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1 Faculty of Mechanical Engineering and Areonautics, Rzeszów University of Technology,
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Abstract: Surface topography measurements are becoming more and more popular and complement
the 2D analysis of surface texture. The selection of the measurement area is not yet included in
the standards, and the size of this area affects the values of the determined parameters. The article
presents the results of research on determining the measurement area based on the smooth-rough
crossover scale (SCR) and mean profile element spacing (Rsm) parameters. The tests focused on
measuring the surface topography of random and directional types of polymer parts produced by
various additive manufacturing techniques. The measurements were conducted using the focus
variation method. Surface topography parameters were determined for large evaluation areas
determined based on the cut-off filter length Lc and for small areas defined based on the SCR and Rsm
parameters. The values of parameters determined from large areas constituted the reference values to
which the values determined from small areas were compared. In the case of random-type samples,
it was shown that the values of the parameters calculated from smaller areas determined based on
the SCR significantly differed from the reference values. For both types of samples, determination of
the evaluation area based on the Rsm yielded good results. In most cases, the greatest differences
between the values of parameters calculated for small and large areas were noted for the Ssk and
Smr1 parameters. Based on the test results, it could be advantageous to replace the measurement of a
larger area with the measurement of several smaller areas located at different places on the sample.

Keywords: surface topography; optical measurements; measurement area; additive manufacturing

1. Introduction

Additive manufacturing (AM) techniques are currently one of the fastest developing
technologies used to produce even the most geometrically complex models. In additive
manufacturing, before making a real object [1,2], a digital model is divided into layers. The
thickness of a single layer largely depends on the implemented method of the additive
manufacturing [3,4]. The model printing process consists of applying the material in layers
until a complete model is obtained [5]. Depending on the manufacturing technology, the
dimension of the part, and the complexity of its geometry, the complete production of
a model using additive manufacturing techniques can take a few hours or even several
days. Currently, there are many different methods allowing for the additive shaping of
models. Taking into account the ISO/ASTM 52900 [5] and ISO/ASTM 52910 [6] standards,
seven additive object manufacturing techniques can be defined: vat polymerization (VPP),
powder bed fusion (PBF), material extrusion (MEX), directed energy deposition (DED),
sheet lamination (SHL), material jetting (MJT), and binder jetting (BJT). The differences in
how they work depend mainly on the method of solidifying successive layers as well as

Machines 2023, 11, 615. https://doi.org/10.3390/machines11060615 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11060615
https://doi.org/10.3390/machines11060615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-0642-3958
https://orcid.org/0000-0002-5926-4815
https://orcid.org/0000-0003-4604-7683
https://orcid.org/0000-0002-1212-9069
https://doi.org/10.3390/machines11060615
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11060615?type=check_update&version=1


Machines 2023, 11, 615 2 of 15

on the type of material used. Models produced with additive manufacturing are used in
the aviation [7–9], automotive [10,11], medical [12–14], dental [15,16], architecture [17], and
agriculture industries [18].

Considering the fact that fully functional models are often produced using additive
technologies, conducting a thorough control of shape and dimensional accuracy [13,19,20]
as well as surface roughness [21–23] is of great importance. Measurements are carried
out using contact methods [24,25] or optical methods [26,27]. Currently, optical surface
topography measurements are gaining more and more popularity [27–30]. This is the result
of the developments in measuring devices, mostly optical, enabling 3D measurements of
the surface texture with a very high resolution in an increasingly shorter time. However, a
number of errors can often creep in when measuring surfaces using optical methods, e.g.,
the formation of peaks at the edges and depressions of the surface and loss of signal at the
focal point of the light beam. In addition, in the case of optical methods, the measurement
parameters should be adapted to the specific measured geometry [23,31–33]. One of the
measurement parameters that affect the values of the determined parameters of the surface
texture is the measurement area [23,28,31,34]. In the case of 2D profile measurements,
the ISO 21920-1:2021 [35] standard contains recommendations regarding the selection of
cut-off filter values and the reference and measurement length. These values refer to the
Gaussian filter [36]. Although the standards of the ISO 16610 series define a number of
filters that are used in 2D and 3D surface texture measurements, the most popular and
widely used method currently is the aforementioned linear Gaussian filter. In the case of
3D measurements, due to the lack of formal recommendations, it is common practice to
select filters and the measurement area in the same way as in the case of 2D measurements.
Assuming the lengths of the sides (or only one side) of the measurement area based on the
measurement length suitable for 2D measurements can lead to a relatively large area. This,
in turn, may be associated with difficulties with conducting shape filtration, especially in
the case of surfaces with variable curvature. Measuring a large area is also not advisable if
the surface has a small radius of curvature. The measuring tip (contact or optical in the
form of light) should be perpendicular to the tested surface. A large measurement area is
also associated with time-consuming measurements and processing of data. The need to
use a large measuring range in the vertical axis may also result in reducing the resolution
of the axis. Considering the above reasons, looking for new solutions when selecting the
appropriate measurement area is of great importance.

