Structural Optimization of Scarfing Machine with Acceleration Profile and Multi-Objective Genetic Algorithm Approach
Abstract
:1. Introduction
2. Geometry
Frame for the Scarfing Process
3. Optimization Method
3.1. Selection of Acceleration Profile
3.2. Design of Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knap, M.; Bradaškja, B. Determination of the Influence of Steelmaking Parameters on Surface Defects in Quarto Plates. Metals 2023, 13, 536. [Google Scholar] [CrossRef]
- Sychkov, A.B.; Zhigarev, M.A.; Perchatkin, A.V.; Mazanov, S.N.; Zenin, V.S. The transformation of defects in continuous-cast semifinished products into surface defects on rolled products. Metallurgist 2006, 50, 83–90. [Google Scholar] [CrossRef]
- Upadhya, G.K.; Das, S.; Chandra, U.; Paul, A.J. Modelling the Investment Casting Process: A Novel Approach for View Factor Calculations and Defect Prediction. Appl. Math. Model. 1995, 19, 354–362. [Google Scholar] [CrossRef]
- Jeon, H.; Noh, J.; Kim, M.; Jo, M.; Nam, S.; Jo, J.; Lee, C. Control Methodology for Tensioned Web Considering Thermal Behavior in Roll-to-Roll Manufacturing Systems. Eng. Sci. Technol. Int. J. 2023, 46, 101508. [Google Scholar] [CrossRef]
- Noh, J.; Jo, M.; Jeon, H.; Kim, M.; Jo, J.; Lee, C. Web Wrinkle Defects Due to Temperature Profile in Roll-to-Roll Manufacturing Systems. Polymers 2023, 15, 15020457. [Google Scholar] [CrossRef]
- Erlbacher, E.A.; Godwin, L.E. Automated Scarfing and Surface Finishing Apparatus for Curved Composite Structures. In Proceedings of the ASME 1997 International Mechanical Engineering Congress and Exposition, Dallas, TX, USA, 16–21 November 1997; Volume 1, pp. 309–316. [Google Scholar] [CrossRef]
- Straka, Ľ.; Čorný, I. Prediction and Multiparametric Optimization of the Machined Surface Quality of Tool Steels in Precise Wire Electrical Discharge Machining. Machines 2024, 12, 248. [Google Scholar] [CrossRef]
- Gordon, T.; Xu, X.; Kawashita, L.; Wisnom, M.R.; Hallett, S.R.; Kim, B.C. Delamination Suppression in Tapered Unidirectional Laminates with Multiple Ply Drops Using a Tape Scarfing Technique. Compos. Part. A Appl. Sci. Manuf. 2021, 150, 106627. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Yue, X.; Li, Z.; Li, B. Experimental and Numerical Analysis on Noise Characteristics of Parallel Multiple Jets Obliquely Impinging on a Flat Surface in the Steel Slab Scarfing. Steel Res. Int. 2020, 91, 2000125. [Google Scholar] [CrossRef]
- Gordon, T.; Xu, X.; Wisnom, M.R.; Hallett, S.R.; Kim, B. Improved Impact Damage Resistance of Tapered Composite Laminates Using a Ply Scarfing Technique. Compos. Part. A Appl. Sci. Manuf. 2023, 166, 107391. [Google Scholar] [CrossRef]
- Sui, L.; Zhidong, G.; Xia, G.; Jianhua, C.; Guofen, X.; Jing, C. Tensile Behavior of Hybrid Plain Woven Fabric Laminate Repaired by Scarfing Method. Polym. Poly Compos. 2013, 21, 599–606. [Google Scholar] [CrossRef]
- Contuzzi, N.; Mortello, M.; Casalino, G. On the Laser Scarfing of Epoxy Resin Matrix Composite with Copper Reinforcement. Manuf. Lett. 2021, 27, 1–3. [Google Scholar] [CrossRef]
