Influence of the Size of Measurement Area Determined by Smooth-Rough Crossover Scale and Mean Profile Element Spacing on Topography Parameters of Samples Produced with Additive Methods
Abstract
:1. Introduction
2. Materials and Methods
- —the relative difference between the results obtained for two 4 mm × 1 mm surfaces, e.g., for the Sa parameter:
- —the relative difference between the results obtained for a large area and a small area isolated from it:
- —the average of the relative differences :
- a difference equals:
- Shape filtered (from removed), Lc filter used, small area based on selected SCR, topography parameters determined for small areas;
- small area based on SCR selected, shape filtered (from removed), Lc filter used, topography parameters determined for small areas.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gardan, J. Additive manufacturing technologies. In Additive Manufacturing Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 149–168. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2021.
- ISO/ASTM 52910:2018; Additive Manufacturing—Design—Requirements, Guidelines and Recommendations. ISO: Geneva, Switzerland, 2018.
- Chu, M.Q.; Wang, L.; Ding, H.Y.; Sun, Z.G. Additive Manufacturing for Aerospace Application. Appl. Mech. Mater. 2015, 798, 457–461. [Google Scholar] [CrossRef]
- Rokicki, P.; Budzik, G.; Kubiak, K.; Dziubek, T.; Zaborniak, M.; Kozik, B.; Bernaczek, J.; Przeszlowski, L.; Nowotnik, A. The assessment of geometric accuracy of aircraft engine blades with the use of an optical coordinate scanner. Aircr. Eng. Aerosp. Technol. 2016, 88, 374–381. [Google Scholar] [CrossRef]
- Gisario, A.; Kazarian, M.; Martina, F.; Mehrpouya, M. Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 2019, 53, 124–149. [Google Scholar] [CrossRef]
- Leal, R.; Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 92, 1671–1676. [Google Scholar] [CrossRef]
- Negrea, A.P.; Cojanu, V. Innovation as Entrepreneurial Drives in the Romanian Automotive Industry. J. Econ. Bus. Manag. 2016, 4, 58–64. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Turek, P.; Budzik, G. Estimating the Accuracy of Mandible Anatomical Models Manufactured Using Material Extrusion Methods. Polymers 2021, 13, 2271. [Google Scholar] [CrossRef]
- Turek, P.; Budzik, G. Development of a procedure for increasing the accuracy of the reconstruction and triangulation process of the cranial vault geometry for additive manufacturing. In Facta Universitatis, Series: Mechanical Engineering; University of Nis: Nis, Serbia, 2022. [Google Scholar]
- Kwon, S.Y.; Kim, Y.; Ahn, H.W.; Kim, K.B.; Chung, K.R.; Kim, S.H. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping. Int. J. Dent. 2014, 2014, 164164. [Google Scholar] [CrossRef] [Green Version]
- Martorelli, M.; Gerbino, S.; Giudice, M.; Ausiello, P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent. Mater. 2013, 29, e1–e10. [Google Scholar] [CrossRef]
- Acher, M.; Cleve, A.; Collet, P.; Merle, P.; Duchien, L.; Lahire, P. Reverse Engineering Architectural Feature Models. In Software Architecture; Springer: Berlin/Heidelberg, Germany, 2011; pp. 220–235. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.; Haleem, A. Using additive manufacturing applications for design and development of food and agricultural equipments. Int. J. Mater. Prod. Technol. 2019, 58, 225. [Google Scholar] [CrossRef]
- Budzik, G.; Woźniak, J.; Paszkiewicz, A.; Przeszłowski, Ł.; Dziubek, T.; Dębski, M. Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials. Materials 2021, 14, 2202. [Google Scholar] [CrossRef] [PubMed]
- Bazan, A.; Turek, P.; Przeszłowski, Ł. Assessment of InfiniteFocus system measurement errors in testing the accuracy of crown and tooth body model. J. Mech. Sci. Technol. 2021, 35, 1167–1176. [Google Scholar] [CrossRef]
- Bazan, A.; Turek, P.; Przeszłowski, Ł. Comparison of the contact and focus variation measurement methods in the process of surface topography evaluation of additively manufactured models with different geometry complexity. Surf. Topogr. Metrol. Prop. 2022, 10, 035021. [Google Scholar] [CrossRef]
