Equipment and Operations Automation in Mining: A Review
Abstract
:1. Introduction
2. Current State of Mining Automation:
2.1. Automated Haul Truck Systems
2.2. Automated Drilling
3. Underground Mining Automation
3.1. Longwall Automation
3.2. Automated Load Haul Dumps
4. Enabling Technologies
4.1. The Transition from Manual to Autonomous Operations
4.2. Intelligent Automation
5. Human–Robot Collaboration
5.1. Human–Robot Interaction
5.2. Human–Robot Etiquette
6. Safety around Industrial Robots
6.1. Industrial Robots in Mining
6.2. Industrial Robotic Safety Measures
7. Conclusions
Funding
Conflicts of Interest
References
- Nelson, R. Electricity in Coal Mines. Nature 1938, 142, 989. [Google Scholar] [CrossRef]
- Rakes, P.H. “Coal Mine Mechanization”. e-WV: The West Virginia Encyclopedia. 24 October 2023. Available online: https://www.wvencyclopedia.org/articles/1364 (accessed on 8 August 2024).
- Mining Safety and Health Administration. Metal/Nonmetal Mining Fatality Statistics: 1900–2019. Available online: https://arlweb.msha.gov/stats/centurystats/mnmstats.asp (accessed on 17 September 2024).
- Lynas, D.; Horberry, T. Human Factor issues with Automated Mining Equipment. Ergon. Open J. 2011, 4, 74–80. [Google Scholar] [CrossRef]
- Novak, T. Development of an automation laboratory and courses for mining engineering education. In Proceedings of the SME Annual Meeting Pre-Print 17-039, Denver, CO, USA, 19–22 February 2017; pp. 201–204. [Google Scholar]
- McNab, K.; Garcia-Vasquez, M. Autonomous and Remote Operation Technologies in Australian Mining; Prepared for CSIRO Minerals Down Under Flagship, Minerals Futures Cluster Collaboration; Centre for Social Responsibility in Mining; Sustainable Minerals Institute, The University of Queensland: Brisbane, Australia, 2011. [Google Scholar]
- Castro, R.; Riquelme, J.; Widzyk-Capehart, E.; Hekmat, A.; Baraqui, J. Automation fundamentals of continuous mining system. Int. J. Min. Reclam. Environ. 2015, 29, 419–432. [Google Scholar] [CrossRef]
- Tubis, A.A.; Werbinska-Wojciechowska, S.; Góralczyk, M.; Wróblewski, A.; Zietek, B. Cyber-Attacks Risk Analysis Method for Different Levels of Automation of Mining Processes in Mines Based on Fuzzy Theory Use. Sensors 2020, 20, 7210. [Google Scholar] [CrossRef]
- Parreira, J. An Interactive Simulation Model to Compare an Autonomous Haulage Truck System with a Manually-Operated System. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2013. [Google Scholar] [CrossRef]
- Voronov, Y.; Voronov, A.; Makhambayev, D. Current state and development prospects of autonomous haulage at surface mines. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 174, p. 01028. [Google Scholar]
- Gold, B. Rio Tinto’s Autonomous Haulage Achieves 1 Billion Tons. Eng. Min. J. 2018, 219, 4–5. [Google Scholar]
- Brundrett, S. Industry Analysis of Autonomous Mine Haul Truck Commercialization. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2014. [Google Scholar]
- Matsui, K.; Escribano, J.; Angeloudis, P. Real-time Dispatching for Autonomous Vehicles in Open-pit Mining Deployments using Deep Reinforcement Learning. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 5468–5475. [Google Scholar] [CrossRef]