In the work [37], it was proposed that the size of the measurement area should
be determined on the basis of the SCR (smooth-rough crossover scale) parameter. It is
a parameter determined as a result of fractal analysis conducted using the patchwork
method [38]. The application of this method to 3D surface topography measurement data
consists of spreading a mesh of triangles of various sizes on them. The size of the triangles
is related to the size of the scale s. Depending on the applied algorithm, the scale may
express the area of a triangle or the length of one of its sides. For a mesh of triangles in a
given scale, their total area is calculated. The total area of the triangles is divided by the
value of the projected area. Thus, the relative area ratio AR is calculated. Then, AR values
depending on the s scale are presented in a log–log chart. A linearizing straight line runs
through some of the points. The value of the parameter is such a scale value, for which this
line intersects the AR = 1 line. For scale values greater than the SCR, the data no longer
provide new information. Information on surface irregularities is presented only for scales
smaller than SCR. The size of the measurement area based on the parameter was used, e.g.,
in the works [21,39].

In practice, another approach is commonly used as well, involving a visual analysis
of the surface. The aim is to recognize the dominant structures on the surface. The
measurement area is usually chosen to contain at least five such structures. As they can be
difficult to clearly identify, it is advantageous to implement this concept in order to obtain a
numerical parameter. The authors concluded that the average value of the linear dimension
of these dominant structures can be the Rsm (mean profile element spacing).
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The article presents the results of research on the possibility of determining the size
of the measurement area based on the SCR (smooth-rough crossover scale) and Rsm pa-
rameters. The values of selected 3D surface parameters of samples produced by additive
methods were analysed. The test samples were made using fused deposition modelling
(FDM), melted and extruded modelling (MEM), fused filament fabrication (FFF), material
jetting (MJT), selective laser sintering (SLS) and multi jet fusion (MJF) methods. In the
case of the SLS and MJF methods, samples after additional machining were included as
well. Surface texture parameters were determined for two different sizes of the measure-
ment area: a larger one determined based on the length of the cut-off filter, similarly as
for 2D measurements, and a smaller one determined based on the SCR and Rsm param-
eters. The measurement of the surface texture was conducted using a focus variation
microscope [40,41].

2. Materials and Methods

The research methodology from the preparation of the test samples to the measurement
of the surface topography is presented in Figure 1. The measurements of the surface texture
were carried out on the samples that can be classified as random/isotropic (A samples) and
directional (B samples). A samples were manufactured by MJF and SLS methods. In the case
of the SLS method, the EOS P 396 3D printer was used, and in the case of the MJF method,
the HP MJF 5200 3D printer was used. For both 3D printers, standard manufacturing
parameters were selected for the PA12 material (Table 1). The obtained samples were
rectangular with dimensions of 40 mm × 40 mm × 4 mm. The 40 mm × 40 mm surfaces
were parallel to the XY planes of the printers. With these samples, measurements of the
surface texture were conducted on the upper surface of 40 mm × 40 mm.

Table 1. Parameters of manufacturing test samples.

