 2016; pp. 450–454. [Google Scholar] [CrossRef]
- Brahim, S.B.; Bouallegue, R.; David, J.; Vuong, T.H. Wireless communication to monitor the rotating electrical machines. In Proceedings of the 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 16–18 September 2015; pp. 269–273. [Google Scholar] [CrossRef]
- Giesbrecht, M.; de Carvalho Ferreira, G.T.; da Silva, R.R.; Milfont, L.D. Electric Machine Design and Fault Diagnosis for Electric Aircraft Propulsion in the Context of the Engineering Research Center for the Aerial Mobility of the Future. In Proceedings of the 2023 IEEE Workshop on Power Electronics for Aerospace Applications (PEASA), Nottingham, UK, 18–19 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Zaabi, W.; Bensalem, Y.; Trabelsi, H. Fault analysis of induction machine using finite element method (FEM). In Proceedings of the 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Hammamet, Tunisia, 21–23 December 2014; pp. 388–393. [Google Scholar] [CrossRef]
- Henao, H.; Capolino, G.A.; Fernandez-Cabanas, M.; Filippetti, F.; Bruzzese, C.; Strangas, E.; Pusca, R.; Estima, J.; Riera-Guasp, M.; Hedayati-Kia, S. Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Ind. Electron. Mag. 2014, 8, 31–42. [Google Scholar] [CrossRef]
- Aileen, C.J.; Nagarajan, S.; Reddy, S.R. Detection of broken bars in three phase squirrel cage induction motor using finite element method. In Proceedings of the 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 23–24 March 2011; pp. 249–254. [Google Scholar] [CrossRef]
- Aldea, C.L.; Bocu, R.; Solca, R.N. Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture. Symmetry 2023, 15, 1134. [Google Scholar] [CrossRef]
- Brahim, S.B.; Bouallegue, R.; David, J.; Vuong, T.-H. Electromagnetic Wave Propagation characteristics of rotating antenna in electrical machine. In Proceedings of the 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015), Shanghai, China, 21–23 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Ben Brahim, S.; Bouallegue, R.; David, J.; Vuong, T.H.; David, M. A Wireless On-line Temperature Monitoring System for Rotating Electrical Machine. Wirel. Pers. Commun. 2017, 95, 979–999. [Google Scholar] [CrossRef]
- Sunil, M.P.; Devaraj Verma, C. The Smart Development of Multichip Communication Systems with The Help of Short Transmission Nodes. In Proceedings of the 2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballar, India, 29–30 April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, H.; Hubing, T.H. The Effect of the Vehicle Body on EM Propagation in Tire Pressure Monitoring Systems. IEEE Trans. Antennas Propag. 2012, 60, 3941–3949. [Google Scholar] [CrossRef]
- Prist, M.; Monteriù, A.; Freddi, A.; Cicconi, P.; Giuggioloni, F.; Caizer, E.; Verdini, C.; Longhi, S. Online Fault Detection: A Smart Approach for Industry 4.0. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 167–171. [Google Scholar] [CrossRef]
- Du, C.; Peng, Z.; Ren, Y.; Zhou, A.; Ma, Y.; Chen, J.; Deng, T. Advanced rotor temperature estimation of permanent magnet synchronous machines for electric vehicles. Adv. Mech. Eng. 2020, 12, 1687814020918742. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.; Sun, F.; Qian, F.; Chen, W.; Chen, H. Study on Stability Test Method of Aeroelastic Machinery of Bearingless Rotorcraft. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 2–4 July 2021; pp. 351–356. [Google Scholar] [CrossRef]
- Maki, N.; Izumi, M.; Numano, M.; Aizawa, K.; Okumura, K.; Iwata, K. Design study of high-temperature superconducting motors for ship propulsion systems. In Proceedings of the 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Republic of Korea, 8–11 October 2007; pp. 1523–1527. [Google Scholar] [CrossRef]