- Redwood, N. Autonomous Haulage Systems Financial Model Assessment; Report of Whittle Consulting Company for Mining Technical Group; Whittle Consulting: Surrey Hills, Australia, 2018. [Google Scholar]
- Leung, R.; Hill, A.J.; Melkumyan, A. Automation and Artificial Intelligence Technology in Surface Mining: A Brief Introduction to Open-Pit Operations in the Pilbara. IEEE Robot. Autom. Mag. 2023, 2023, 2–21. [Google Scholar] [CrossRef]
- Gölbaşı, O.; Dagdelen, K. Equipment replacement analysis of manual trucks with autonomous truck technology in open pit mines. In Proceedings of the 38th International Symposium on the Application of Computers and Operations Research (APCOM 2017) in the Mineral Industry, Golden, CO, USA, 9–11 August 2017. [Google Scholar]
- Darabi, H.; Safar, P. Rio Tinto Autonomous Haulage System; Edith Cowan University: Joondalup, Australia, 2019. [Google Scholar]
- Closer, P.M. Rio Tinto Will Deploy World’s First Fully Autonomous Water Trucks at Gudai-Darri. Eng. Min. J. 2021, 222, 18. [Google Scholar]
- Rogers, W.P.; Kahraman, M.M.; Drews, F.A.; Powell, K.; Haight, J.M.; Wang, Y.; Baxla, K.; Sobalkar, M. Automation in the Mining Industry: Review of Technology, Systems, Human Factors, and Political. Min. Metall. Explor. 2019, 36, 607–631. [Google Scholar] [CrossRef]
- Leonida, C. Optimizing autonomous haulage. Eng. Min. J. 2019, 220, 36–43. [Google Scholar]
- Connolly, M.; Jessett, A. Integrated Support Centres—The future of dragline fleet monitoring. Agadir Procedia Eng. 2014, 83, 90–99. [Google Scholar] [CrossRef]
- Marshall, J.; Bonchis, A.; Neobot, E.; Scheding, S. Robotics in Mining. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Cham, Switzerland, 2016; pp. 1549–1576. ISBN 978-3-319-32552-1. [Google Scholar] [CrossRef]
- Adam, S.; Kok, J. Application of Continuous Drilling Technologies in Coal Mining. In Proceedings of the 2015 Coal Operators’ Conference, Mining Engineering, University of Wollongong, Wollongong, Australia, 18–20 February 2019; Aziz, N., Kininmonth, B., Eds.; Available online: https://ro.uow.edu.au/coal/572 (accessed on 12 September 2024).
- Edwards, A.L.; Dekker, J.J.; Franz, R.M.; Van Dyk, T.; Banyini, A. Profiles of noise exposure levels in South African mining. J. South. Afr. Inst. Min. Metall. 2011, 111, 315–322, ISSN 2411-9717. [Google Scholar]
- Leonida, C. Advancing art of autonomous drilling. Eng. Min. J. 2021, 222, 44–47. [Google Scholar]
- Caterpillar, World-First Autonomous Drilling Solution Implemented in Australian Coal Operation. Available online: https://www.cat.com/en_US/blog/world-first-autonomous-drilling.html (accessed on 3 September 2024).
- The Autonomous Drill Rig: Tomorrow’s Technology, Today. MBI Global. 12 July 2022. Available online: https://mbiglobal.ca/en/publication/the-autonomous-drill-rig-tomorrows-technology-today/ (accessed on 3 September 2024).
- Moore, P. Tribe Technology Completes First Fully Autonomous RC Drill Rig for Major Drilling. International Mining. 2024. Available online: https://im-mining.com/2024/03/27/tribe-technology-completes-first-fully-autonomous-rc-drill-rig-for-major-drilling/ (accessed on 16 September 2024).
- NextGenAutomation. Sandvik Mining and Rock Technology. Available online: https://www.rocktechnology.sandvik/en/campaigns/nextgenautomation/ (accessed on 17 September 2024).