- Contuzzi, N.; Casalino, G. Statistical Modelling and Optimization of Nanosecond Nd:YAG Q-Switched Laser Scarfing of Carbon Fiber Reinforced Polymer. Opt. Laser Technol. 2022, 147, 107599. [Google Scholar] [CrossRef]
- Setyanto, N.W.; Efranto, R.; Lukodono, R.P.; Dirawidya, A. Ergonomics Analysis in the Scarfing Process by OWAS, NIOSH and Nordic Body Map’s Method at Slab Steel Plant’s Division. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 2006, 1086–1093. [Google Scholar] [CrossRef]
- Holzhüter, D.; Pototzky, A.; Hühne, C.; Sinapius, M. Automated scarfing process for bonded composite repairs. In Adaptive, Tolerant and Efficient Composite Structures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 297–307. [Google Scholar] [CrossRef]
- Masoudi, N.; Fadel, G. An Optimization Framework for the Design of Cable Harness Layouts in Planar Interconnected Systems. ASME J. Mech. Des. 2021, 144, 011701. [Google Scholar] [CrossRef]
- Biswas, A.; Fuentes, C.; Hoyle, C. A Multi-Objective Bayesian Optimization Approach Using the Weighted Tchebycheff Method. ASME J. Mech. Des. 2022, 144, 1–14. [Google Scholar] [CrossRef]
- Jo, M.; Noh, J.; Cho, G.; Lee, T.M.; Oh, B.; Nam, S.; Lee, C. Strain Optimization of Tensioned Web through Computational Fluid Dynamics in the Roll-to-Roll Drying Process. Polymers 2022, 14, 2515. [Google Scholar] [CrossRef] [PubMed]
- Lewin, C. Mathematics of Motion Control Profiles; Performance Motion Devices Inc.: Lincoln, MA, USA, 2007; pp. 1–5. [Google Scholar]
- Rew, K.; Ha, C.; Kim, K. A Practically Efficient Method for Motion Control Based on Asymmetric Velocity Profile. Int. J. Mach. Tools Manuf. 2009, 49, 678–682. [Google Scholar] [CrossRef]
- Jo, M.; Kim, S.; Cho, G.; Lee, T.; Lee, J.; Lee, C. Achieving specified geometric quality in a fully printed flexible functional layer using process parameters in roll-to-roll printed electronics. Flex. Print. Electron. 2022, 7, 014007. [Google Scholar] [CrossRef]
- Abbaszadeh, K.; Alam, F.R.; Saied, S.A. Cogging Torque Optimization in Surface-Mounted Permanent-Magnet Motors by Using Design of Experiment. Energy Convers. Manag. 2011, 52, 3075–3082. [Google Scholar] [CrossRef]
- Xiong, J.; Sun, Y.; Zheng, J.; Dong, D.; Bai, L. Design and Experiment of a SMA-Based Continuous-Stiffness-Adjustment Torsional Elastic Component for Variable Stiffness Actuators. Smart Mater. Struct. 2021, 30, 105021. [Google Scholar] [CrossRef]
- Ferreira, S.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.P.; Portugal, L.A.; Dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Loutas, T.H.; Sotiriadis, G.; Tsonos, E.; Psarras, S.; Kostopoulos, V. Investigation of a Pulsed Laser Ablation Process for Bonded Repair Purposes of CFRP Composites via Peel Testing and a Design-of-Experiments Approach. Int. J. Adhes. Adhes. 2019, 95, 102407. [Google Scholar] [CrossRef]
- Mahdavi, R.; Talesh, S.S.A. Effects of Amine (APTES) and Thiol (MPTMS) Silanes-Functionalized ZnO NPs on the Structural, Morphological and, Selective Sonophotocatalysis of Mixed Pollutants: Box–Behnken Design (BBD). J. Alloys Compd. 2022, 896, 163121. [Google Scholar] [CrossRef]
- Patnaik, L.; Maity, S.R.; Kumar, S. Modeling of Wear Parameters and Multi-Criteria Optimization by Box-Behnken Design of AlCrN Thin Film against Gamma-Irradiated Ti6Al4V Counterbody. Ceram. Int. 2021, 47, 20494–204511. [Google Scholar] [CrossRef]