Samples Type AM Technology 3D Printer Material Layer Thickness

A SLS—Selective Laser Sintering EOS P 396 PA 12 0.120 mm
A MJF—MultiJet Fusion HP MJF 5200 PA 12 0.080 mm

B MEM—Melted and Extruded Modeling UP Box ABS 0.150 mm
B FFF—Fused Filament Fabrication Prusa I3 MK3 PET 0.150 mm
B FDM—Fused Deposition Modeling Fortus 360-mc PC-10 0.178 mm
B MJT—Material Jetting Objet350 Connex3 FullCure 720 0.016 mm

Then, the produced test samples were subjected to mechanical smoothing as well.
For this purpose, the DyeMansion Powershot C was used (samples MJF+PC and SLS+PC
in Figure 1). DyeMansion Powershot C is equipped with a rotating basket and is manu-
factured from stainless steel. Two simultaneously working blasting nozzles positioned
perpendicularly to the rotating basket and the contained parts efficiently remove the pow-
der. A fixed distance between the elements and the blasting nozzles ensures reproducible
results with no risk of damaging the components during the process [42]. Glass beads
(200–300 µm) were used in the process. The mechanical processing time was 5 min at
3 bar pressure.

Type-B samples were cylinders with a diameter of 8 mm and spheres with a diameter
of 12 mm. They were produced with MEM, FFF, FDM, and MJT methods. The parameters
of the printed samples are presented in Table 2. The samples during printing were oriented
in the same way—the axis of the cylinder was aligned with the vertical axis of the given 3D
printer. Due to the optical properties of the samples produced with FDM, FFF, MEM, and
MJT methods, replicas of their surfaces made of RepliSet-F5 silicone mass were used for
optical surface roughness measurements.
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Figure 1. Scheme of research.

For each type of test sample, attempts were made to determine the parameters of the
surface topography from areas of various sizes. The surface topography was measured
with the Alicona InfiniteFocus G4 focus-variation microscope. However, before the mea-
surements with the microscope, the test samples were measured three times with the 2D
MarSurf M300 profilometer in order to initially determine the measurement length and to
estimate the Ra, Rq, Rz, and Rsm parameters, which were used to select the appropriate
objective and measurement parameters for the Alicona microscope. At this stage of the
measurements, the measurement length was selected automatically by the profilometer
software. Due to the excessively large curvature of the surface, measuring the φ12 spherical
samples proved to be impossible. The length of the measurement for these surfaces was
assumed to be the same as for the surfaces of the cylindrical samples made by the same
method. As a result, for all surfaces, the measurement length determined in the presented
way was equal to 4 mm.
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Table 2. Measurement parameters of the surface topography using focus variation microscope.

Parameter Samples A Samples B

Objective’s magnification ×20 ×10
Number of image fields 7 × 1 4 × 1

Vertical resolution 100 nm 200 nm
Lateral resolution 2.93 µm 3.91 µm

Pixel size 0.44 µm × 0.44 µm 0.88 µm × 0.88 µm

A fragment of the sample surface was measured with the InfiniteFocus G4 focus-
variation microscope in such a way that in the X direction the measurement area was at
least 4 mm long. The size of the measurement area in the Y direction resulted from the
adopted objective; for A samples, it was equal to 0.5 mm, and for B samples, it was equal to
1 mm. The surface topography measurement parameters are presented in Table 2.

Subsequently, the measurement data were processed with the SPIP 6.4.2. software.
In the case of flat samples, the data were levelled to the surface (global levelling), and in
the case of spherical and cylindrical samples, the shape was filtered (form was removed)
using a second-degree polynomial function. Then, based on a visual assessment, the length
of the cut-off filter Lc was selected to separate the waviness components. At this stage,
selected lengths specified in the ISO 21920 standard were tested, i.e., 0.25 mm, 0.8 mm,
and 2.5 mm. For all tested samples, 0.8 mm proved to be the most suitable filter length.
Finally, a larger measurement area assumed an area with 4 mm of length in the X direction
(0.8 mm × 5). For each test sample, two such areas were measured. For each area, the
parameter and the average Rsm value calculated based on 10 profiles were determined.
The average values of these parameters are presented in Table 3. In order to determine the
length of the measurement area in the X axis based on the SCR and Rsm, the values of these
parameters were multiplied by 5 and rounded up to the nearest decimal value. In the case
of B samples, the lengths of 5 × SCR were typically only 0.1 mm shorter than 5 × Rsm. On
the other hand, for A samples, the differences between SCR and Rsm were much greater.
The calculated values of 5 × Rsm were 1.8 to 4.5 times greater than 5 × SCR.