- Aldred, W.; Bourque, J.; Mannering, M.; Chapman, C.; du Castel, B.; Hansen, R.; Downton, G.; Harmer, R.; Falconer, I.; Florence, F.; et al. Drilling automation. Oilfield Rev. 2012, 24, 18–27. [Google Scholar]
- Chen, X.; Wang, S.; Yang, J.; Chen, F. Research and Application of Underground Automatic Drilling Rig. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 668, p. 012071. [Google Scholar] [CrossRef]
- Rafezi, H.; Hassani, F. Drill bit wear monitoring and failure prediction for mining automation. Int. J. Min. Sci. Technol. 2023, 33, 289–296. [Google Scholar] [CrossRef]
- Clarkson, M.A. Fully Automated Drill and Blast for Mining. Doctoral Dissertation, University of Southern Queensland, Darling Heights, Australia, 2022. [Google Scholar]
- Monteiro, S.; Ramos, F.; Hatherly, P. Learning CRF models from drill rig sensors for autonomous mining. In NIPS Workshop: Learning from Multiple Sources with Applications to Robotics; Australian Centre for Field Robotics, The University of Sydney: Camperdown, Australia, 2009. [Google Scholar]
- Bodlak, M.; Dmytryk, D.; Mertuszka, P.; Szumny, M.; Tomkiewicz, G. The influence of drilling process automation on improvement of blasting works quality in open pit mining. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 29, p. 00003. [Google Scholar] [CrossRef]
- Zhou, H.; Hatherly, P.; Monteiro, S.T.; Ramos, F.; Oppolzer, F.; Nettleton, E.; Scheding, S. Automatic rock recognition from drilling performance data. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3407–3412. [Google Scholar] [CrossRef]
- Morton, J. Underground drilling advances improve productivity, safety while cutting costs. Eng. Min. J. 2018, 219, 40–44. [Google Scholar]
- Lodewijks, G. Strategies for automated maintenance of belt conveyor systems. Bulk Solids Handl. 2004, 24, 16–22. [Google Scholar]
- Jurdziak, L.; Blazej, R.; Bajda, M. Conveyor Belt 4.0. In Intelligent Systems in Production Engineering and Maintenance (ISPEM); Springer International Publishing: New York, NY, USA, 2019; pp. 645–654. [Google Scholar]
- Wang, L.; Li, H.; Huang, J.; Zeng, J.; Tang, L.; Wu, W.; Luo, Y. Research on and Design of an Electric Drive Automatic Control System for Mine Belt Conveyors. Processes 2023, 11, 1762. [Google Scholar] [CrossRef]
- Tessier, J.; Duchesne, C.; Bartolacci, G. A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner. Eng. 2007, 20, 1129–1144. [Google Scholar] [CrossRef]
- Jones, E.; Sofonia, J.; Canales, C.; Hrabar, S.; Kendoul, F. Advances and applications for automated drones in underground mining operations. In Deep Mining 2019: Proceedings of the Ninth International Conference on Deep and High Stress Mining; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2019. [Google Scholar] [CrossRef]
- Kokowski, J.; Rudziński, Ł. Analysis of the Epicenter Location Accuracy for the Local Seismic Network Operated in the Mining Area Towards the Automation of Location Procedures. Pure Appl. Geophys. 2023, 180, 2561–2575. [Google Scholar] [CrossRef]
- Cucuzza, J. The status and future of mining automation: An overview. IEEE Ind. Electron. Mag. 2021, 15, 6–12. [Google Scholar] [CrossRef]
- Billingsley, J.; Brett, P. Machine Vision and Mechatronics in Practice; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Xu, Z.P.; Wang, Z.B. Research on the key technology of shearer position. In Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; Volume 2, pp. 280–283. [Google Scholar] [CrossRef]
- Ruiz, M. Optimization of a Strapdown Inertial Navigation System. Master’s Thesis, University of Texas, Austin, TX, USA, 2009. [Google Scholar]