- Polat, S.; Sayan, P. Application of Response Surface Methodology with a Box–Behnken Design for Struvite Precipitation. Adv. Powder Technol. 2019, 30, 2396–2407. [Google Scholar] [CrossRef]
- Wu, L.; Yick, K.L.; Ng, S.P.; Yip, J. Application of the Box-Behnken Design to the Optimization of Process Parameters in Foam Cup Molding. Expert. Syst. Appl. 2012, 39, 8059–8065. [Google Scholar] [CrossRef]
- Nam, S.; Cho, H.; Han, J.; Her, N.; Yoon, J. Photocatalytic Degradation of Acesulfame K: Optimization Using the Box–Behnken Design (BBD). Process Saf. Environ. Prot. 2018, 113, 10–21. [Google Scholar] [CrossRef]
- Tak, B.; Tak, B.; Kim, Y.; Park, Y.; Yoon, Y.; Min, G. Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box-Behnken Design (BBD). J. Ind. Eng. Chem. 2015, 28, 307–315. [Google Scholar] [CrossRef]
- Dao, S.D.; Abhary, K.; Marian, R. An innovative framework for designing genetic algorithm structures. Expert Syst. Appl. 2017, 90, 196–208. [Google Scholar] [CrossRef]
- Hashemian, A.H.; Kargarnovin, M.H.; Jam, J.E. Optimization of geometric parameters of latticed structures using genetic algorithm. Aircr. Eng. Aerosp. Technol. 2011, 83, 59–68. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Nojima, Y.; Doi, T. Comparison between Single-Objective and Multi-Objective Genetic Algorithms: Performance Comparison and Performance Measures. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; Volume 2006, pp. 1143–1150. [Google Scholar] [CrossRef]
- Wu, D.; Sotnikov, D.; Wang, G.G.; Coatanea, E.; Lyly, M.; Salmi, T.A. Dimension Selection-Based Constrained Multi-Objective Optimization Algorithm Using a Combination of Artificial Intelligence Methods. ASME J. Mech. Des. 2023, 145, 1–15. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Yan, J. Multi-Objective Optimization of the Process Parameters of a Grinding Robot Using LSTM-MLP-NSGAII. Machines 2023, 11, 882. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Yildiz, A.R. Comparison of Evolutionary-Based Optimization Algorithms for Structural Design Optimization. Eng. Appl. Artif. Intell. 2013, 26, 327–333. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-Objective Optimization Using Genetic Algorithms: A Tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Elhadidy, A.A.; Elbeltagi, E.E.; Ammar, M.A. Optimum Analysis of Pavement Maintenance Using Multi-Objective Genetic Algorithms. HBRC J. 2015, 11, 107–113. [Google Scholar] [CrossRef]
- Ghorbani-Menghari, H.; Mohammadhosseinzadeh, M.; Sarband, A.S.; Wahabzadeh, A.H.; Kahhal, P.; Kim, J.H. Investigation of the Effects of Process Parameters on Hydrodynamic Deep Drawing of AL-1050 Sheet with Indentations Using Genetic Algorithm–Based Optimization. Int. J. Adv. Manuf. Technol. 2023, 129, 3949–3964. [Google Scholar] [CrossRef]
- Lu, X.; Luan, Y.; Qiao, J.; Yang, B.; Zhang, W.; Liang, S.Y. Optimization of Process Parameters in Friction Stir Welding of 2219 Aluminum Alloy Thick Plate. Int. J. Adv. Manuf. Technol. 2023, 129, 4201–4215. [Google Scholar] [CrossRef]