Table 3. Values of SCR and Rsm parameters determined from large measurement areas and dimen-
sions of small measurement areas.

Sample
Type Sample Large Area SCR, mm 5 × SCR,

mm
Small

Area (SCR) Rsm, mm 5 × Rsm,
mm

Small
Area
(Rsm)

A SLS 4 × 0.5 0.091 0.5 0.5 × 0.5 0.177 0.9 0.9 × 0.5
A SLS+PC 4 × 0.5 0.074 0.4 0.4 × 0.5 0.346 1.8 1.8 × 0.5
A MJF 4 × 0.5 0.093 0.5 0.5 × 0.5 0.175 0.9 0.9 × 0.5
A MJF+PC 4 × 0.5 0.081 0.5 0.5 × 0.5 0.276 1.4 1.4 × 0.5
B FFF cylinder 4 × 1 0.131 0.7 0.7 × 1 0.158 0.8 0.8 × 1
B FFF sphere 4 × 1 0.124 0.7 0.7 × 1 0.162 0.9 0.9 × 1
B FDM cylinder 4 × 1 0.15 0.8 0.8 × 1 0.171 0.9 0.9 × 1
B FDM sphere 4 × 1 0.129 0.7 0.7 × 1 0.172 0.9 0.9 × 1
B MEM cylinder 4 × 1 0.126 0.7 0.7 × 1 0.156 0.8 0.8 × 1
B MEM sphere 4 × 1 0.103 0.6 0.6 × 1 0.225 1.2 1.2 × 1
B MJ cylinder 4 × 1 0.111 0.6 0.6 × 1 0.138 0.7 0.7 × 1
B MJ sphere 4 × 1 0.094 0.5 0.5 × 1 0.12 0.6 0.6 × 1

The measured large fragments of the topography (without filtration) were then divided
into smaller parts of the size corresponding to the small area determined based on Rsm
or SCR. For example, in the case of a cylindrical FFF sample, the small area determined
from Rsm was 0.9 mm × 1 mm. From one large measured area of 4 mm × 1 mm, 4 small
fragments were isolated. Each large and small fragment was subjected to shape and
waviness filtration (Lc = 0.8 mm). For both large and small fragments after filtration,
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surface topography parameters were determined. In the study, the most commonly used
parameters in industrial practice were analysed [43]: Sa, Sz, Sq, Sp, Sv, Sku, Ssk, Spk, Sk, Svk,
Smr1, Smr2, Sdq, Sdr, Sds, Sal, and Str [44]. For each type of test sample and each analysed
parameter, the following values were determined:

• δL—the relative difference between the results obtained for two 4 mm × 1 mm surfaces,
e.g., for the Sa parameter:

δ(Sa)L =

∣∣(Sa)L1 − (Sa)L2

∣∣
(Sa)L1

· 100%, (1)

where (Sa)L1 and (Sa)L2 are the values of Sa for largest and second-largest areas,
respectively.

• δSj —the relative difference between the results obtained for a large area and a small
area isolated from it:

δ(Sa)Sj =

∣∣∣(Sa)Li − (Sa)Sij

∣∣∣
(Sa)Li

· 100%, (2)

where (Sa)Li is the i-th large area, and Sij is the j-th area isolated from the i-th large
area.