- Fan, Q.; Li, W.; Hui, J.; Wu, L.; Yu, Z.; Yan, W.; Zhou, L. Integrated positioning for coal mining machinery in enclosed underground mine based on sins/wsn. Sci. World J. 2014, 2014, 460415. [Google Scholar] [CrossRef] [PubMed]
- Houshangi, N.; Azizi, F. Mobile robot position determination using data integration of odometry and gyroscope. In Proceedings of the World Automation Congress, Budapest, Hungary, 24–26 July 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Ralston, J.C.; Reid, D.C.; Dunn, M.T.; Hainsworth, D.W. Longwall automation: Delivering enabling technology to achieve safer and more productive underground mining. Int. J. Min. Sci. Technol. 2015, 25, 865–876. [Google Scholar] [CrossRef]
- Peng, S.S.; Du, F.; Cheng, J.; Li, Y. Automation in US longwall coal mining: A state-of-the-art review. Int. J. Min. Sci. Technol. 2019, 29, 151–159. [Google Scholar] [CrossRef]
- Kelly, M.; Hainsworth, D.; Lever, P.; Gurgenci, H. Longwall automation—An ACARP landmark project. In Proceedings of the CMMI Congress 2002, Cairns, Australia, 27–28 May 2002; Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2002. ISBN 1875776915. [Google Scholar]
- Tyuleneva, T.; Kabanov, E.; Moldazhanov, M.; Plotnikov, E. Improving the Professional Risk Management System for Methane and Coal Dust Explosions Using a Risk-based Approach. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 278, pp. 1027–1028. [Google Scholar]
- Stefaniak, P.; Jachnik, B.; Koperska, W.; Skoczylas, A. Localization of LHD machines in underground conditions using IMU sensors and DTW algorithm. Appl. Sci. 2021, 11, 6751. [Google Scholar] [CrossRef]
- Thrun, S.; Thayer, S.; Whittaker, W.; Baker, C.; Burgard, W.; Ferguson, D.; Hahnel, D.; Montemerlo, D.; Morris, A.; Omohundro, Z.; et al. Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 2004, 11, 79–91. [Google Scholar] [CrossRef]
- Nüchter, A. 3d Robotic Mapping: The Simultaneous Localization and Mapping Problem with Six Degrees of Freedom; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 52. [Google Scholar]
- Larsson, J.; Broxvall, M.; Saffiotti, A. A Navigation System for Automated Loaders in Underground Mines. In Field and Service Robotics; Corke, Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 129–140. [Google Scholar]
- Ferrein, A.; Nikolovski, G.; Limpert, N.; Reke, M.; Schiffer, S.; Scholl, I. Controlling a fleet of autonomous LHD vehicles in mining operation. In Multi-Robot Systems-New Advances; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Tampier, C.; Mascaró, M.; Ruiz-del-Solar, J. Autonomous Loading System for Load-Haul-Dump (LHD) Machines Used in Underground Mining. Appl. Sci. 2021, 11, 8718. [Google Scholar] [CrossRef]
- Dasys, A.; Drouin, A.; Geoffroy, L. Teaching an LHD to muck. In Proceedings of the Sixth Canadian Symposium on Mining Automation, Montreal, QC, Canada, 16–19 October 1994; pp. 87–93. [Google Scholar]
- Vega, H.; Castro, R. Semi Autonomous LHD operational philosophy for panel caving applications. In MassMin 2020: Proceedings of the Eighth International Conference & Exhibition on Mass Mining; University of Chile: Santiago, Chile, 2020; pp. 1313–1321. [Google Scholar] [CrossRef]
- Nebot, E.; Baiden, G. Mining Robotics. J. Field Robot. 2007, 24, 801–802. [Google Scholar] [CrossRef]
- Tariq, M. LHD Operations in Sublevel Caving Mines—A Productivity Perspective. Ph.D. Dissertation, Luleå Tekniska Universitet, Luleå, Sweden, 2024. [Google Scholar]