- Kozior, T.; Adamczak, S. Amplitude Surface Texture Parameters of Models Manufactured by FDM Technology. In Proceedings of the International Symposium for Production Research 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 208–217. [Google Scholar] [CrossRef]
- Leach, R.; Bourell, D.; Carmignato, S.; Donmez, A.; Senin, N.; Dewulf, W. Geometrical metrology for metal additive manufacturing. CIRP Ann. 2019, 68, 677–700. [Google Scholar] [CrossRef]
- Józwik, J. Analysis of the Effect of Trochoidal Milling on the Surface Roughness of Aluminium Alloys after Milling. Manuf. Technol. 2019, 19, 772–779. [Google Scholar] [CrossRef]
- Magdziak, M. Determining the strategy of contact measurements based on results of non-contact coordinate measurements. Procedia Manuf. 2020, 51, 337–344. [Google Scholar] [CrossRef]
- Dziubek, T.; Oleksy, M. Application of ATOS II optical system in the techniques of rapid prototyping of epoxy resin-based gear models. Polimery 2017, 62, 44–52. [Google Scholar] [CrossRef]
- Leach, R. Advances in Optical Surface Texture Metrology; IOP Publishing Ltd.: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Leach, R. (Ed.) Optical Measurement of Surface Topography; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Bazan, A.; Kawalec, A.; Rydzak, T.; Kubik, P.; Olko, A. Determination of Selected Texture Features on a Single-Layer Grinding Wheel Active Surface for Tracking Their Changes as a Result of Wear. Materials 2020, 14, 6. [Google Scholar] [CrossRef]
- Launhardt, M.; Wörz, A.; Loderer, A.; Laumer, T.; Drummer, D.; Hausotte, T.; Schmidt, M. Detecting surface roughness on SLS parts with various measuring techniques. Polym. Test. 2016, 53, 217–226. [Google Scholar] [CrossRef]
- Pawlus, P.; Reizer, R.; Wieczorowski, M.; Krolczyk, G. Study of surface texture measurement errors. Measurement 2023, 210, 112568. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, X.; Wang, S.; Li, Q.; Qin, H.; Li, B. Similarity evaluation of topography measurement results by different optical metrology technologies for additive manufactured parts. Opt. Lasers Eng. 2020, 126, 105920. [Google Scholar] [CrossRef] [Green Version]
- Leksycki, K.; Królczyk, J.B. Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy. Measurement 2021, 169, 108378. [Google Scholar] [CrossRef]
- Molnár, V. Minimization Method for 3D Surface Roughness Evaluation Area. Machines 2021, 9, 192. [Google Scholar] [CrossRef]
- ISO 21920-1:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 1: Indication of Surface Texture. ISO: Geneva, Switzerland, 2021.
- ISO 16610-21:2011; Geometrical Product Specifications (GPS)—Filtration—Part 21: Linear Profile Filters: Gaussian Filters. ISO: Geneva, Switzerland, 2011.
- Brown, C.A. Areal Fractal Methods. In Characterisation of Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013; pp. 129–153. [Google Scholar] [CrossRef]
- Brown, C.; Charles, P.; Johnsen, W.; Chesters, S. Fractal analysis of topographic data by the patchwork method. Wear 1993, 161, 61–67. [Google Scholar] [CrossRef]
- Triantaphyllou, A.; Giusca, C.L.; Macaulay, G.D.; Roerig, F.; Hoebel, M.; Leach, R.K.; Tomita, B.; Milne, K.A. Surface texture measurement for additive manufacturing. Surf. Topogr. Metrol. Prop. 2015, 3, 024002. [Google Scholar] [CrossRef] [Green Version]
- Newton, L.; Senin, N.; Gomez, C.; Danzl, R.; Helmli, F.; Blunt, L.; Leach, R. Areal topography measurement of metal additive surfaces using focus variation microscopy. Addit. Manuf. 2019, 25, 365–389. [Google Scholar] [CrossRef]
- Danzl, R.; Helmli, F.; Scherer, S. Focus Variation—A Robust Technology for High Resolution Optical 3D Surface Metrology. Stroj. Vestn. J. Mech. Eng. 2011, 2011, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://plmgroup.eu/wp-content/uploads/Dymansion-Powershot-C.pdf (accessed on 26 April 2023).