- Li, C.; Zhao, G.; Meng, F.; Yu, S.; Yao, B.; Liu, H. Multi-objective optimization of machining parameters in complete peripheral milling process with variable curvature workpieces. J. Manuf. Process 2024, 117, 95–110. [Google Scholar] [CrossRef]
- Yu, H.; Han, J.; Li, S.; Han, X.; Liu, Y.; Wang, J.; Lin, J. Multi-objective optimization design and performance evaluation of a novel flexure-based tri-axial servo cutting system. J. Manuf. Process 2022, 84, 1133–1149. [Google Scholar] [CrossRef]
- Moghimi, M.A.; Craig, K.J.; Meyer, J.P. Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector. Sol. Energy 2015, 119, 343–361. [Google Scholar] [CrossRef]
- Ndiogou, B.A.; Thiam, A.; Mbow, C.; Adjibade, M.I.S.; Sambou, V. Modeling and optimization method of an indirectly irradiated solar receiver. MethodsX 2019, 6, 43–55. [Google Scholar] [CrossRef] [PubMed]
Boundary Condition | X-Axis | Y-Axis | Z-Axis | Head |
---|---|---|---|---|
Material | Structural steel | |||
Load [] | 6018.2 | 3874.2 | 3899 | 412.5 |
Fixed support | Anchor bolts (Marked on Figure 5a) | Surface in contact with z-axis part (Marked on Figure 5b) | Surface in contact with x-axis part (Marked on Figure 5c) | Surface in contact with y-axis part (Marked on Figure 5d) |
Case | Factor 1 Level | Factor 2 Level | Factor 3 Level |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | −1 | −1 | 0 |
3 | +1 | −1 | 0 |
4 | −1 | +1 | 0 |
5 | +1 | +1 | 0 |
6 | −1 | 0 | −1 |
7 | +1 | 0 | −1 |
8 | −1 | 0 | +1 |
9 | +1 | 0 | +1 |
10 | 0 | −1 | −1 |
11 | 0 | +1 | −1 |
12 | 0 | −1 | +1 |
13 | 0 | +1 | +1 |
Factor | X-Axis | Y-Axis | Z-Axis | Head |
---|---|---|---|---|
] | 10 | 6 | 6 | 7.6 |
] | 150 | 70 | 6 | 20 |
] | 150 | 10 | 2560 | 12 |
Factor | X-Axis | Y-Axis | Z-Axis | Head | ||||
---|---|---|---|---|---|---|---|---|
Original | Optimized | Original | Optimized | Original | Optimized | Original | Optimized | |
Factor 1 [mm] | 10 | 35.95 | 6 | 30.03 | 6 | 4.05 | 7.6 | 11.6 |
Factor 2 [mm] | 150 | 101.84 | 70 | 44.72 | 6 | 7.96 | 20 | 16.8 |
Mass [kg] | 6018.2 | 6006.9 | 3874.2 | 3846.4 | 3899.0 | 3876.0 | 412.5 | 406.4 |
Maximum deformation [mm] | 3.289 × 10−1 | 3.180 × 10−1 | 2.798 × 10−1 | 2.765 × 10−1 | 1.133 × 10−1 | 1.111 × 10−1 | 4.257 × 10−1 | 3.862 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, Y.; Park, B.; Lee, C. Structural Optimization of Scarfing Machine with Acceleration Profile and Multi-Objective Genetic Algorithm Approach. Machines 2024, 12, 398. https://doi.org/10.3390/machines12060398
Lee S, Lee Y, Park B, Lee C. Structural Optimization of Scarfing Machine with Acceleration Profile and Multi-Objective Genetic Algorithm Approach. Machines. 2024; 12(6):398. https://doi.org/10.3390/machines12060398
Chicago/Turabian StyleLee, Sangbin, Yoonjae Lee, Byeonghui Park, and Changwoo Lee. 2024. "Structural Optimization of Scarfing Machine with Acceleration Profile and Multi-Objective Genetic Algorithm Approach" Machines 12, no. 6: 398. https://doi.org/10.3390/machines12060398
APA StyleLee, S., Lee, Y., Park, B., & Lee, C. (2024). Structural Optimization of Scarfing Machine with Acceleration Profile and Multi-Objective Genetic Algorithm Approach. Machines, 12(6), 398. https://doi.org/10.3390/machines12060398