- Bellamy, D.; Pravica, L. Assessing the impact of driverless haul trucks in Australian surface mining. Resour. Policy 2011, 36, 149–158. [Google Scholar] [CrossRef]
- Moreau, K.; Laamanen, C.; Bose, R.; Shang, H.; Scott, J.A. Environmental impact improvements due to introducing automation into underground copper mines. Int. J. Min. Sci. Technol. 2021, 31, 1159–1167. [Google Scholar] [CrossRef]
- Sartore, C.; Campos, R.; Quintana, J.; Simetti, E.; Garcia, R.; Casalino, G. Control and Perception Framework for Deep Sea Mining Exploration. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 6348–6353. [Google Scholar] [CrossRef]
- Leng, D.; Shao, S.; Xie, Y.; Wang, H.; Liu, G. A brief review of recent progress on deep sea mining vehicle. Ocean Eng. 2021, 228, 108565. [Google Scholar] [CrossRef]
- Beus, M.J.; Ruff, T.M.; Iverson, S.; Hasz, W.; McCoy, W.G. Mine Shaft Conveyance Monitoring. Min. Eng. 2000, 53, 55–58. [Google Scholar]
- Biegaj, K. Alternative Access, Mining and Hoisting for Underground Deposits. In Mine Planning and Equipment Selection 2000; Taylor & Francis Group: London, UK, 2000; 6p, eBook; ISBN 9780203747124. [Google Scholar]
- Northcote, A.E.A. A Comparison of Skip Loading Systems from an Operational, Maintenance, Safety, and Capital Cost Estimate. In Proceedings of the 11th Underground Operators’ Conference, Canberra, Australia, 21–23 March 2011. [Google Scholar]
- Kempson, W.J. Ore Handling Systems in Shafts; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2013. [Google Scholar]
- Leinonen, M.E.; Hovinen, V.; Vuohtoniemi, R.; Pärssinen, A. 5G Radio Channel Characterization in an Underground Mining Environment. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Rusu, S.R.; Hayes, M.J.D.; Marshall, J.A. Localization in large-scale underground environments with RFID. In Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 001140–001143. [Google Scholar] [CrossRef]
- Lasantha, L.; Karmakar, N.C.; Ray, B. Chipless RFID sensors for IoT sensing and potential applications in underground mining—A review. IEEE Sens. J. 2023, 23, 9033–9048. [Google Scholar] [CrossRef]
- Seguel, F.; Palacios-Játiva, P.; Azurdia-Meza, C.A.; Krommenacker, N.; Charpentier, P.; Soto, I. Underground mine positioning: A review. IEEE Sens. J. 2021, 22, 4755–4771. [Google Scholar] [CrossRef]
- Sreedharan, S.; Ramachandran, M.; Ghosh, S.; Prakash, S. The Anatomy of an Infrastructure for Digital Underground Mining. In Proceedings of the 8th International Conference on Internet of Things, Big Data and Security (IoTBDS), Prague, Czech Republic, 21–23 April 2023; pp. 218–225, ISBN 978-989-758-643-9. ISSN 2184-4976. [Google Scholar]
- Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; de Albuquerque, V.H.C. Deep learning for safe autonomous driving: Current challenges and future directions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4316–4336. [Google Scholar] [CrossRef]
- Ge, S.; Wang, F.Y.; Yang, J.; Ding, Z.; Wang, X.; Li, Y.; Teng, S.; Liu, Z.; Ai, Y.; Chen, L. Making standards for smart mining operations: Intelligent vehicles for autonomous mining transportation. IEEE Trans. Intell. Veh. 2022, 7, 413–416. [Google Scholar] [CrossRef]
- Nikolovski, G.; Limpert, N.; Nessau, H.; Reke, M.; Ferrein, A. Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, Y.; Gao, Y.; Zhao, C.; Cheng, X.; Han, J.; Tian, B.; Chen, L.; Wang, F.Y. PMWorld: A parallel testing platform for autonomous driving in mines. IEEE Trans. Intell. Veh. 2023, 9, 1402–1411. [Google Scholar] [CrossRef]