- Todhunter, L.; Leach, R.; Lawes, S.; Blateyron, F. Industrial survey of ISO surface texture parameters. CIRP J. Manuf. Sci. Technol. 2017, 19, 84–92. [Google Scholar] [CrossRef]
- ISO 25178-2:2012; Geometrical Product Specifications (GPS). Surface Texture. Areal. Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2012. [CrossRef]
Samples Type | AM Technology | 3D Printer | Material | Layer Thickness |
---|---|---|---|---|
A | SLS—Selective Laser Sintering | EOS P 396 | PA 12 | 0.120 mm |
A | MJF—MultiJet Fusion | HP MJF 5200 | PA 12 | 0.080 mm |
B | MEM—Melted and Extruded Modeling | UP Box | ABS | 0.150 mm |
B | FFF—Fused Filament Fabrication | Prusa I3 MK3 | PET | 0.150 mm |
B | FDM—Fused Deposition Modeling | Fortus 360-mc | PC-10 | 0.178 mm |
B | MJT—Material Jetting | Objet350 Connex3 | FullCure 720 | 0.016 mm |
Parameter | Samples A | Samples B |
---|---|---|
Objective’s magnification | ×20 | ×10 |
Number of image fields | 7 × 1 | 4 × 1 |
Vertical resolution | 100 nm | 200 nm |
Lateral resolution | 2.93 m | 3.91 m |
Pixel size | 0.44 m × 0.44 m | 0.88 m × 0.88 m |
Sample Type | Sample | Large Area | SCR, mm | 5 × SCR, mm | Small Area (SCR) | Rsm, mm | 5 × Rsm, mm | Small Area (Rsm) |
---|---|---|---|---|---|---|---|---|
A | SLS | 4 × 0.5 | 0.091 | 0.5 | 0.5 × 0.5 | 0.177 | 0.9 | 0.9 × 0.5 |
A | SLS+PC | 4 × 0.5 | 0.074 | 0.4 | 0.4 × 0.5 | 0.346 | 1.8 | 1.8 × 0.5 |
A | MJF | 4 × 0.5 | 0.093 | 0.5 | 0.5 × 0.5 | 0.175 | 0.9 | 0.9 × 0.5 |
A | MJF+PC | 4 × 0.5 | 0.081 | 0.5 | 0.5 × 0.5 | 0.276 | 1.4 | 1.4 × 0.5 |
B | FFF cylinder | 4 × 1 | 0.131 | 0.7 | 0.7 × 1 | 0.158 | 0.8 | 0.8 × 1 |
B | FFF sphere | 4 × 1 | 0.124 | 0.7 | 0.7 × 1 | 0.162 | 0.9 | 0.9 × 1 |
B | FDM cylinder | 4 × 1 | 0.15 | 0.8 | 0.8 × 1 | 0.171 | 0.9 | 0.9 × 1 |
B | FDM sphere | 4 × 1 | 0.129 | 0.7 | 0.7 × 1 | 0.172 | 0.9 | 0.9 × 1 |
B | MEM cylinder | 4 × 1 | 0.126 | 0.7 | 0.7 × 1 | 0.156 | 0.8 | 0.8 × 1 |
B | MEM sphere | 4 × 1 | 0.103 | 0.6 | 0.6 × 1 | 0.225 | 1.2 | 1.2 × 1 |
B | MJ cylinder | 4 × 1 | 0.111 | 0.6 | 0.6 × 1 | 0.138 | 0.7 | 0.7 × 1 |
B | MJ sphere | 4 × 1 | 0.094 | 0.5 | 0.5 × 1 | 0.12 | 0.6 | 0.6 × 1 |
Samples A | Samples B | |||
---|---|---|---|---|
mean | 8.9 | 16.2 | 18.7 | 12.7 |
std | 6.0 | 9.5 | 11.6 | 8.1 |
min | 1.8 | 2.7 | 3.8 | 3.2 |
Q1 | 5.4 | 9.8 | 9.0 | 6.6 |
Q2 | 7.2 | 15.8 | 16.8 | 10.4 |
Q3 | 10.8 | 19.7 | 25.4 | 14.3 |
max | 28.9 | 46.5 | 49.6 | 29.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazan, A.; Turek, P.; Sułkowicz, P.; Przeszłowski, Ł.; Zakręcki, A. Influence of the Size of Measurement Area Determined by Smooth-Rough Crossover Scale and Mean Profile Element Spacing on Topography Parameters of Samples Produced with Additive Methods. Machines 2023, 11, 615. https://doi.org/10.3390/machines11060615
Bazan A, Turek P, Sułkowicz P, Przeszłowski Ł, Zakręcki A. Influence of the Size of Measurement Area Determined by Smooth-Rough Crossover Scale and Mean Profile Element Spacing on Topography Parameters of Samples Produced with Additive Methods. Machines. 2023; 11(6):615. https://doi.org/10.3390/machines11060615
Chicago/Turabian StyleBazan, Anna, Paweł Turek, Paweł Sułkowicz, Łukasz Przeszłowski, and Andrzej Zakręcki. 2023. "Influence of the Size of Measurement Area Determined by Smooth-Rough Crossover Scale and Mean Profile Element Spacing on Topography Parameters of Samples Produced with Additive Methods" Machines 11, no. 6: 615. https://doi.org/10.3390/machines11060615
APA StyleBazan, A., Turek, P., Sułkowicz, P., Przeszłowski, Ł., & Zakręcki, A. (2023). Influence of the Size of Measurement Area Determined by Smooth-Rough Crossover Scale and Mean Profile Element Spacing on Topography Parameters of Samples Produced with Additive Methods. Machines, 11(6), 615. https://doi.org/10.3390/machines11060615