- Rottach, M.; Gerada, C.; Hamiti, T.; Wheeler, P.W. Fault-tolerant electrical machine design within a Rotorcraft Actuation Drive System optimization. In Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, Z.; Liu, G.; Jia, Y. An Integrated Shark-Fin Antenna for MIMO-LTE, FM, and GPS Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1666–1670. [Google Scholar] [CrossRef]
- Patel, D.; Maiti, C.; Muthuswamy, S. Real-Time Performance Monitoring of a CNC Milling Machine using ROS 2 and AWS IoT Towards Industry 4.0. In Proceedings of the IEEE EUROCON 2023—20th International Conference on Smart Technologies, Torino, Italy, 6–8 July 2023; pp. 776–781. [Google Scholar] [CrossRef]
- Abdallah, N.H.; Brahim, R.; Bouslimani, Y.; Ghribi, M.; Kaddouri, A. IoT device for Athlete’s movements recognition using inertial measurement unit (IMU). In Proceedings of the 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bandung, Indonesia, 27–28 July 2021; pp. 109–114. [Google Scholar] [CrossRef]
- Vafiadis, N.V.; Taefi, T.T. Differentiating Blockchain Technology to optimize the Processes Quality in Industry 4.0. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 864–869. [Google Scholar] [CrossRef]
- Bartolomeu, P.C.; Vieira, E.; Hosseini, S.M.; Ferreira, J. Self-Sovereign Identity: Use-cases, Technologies, and Challenges for Industrial IoT. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1173–1180. [Google Scholar] [CrossRef]
- He, S.; Xie, J. A Novel Compact Printed Antenna Used in TPMS or Other Complex and Variable Environments. IEEE Trans. Antennas Propag. 2008, 56, 24–30. [Google Scholar] [CrossRef]
- Tulicki, J.; Weinreb, K.; Sułowicz, M. The possibility of distinguishing rotor cage bar faults in double squirrel cage induction motors on the basis of the stator current signal. In Proceedings of the 2017 International Symposium on Electrical Machines (SME), Naleczow, Poland, 18–21 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Srinivasan, J.; Selvaraj, K.; Chitrarasu, J.; Resmi, R. Design and analysis of squirrel cage induction motor in short pitch and full pitch winding configurations using FEA. In Proceedings of the 2016 International Conference on Emerging Technological Trends (ICETT), Kollam, India, 21–22 October 2016; pp. 1–10. [Google Scholar] [CrossRef]
- KhakparvarYazdi, A.; Mostafavi, M.; Safaee, A.; Khajehoddin, S.A. An Alternative Method to Accurately Model Magnetic Components Using Ansys HFSS 3D. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023; pp. 1557–1564. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, T.; Ren, W.; Yuan, C.; Chen, D. A Novel Dual-Band Printed Monopole Antenna with Modified SIR Loading. IEEE Access 2024, 12, 13893–13899. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S. Wideband Vertically Polarized Endfire Metasurface Antenna Fed by Tightly Coupled Monopole Probe Array. IEEE Trans. Antennas Propag. 2024, 72, 2481–2489. [Google Scholar] [CrossRef]
- Dinh, N.Q.; Teranishi, T.; Michishita, N.; Yamada, Y.; Nakatani, K. Simple design equations of tap feeds for a very small normal-mode helical antenna. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Song, H.J.; Hsu, H.P.; Wiese, R.; Talty, T. Modelling signal strength range of TPMS in automobiles. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; Volume 3, pp. 3167–3170. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, S.; Anand, R.; Shrivastva, G. Miniaturized Pentagon-Shaped Planar Monopole Antenna for Ultra-Wideband Applications. Prog. Electromagn. Res. C 2023, 133, 195–208. [Google Scholar] [CrossRef]