- Schneider, S.; Melkumyan, A.; Murphy, R.J.; Nettleton, E. A geological perception system for autonomous mining. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2986–2991. [Google Scholar] [CrossRef]
- Long, T.; Zhou, Z.; Hancke, G.; Bai, Y.; Gao, Q. A review of artificial intelligence technologies in mineral identification: Classification and visualization. J. Sens. Actuator Netw. 2022, 11, 50. [Google Scholar] [CrossRef]
- Ali, D.; Frimpong, S. Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artif. Intell. Rev. 2020, 53, 6025–6042. [Google Scholar] [CrossRef]
- Liu, W. A Robust Optimization Modeling for Mine Supply Chain Planning under the Big Data. Wirel. Commun. Mob. Comput. 2021, 2021, 1709363. [Google Scholar] [CrossRef]
- Jämsä-Jounela, S.L. Future automation systems in context of process systems and minerals engineering. IFAC-Pap. 2019, 52, 403–408. [Google Scholar] [CrossRef]
- Ramezani, M.; Tafazoli, S. Using artificial intelligence in mining excavators: Automating routine operational decisions. IEEE Ind. Electron. Mag. 2020, 15, 6–11. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wu, Z.; Bing, Z.; Ai, Y.; Tian, B.; Xuanyuan, Z.; Knoll, A.C.; Chen, L. MiningLLM: Towards mining 5.0 via large language models in autonomous driving and smart mining. IEEE Trans. Intell. Veh. 2024, 1–12. [Google Scholar] [CrossRef]
- Nagaraj, B.; Murugananth, N. A comparative study of PID controller tuning using ga, ep, pso and aco. In Proceedings of the International Conference on Communication Control and Computing Technologies, Nagercoil, India, 7–9 October 2010. [Google Scholar] [CrossRef]
- Foley, M.W.; Julien, R.H.; Copeland, B.R. A comparison of PID controller tuning methods. Can. J. Chem. Eng. 2005, 83, 712–722. [Google Scholar] [CrossRef]
- Iqbal, J.; Khan, H.; Tsagarakis, N.G.; Caldwell, D.G. A novel exoskeleton robotic system for hand rehabilitation–conceptualization to prototyping. Biocybern. Biomed. Eng. 2014, 34, 79–89. [Google Scholar] [CrossRef]
- Huh, S.; Lee, U.; Shim, H.; Park, J.-B.; Noh, J.-H. Development of an unmanned coal mining robot and a tele-operation system. In Proceedings of the International Conference on Control, Automation and Systems, Gyeonggi-do, Republic of Korea, 26–29 October 2011. [Google Scholar]
- Lu, T.-F. Bucket Wheel Reclaimer Modeling as a Robotic Arm. In Proceedings of the International Conference on Robotics and Biomimetics (ROBIO 2009), Guilin, China, 19–23 December 2009. [Google Scholar] [CrossRef]
- Dickmanns, E. Vision for Ground Vehicle: History and Prospects. Int. J. Veh. Auton. Syst. 2002, 1, 1–44. [Google Scholar] [CrossRef]
- Inagaki, T.; Furukawa, H. Computer simulation for the design of authority in the adaptive cruise control systems under possibility of driver’s over-trust in automation. In Proceedings of the International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), Hague, The Netherlands, 10–13 October 2004. [Google Scholar] [CrossRef]
- Miller, C.; Funk, H. Associates with Etiquette: Meta-Communication to Make Human Automation Interaction more Natural, Productive and Polite. In Proceedings of the 8th European Conference on Cognitive Science Approaches to Process Control, Munich, Germany, 24–26 September 2001. [Google Scholar]
- Müller, R.; Vette, M.; Mailahn, O. Process-oriented task assignment for assembly processes with human-robot interaction. Procedia CIRP 2016, 44, 210–215. [Google Scholar] [CrossRef]
- Rosenthal, S.; Veloso, M. Mobile Robot Planning to Seek Help with Spatially Situated Tasks. Proc. AAAI Conf. Artif. Intell. 2021, 26, 2067–2073. [Google Scholar] [CrossRef]