• δS—the average of the relative differences δSj :

δ(Sa)S =
1
n

n

∑
k=1

δ(Sa)Sj , (3)

• a difference δ equals:
δ(Sa) = δ(Sa)S − δ(Sa)L, (4)

A positive d value for a given parameter can be interpreted as an indication that
the values of this parameter for two large areas measured on the same test sample differ
more than the values of the parameter calculated for small areas compared to the value
determined for the large area. In other words, the difference in the parameter value
resulting from the measurement of the smaller area is greater than the difference resulting
from measuring the topography at different places on the test sample. In order to test if
the measurement of a smaller measurement area does not negatively affect the determined
topography parameters, the values of d should not be too large. In the tests, it was assumed
that the value of δ < 5% indicates that the decrease in the measurement area does not
significantly affect the value of a given parameter. However, in the case of δ > 10%, the
influence of the size of the area was considered to be too great. The 5% and 10% values refer
to levels of statistical significance commonly used in scientific research. More strict values
apply to research whose results may have a direct impact on human health and safety.

The research methodology described above was adopted so that the differences δSj ,
i.e., the values obtained from a small area compared to a large one, consider the fact that
the effects of shape filtration and Lc filtration on large and small areas will be different.
However, the research was supplemented by examining the differences in filtration results
depending on the size of the measurement area. The tests were conducted with SLS+PC
samples (type-A samples) and spherical MJ (type-B samples). For these samples, taking
into consideration their type, the smallest evaluation areas were defined (small area (SCR)
in Table 3). Three areas of 1.4 mm × 1 mm were measured on the SLS+PC sample. On the
MJ spherical sample, five areas of 1.4 mm × 1 mm were measured. Then, the measurement
data were processed in two ways:

1. Shape filtered (from removed), Lc filter used, small area based on selected SCR,
topography parameters determined for small areas;

2. small area based on SCR selected, shape filtered (from removed), Lc filter used,
topography parameters determined for small areas.
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For each type of the sample, 10 small fragments of surface topography were analysed.
Each such fragment was analysed in the two ways described above, i.e., using Lc for a large
area (before a small area was defined) and using Lc for a small area.

3. Results and Discussion

In the case of the SLS+PC sample, the statistical analysis (the paired t-test with the
level of significance α = 0.05) did not indicate statistically significant differences be-
tween the analysed topography parameters depending on the use of filters in the area of
0.4 mm × 0.5 mm or 1.4 mm × 1 mm. However, statistically significant differences were
obtained in the case of the MJ sphere in regard to Sa, Sq and Sv parameters. After applying
filtration for large areas, the values of the Sa and Sq parameters were on average 1.2%
higher, and the Sv parameter was 2.7% higher than the values obtained after filtration
conducted for small areas. Figure 2 presents valuses of Sa depending on the use of filters in
lagre or small area.

(a) sample SLS+PC (b) sample MJ sphere

Figure 2. Values of the Sa parameter depending on the application of the Lc filter for the
1.4 mm × 1 mm area or for the small area based on SCR.

Figures 3 and 4 present views of the measured large areas of the samples, the dimension
of which in the X direction equals 4 mm and small areas based on Rsm parameter. Surfaces
manufactured by SLS and MJF methods (without and after mechanical smoothing, Figure 3)
are random, isotropic. The maps of surfaces without mechanical smoothing show grains of
bounded powder. The linear dimensions of these grains are approx. 40–80 µm. There are
no distinct differences between the topography of the SLS and MJF samples.

The elevations visible in the topography maps of SLS and MJF samples after me-
chanical smoothing have much larger dimensions than single grains. After mechanical
smoothing, there are also no distinct differences between the topography of the SLS and
MJF samples. The views of the surfaces of B samples (Figure 4) confirm their directional
properties. On the surfaces of the MEM, FDM, and FFF samples, individual layers are
clearly visible. There are no distinct differences between the topography of spherical and
cylindrical samples made using a given additive method.
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(a) SLS sample (without mechanical smoothing): LA = 4 mm × 1 mm, SA_Rsm = 0.9 mm × 0.5 mm

(b) SLS+PC sample (after mechanical smoothing): LA = 4 mm × 1 mm, SA_Rsm = 1.8 mm × 0.5 mm

(c) MJF sample (without mechanical smoothing): LA = 4 mm × 1 mm, SA_Rsm = 0.9 mm × 0.5 mm

(d) MJF+PC (sample after mechanical smoothing): LA = 4 mm × 1 mm, SA_Rsm = 1.4 mm × 0.5 mm

Figure 3. Maps of the large measured areas (LA) and small measured areas based on Rsm (SA_Rsm)
of samples A (after form removal and filtering using Lc = 0.8 mm).