- Kumari, S.; Maurya, N.K.; Tripta Sarkar, A. Design and Parametric Study of Monopole Blade Antenna for UHF-Band Aerospace Applications. In Cognitive Computing and Cyber Physical Systems, Proceedings of the International Conference on Cognitive Computing and Cyber Physical Systems, IC4S 2023, Bhimavaram, India, 4–6 August 2023; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Pareek, P., Gupta, N., Reis, M.J.C.S., Eds.; Springer: Cham, Switzerland, 2024; Volume 537. [Google Scholar] [CrossRef]
Parameter Name | Open Space | Carcass, Stator, Rotor and Shaft |
---|---|---|
|S11| | 0.053328 | 0.991953 |
|S21| | 0.019153 | 0.000354 |
|S22| | 0.107855 | 0.096884 |
|Fp (10−5)| | 36.49 | 0.83 |
Parameter Name | Open Space | Carcass, Stator, Rotor and Shaft |
---|---|---|
|S11| | 0.08456 | 0.09124 |
|S21| | 0.01524 | 0.00145 |
|S22| | 0.09235 | 0.0823 |
|Fp (10−5)| | 23.13 | 0.209 |
Parameter Name | Monopole vs. Dipole [36] | Monopole vs. Patch [37] | Monopole vs. Loop [37] | Monopole vs. Yagi-Uda [37] |
---|---|---|---|---|
Radiation Pattern | Monopole: Omnidirectional/Dipole: Bidirectional | Monopole: Omnidirectional/Patch: Directional | Monopole: Omnidirectional/Loop: Confined | Monopole: Omnidirectional/Yagi-Uda: Highly Directional |
Gain | Monopole: Moderate/Dipole: Higher | Monopole: Moderate/Patch: Higher | Monopole: Moderate/Loop: Lower | Monopole: Moderate/Yagi-Uda: Significantly Higher |
Bandwidth | Monopole: Narrower/Dipole: Broader | Monopole: Narrower/Patch: Broader | Monopole: Narrower/Loop: Narrower | Monopole: Narrower/Yagi-Uda: Narrower |
Efficiency | Monopole: Sufficient/Dipole: Higher | Monopole: Sufficient/Patch: Higher | Monopole: Sufficient/Loop: Lower | Monopole: Sufficient/Yagi-Uda: Higher |
Size | Monopole: Compact/Dipole: Larger | Monopole: Compact/Patch: Larger | Monopole: Compact/Loop: Larger | Monopole: Compact/Yagi-Uda: Larger |
Ease of Integration | Monopole: Easier/Dipole: More complex | Monopole: Easier/Patch: More complex | Monopole: Easier/Loop: More complex | Monopole: Easier/Yagi-Uda: More complex |
Propagation Factor | Monopole: Effective in varied environments/Dipole: Better in less obstructed environments | Monopole: Consistent in varied environments/Patch: Better in controlled environments | Monopole: Effective in indoor environments/Loop: Challenging in environments with reflections | Monopole: Wide coverage, suitable for multi-directional applications/Yagi-Uda: Superior for point-to-point communication |
Overall Performance | Monopole: Uniform coverage, easy installation/Dipole: Higher gain, broader bandwidth | Monopole: Compact, easy integration, consistent performance/Patch: Higher efficiency, directional coverage | Monopole: Wide coverage, flexible placement/Loop: Specific applications with confined radiation patterns | Monopole: Uniform coverage, easy installation/Yagi-Uda: Higher gain, highly directional, superior for long-range communication |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Brahim, S.; Dardouri, S.; Hammami, A.; Bouallegue, R.; David, J.; Vuong, T.-H. The Impact of an Electric Machine Body on EM Wave Propagation in RTMS. Machines 2024, 12, 545. https://doi.org/10.3390/machines12080545
Ben Brahim S, Dardouri S, Hammami A, Bouallegue R, David J, Vuong T-H. The Impact of an Electric Machine Body on EM Wave Propagation in RTMS. Machines. 2024; 12(8):545. https://doi.org/10.3390/machines12080545
Chicago/Turabian StyleBen Brahim, Sonia, Samia Dardouri, Amor Hammami, Ridha Bouallegue, Jacques David, and Tan-Hoa Vuong. 2024. "The Impact of an Electric Machine Body on EM Wave Propagation in RTMS" Machines 12, no. 8: 545. https://doi.org/10.3390/machines12080545
APA StyleBen Brahim, S., Dardouri, S., Hammami, A., Bouallegue, R., David, J., & Vuong, T. -H. (2024). The Impact of an Electric Machine Body on EM Wave Propagation in RTMS. Machines, 12(8), 545. https://doi.org/10.3390/machines12080545