- Fong, T.W.; Thorpe, C.; Baur, C. Robot, asker of questions. Robot. Auton. Syst. 2003, 42, 235–243. [Google Scholar] [CrossRef]
- Sisbot, E.A.; Marin-Urias, L.F.; Alami, R.; Simeon, T. A human aware mobile robot motion planner. IEEE Trans. Robot. 2007, 23, 874–883. [Google Scholar] [CrossRef]
- Long, P.; Chevallereau, C.; Chablat, D.; Girin, A. An industrial security system for human-robot coexistence. Ind. Robot. Int. J. 2017, 45, 1–8. [Google Scholar] [CrossRef]
- Vasic, M.; Billard, A. Safety issues in human-robot interactions. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Aivaliotis, S.; Gkournelos, C.; Kokkalis, K.; Michalos, G.; Makris, S. Power and force limiting on industrial robots for human-robot collaboration. Robot. Comput. Integr. Manuf. 2019, 59, 236–360. [Google Scholar] [CrossRef]
- Pervez, A.; Ryu, J. Safe physical human robot interaction-past, present and future. J. Mech. Sci. Technol. 2008, 22, 469–483. [Google Scholar] [CrossRef]
- Heinzmann, J.; Zelinsky, A. Quantitative safety guarantees for physical human-robot interaction. Int. J. Robot. Res. 2003, 22, 479–504. [Google Scholar] [CrossRef]
- Rybski, P.; Anderson-Sprecher, P.; Huber, D.; Niessl, C.; Simmons, R. Sensor fusion for human safety in industrial workcells. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 3612–3619. [Google Scholar] [CrossRef]
- Bascetta, L.; Ferretti, G.; Magnani, G.; Rocco, P. Walk-through programming for robotic manipulators based on admittance control. Robotica 2013, 31, 1143–1153. [Google Scholar] [CrossRef]
- Kuhn, S.; Gecks, T.; Henrich, D. Velocity control for safe robot guidance based on fused vision and force/torque data. In Proceedings of the 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, 3–6 September 2006; pp. 485–492. [Google Scholar] [CrossRef]
- KUKA. Cobots: Your Entry into Automation with Collaborative Robots. 2014. Available online: https://www.kuka.com/en-us/future-production/human-robot-collaboration/cobots#:~:text=In%202014%2C%20KUKA%20developed%20the,optimises%20processes%20and%20increases%20productivity (accessed on 17 September 2024).
- ABB. 2015. Available online: https://new.abb.com/products/robotics/robots/collaborative-robots/yumi/dual-arm (accessed on 17 September 2024).
- ISO 26262-1; Road Vehicles—Functional Safety. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 13482; Robots and Robotic Devices—Safety Requirements for Personal Care Robots. International Organization for Standardization: Geneva, Switzerland, 2014.
- Tong, X.; Lei, W. A Systematic Analysis of Functional Safety Certification Practices in Industrial Robot Software Development. MATEC Web Conf. 2017, 100, 02011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, M.; Schafrik, S.; Kolapo, P.; Agioutantis, Z.; Sottile, J. Equipment and Operations Automation in Mining: A Review. Machines 2024, 12, 713. https://doi.org/10.3390/machines12100713
Long M, Schafrik S, Kolapo P, Agioutantis Z, Sottile J. Equipment and Operations Automation in Mining: A Review. Machines. 2024; 12(10):713. https://doi.org/10.3390/machines12100713
Chicago/Turabian StyleLong, Michael, Steven Schafrik, Peter Kolapo, Zach Agioutantis, and Joseph Sottile. 2024. "Equipment and Operations Automation in Mining: A Review" Machines 12, no. 10: 713. https://doi.org/10.3390/machines12100713
APA StyleLong, M., Schafrik, S., Kolapo, P., Agioutantis, Z., & Sottile, J. (2024). Equipment and Operations Automation in Mining: A Review. Machines, 12(10), 713. https://doi.org/10.3390/machines12100713