(a) FFF spherical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.9 mm × 1 mm

(b) FFF cylindrical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.8 mm × 1 mm

Figure 4. Cont.
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(c) FDM spherical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.9 mm × 1 mm

(d) FDM cylindrical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.9 mm × 1 mm

(e) MEM spherical sample: LA = 4 mm × 1 mm, SA_Rsm = 1.2 mm × 1 mm

(f) MEM cylindrical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.8 mm × 1 mm

(g) MJT spherical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.6 mm × 1 mm

(h) MJT cylindrical sample: LA = 4 mm × 1 mm, SA_Rsm = 0.7 mm × 1 mm

Figure 4. Maps of the large measured areas (LA) and small measured areas based on Rsm (SA_Rsm)
of samples B (after form removal and filtering using Lc = 0.8 mm).



Machines 2023, 11, 615 10 of 15

Because the sizes of the areas determined based on SCR and Rsm for B samples were
in most cases very similar, analyses were performed for surface A only. The values of δ are
presented in Figure 5. In the case of analyses performed taking into account the parameters,
the values of δ = 10% and δ = 5% were exceeded in over 27% and as much as 55% of cases,
respectively. Basing the selection of the measurement area on the Rsm value, it was approx.
6% and 17%. It was therefore concluded that the decrease in the size of the analysed areas
based on the SCR had a significant impact on the values of the determined parameters.
More detailed analyses, including the B-type samples with a directional texture, were
conducted only for areas determined based on the Rsm parameter.

Figure 5. Parameter δ values in case of A sample analysis and areas determined based on SCR and
Rsm parameters.

The values of δ for the areas determined based on the Rsm parameter for samples A
and B are presented in Figures 6 and 7. In order to better visualize positive δ values for B
samples, a logarithmic scale was used.

Figure 6. Parameter δ values in the case of analysis of A samples area determined based on the
Rsm parameter.
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Figure 7. Values of the parameter δ > 1% in the case of analysis of B samples determined based on
the Rsm parameter.

For A and B samples exceeding the limit of δ = 10% occurred in 6.25% of the cases
(12 times in total). Most often, it concerned the Smr1 (five times) and Ssk (three times)
parameters. The values of δ less than 5% were observed in almost 83% of the cases for the
A samples and 86% for the B samples.

Figures 8 and 9 present the differences δL and δS for selected topography parameters
of samples with an isotropic and directional texture. Descriptive statistics for these values
for A and B samples are presented in Table 4. In the case of isotropic samples, δS value
was greater than δL for all the parameters. All quantiles and the mean value presented in
Table 4 for A samples are about twice as large for the δS parameter. In the case of samples
with a clearly directional texture, the tendency was the opposite; for all the parameters
except Smr1, the difference δL was greater than δS.

Figure 8. Values of δL and δS in the case of analysis of A samples (δS determined based on the
Rsm parameter).

Comparing the values for A and B samples, it can be seen that for samples with a
directional texture, the values are higher. This proves that the measured fragments of the
surface of isotropic samples were characterized by greater homogeneity within a given
sample. The topography of samples with a directional texture was more varied depending
on the location of the measurement area. Therefore, in general for samples type A and
B, the above analyses show that for A samples, a greater change in the parameter values
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was observed by reducing the analysed area than by conducting the measurements in
different locations on the sample. In the case of samples with a directional texture, in terms
of representativeness of measurements, a more important aspect would be to conduct
measurements in various locations than to reduce the size of the measurement area from
the size based on Lc to one based on Rsm.

Figure 9. Values of δL and δS in the case of analysis of B samples (δS determined based on the
Rsm parameter).

Table 4. Basic descriptive statistics of δL and δS parameters determined for samples A and B.

Samples A Samples B
δL δS δL δS

mean 8.9 16.2 18.7 12.7
std 6.0 9.5 11.6 8.1
min 1.8 2.7 3.8 3.2
Q1 5.4 9.8 9.0 6.6
Q2 7.2 15.8 16.8 10.4
Q3 10.8 19.7 25.4 14.3

max 28.9 46.5 49.6 29.5

Comparing the values for A and B samples, it can be seen that for samples with a
directional texture, the values are higher. This proves that the measured fragments of the
surface of isotropic samples were characterized by greater homogeneity within a given
sample. The topography of samples with a directional texture was more varied depending
on the location of the measurement area. Therefore, in general for samples type A and
B, the above analyses show that for A samples, a greater change in the parameter values
was observed by reducing the analysed area than by conducting the measurements in
different locations on the sample. In the case of samples with a directional texture, in terms
of representativeness of measurements, a more important aspect would be to conduct
measurements in various locations than to reduce the size of the measurement area from
the size based on Lc to one based on Rsm.

4. Conclusions

Surface texture is one of the crucial factors influencing the functional properties
of machine parts. It applies to all types of surfaces, including those of parts produced
by additive manufacturing. Although surface topography measurement methods are
becoming more and more popular, the selection of the measurement area still proves to be
an issue. The size of the measurement area impacts the determined values of the parameters
of the surface texture.
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It can be considered that measuring the topography of a larger surface area is more
reliable: more data are obtained from a large area than from a small one. However,
measuring a large surface area to evaluate the surface microgeometry is time-consuming
and therefore costly. In addition, problems with shape filtering are more common with
large measurement areas than with small ones. On the other hand, measuring too small of
an area may result in problems with filtering the waviness components. When measuring
too small of an area, not enough information about the surface is obtained and, for example,
the values of the amplitude parameters Sp or Sz may be underestimated.

In the presented paper, the authors determined the parameters of the surface texture of
the samples for measurement areas of various sizes: a larger area determined based on the
length of the cut-off filter Lc (similarly as for 2D parameters) and a smaller area determined
based on the SCR and Rsm parameters. Large evaluation areas (determined based on Lc)
were assumed as more representative, and the parameter values determined from them
served as a reference for the values determined from small evaluation areas. In the case of
samples with a directional texture (B samples), the sizes of small areas determined based on
the SCR and Rsm parameters were in most cases very similar. In the case of samples with
random texture (A samples), significant differences were observed; the areas determined
based on Rsm were 1.8–4.5 times larger than the areas determined based on the SCR.

Based on the analyses conducted for A samples, it was proven that the parameter
values calculated from the evaluation area determined based on the SCR parameter signifi-
cantly differ from the values determined from a large area. Assuming that the parameter
values determined from a large area are more reliable, it can be concluded that the evalua-
tion areas determined based on the SCR parameter in the case of A samples were too small.
The obtained results indicate that determining the size of the evaluation area based on the
Rsm parameter rather than on the SCR was preferable.

Taking into account the results obtained for all samples, it can be concluded that the
values of topography parameters determined for the measurement area selected based
on Lc are usually not significantly different from the values determined for smaller areas
determined based on the Rsm parameter. It should be noted that the analysed delta
parameter considered the average of δSj differences determined based on measurements
of several smaller areas. Therefore, the obtained results should not be interpreted in
such a way that the measurement of a larger area can be successfully replaced with the
measurement of only one smaller area. However, replacing the measurement of a larger
area with the measurement of several smaller areas located in different places on the
sample should be considered. It can provide additional information on the variability of
parameters within the sample. In many cases, conducting measurements of several smaller
areas proves to be easier and quicker than that of a larger area. For the samples analysed,
greater variability of topography parameters within a single sample was observed on
samples with a directional texture; the average δL value for type-B samples was more than
twice as high as for type A samples. Thus, for B samples, reducing the measurement area in
favour of a larger number of measurement locations could increase the representativeness
of the measurements.

The conducted research does not exhaust the subject concerning the appropriate
selection of the measurement area of the surface topography. Future research should focus
on determining the usefulness of the Rsm parameter for this purpose, as well as trying to
find alternative solutions to the discussed problem.
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