Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application
Abstract
:1. Introduction
2. Basic Chimpanzee Algorithm
3. Improving the Chimpanzee Algorithm
3.1. Improved Sine Chaotic Mapping for Initializing Populations
3.2. PSO Idea and Nonlinear Convergence Factor
3.2.1. PSO Idea
3.2.2. Nonlinear Decay Convergence Factor
3.3. Improved Sparrow Elite Variation and Logistic Chaos Mapping
3.3.1. Improved Sparrow Elite Variation and Logistic Chaos Mapping
3.3.2. Bernoulli Chaotic Mappings
3.4. IMSChoA Algorithm Flow
- Step 1: Initialize the population using the improved sine chaotic mapping, including the number of population individuals N, the maximum number of iterations tmax, the dimension d, the search boundary ub, and lb, the maximum and minimum weight factors, and the adjustment trade-off factor g, and set the relevant parameters.
- Step 2: Update the acceleration factor, inertia weight, convergence factor, and water wave factor.
- Step 3: Calculate the position of each chimpanzee.
- Step 4: Update the positions of repellers, blockers, pursuers, and attackers.
- Step 5: Calculate the adaptation degree value and the average value of the adaptation degree to find the global optimum and individual optimum.
- Step 6: Compare the individual adaptation degree value f with the average value of adaptation degree favg. If f < favg, perform Brenoylli perturbation to determine whether the perturbed individual is better than the original individual, and update if better. Otherwise, keep the original individual unchanged; if f > favg, perform sparrow elite variation, and replace it if it is better than the original individual, otherwise keep it.
- Step 7: Update the global optimal value of the population and the individual optimal value.
- Step 8: Determine whether the condition is satisfied, and output the result if satisfied, otherwise return to step 2 for execution.
3.5. Time Complexity Analysis
4. Algorithm Performance Testing
4.1. Experimental Parameter Settings
4.2. Benchmark Test Functions
4.3. Comparison of the IMSChoA Algorithm with Other Algorithms
4.4. Wilcoxon Rank Sum Test
5. Application Analysis of IMSChoA Algorithm Engineering Calculations
5.1. Spring Optimization Design Case Study
5.2. Optimization Experiments of the Fully Automatic Piston Manometer Control System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Comput. 2019, 22 (Suppl. S2), 4745–4766. [Google Scholar] [CrossRef]
- Cinsdikici, M.G.; Aydın, D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 2009, 96, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ghanamijaber, M. A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in power system. Evol. Syst. 2019, 10, 273–284. [Google Scholar] [CrossRef]
- Maharana, D.; Kotecha, P. Optimization of Job Shop Scheduling Problem with Grey Wolf Optimizer and JAYA Algorithm. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019; pp. 47–58. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Rahmani, M.; Ghodsypour, S.H. A new simulation-based genetic algorithm to efficiency measure in IDEA with weight restrictions. Measurement 2017, 108, 26–33. [Google Scholar] [CrossRef]
- Bu, S.J.; Kang, H.B.; Cho, S.B. Ensemble of Deep Convolutional Learning Classifier System Based on Genetic Algorithm for Database Intrusion Detection. Electronics 2022, 11, 745. [Google Scholar] [CrossRef]
- Afzal, A.; Ramis, M.K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J. Energy Storage 2020, 32, 101815. [Google Scholar] [CrossRef]
- Xin-gang, Z.; Ji, L.; Jin, M.; Ying, Z. An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Syst. Appl. 2020, 152, 113370. [Google Scholar] [CrossRef]
- Sun, X.; Hu, C.; Lei, G.; Guo, Y.; Zhu, J. State Feedback Control for a PM Hub Motor Based on Gray Wolf Optimization Algorithm. IEEE Trans. Power Electron. 2020, 35, 1136–1146. [Google Scholar] [CrossRef]
- Meidani, K.; Hemmasian, A.; Mirjalili, S.; Farimani, A.B. Adaptive grey wolf optimizer. Neural Comput. Appl. 2022, 34, 7711–7731. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Gao, X.; Zhang, H. A new bio-inspired algorithm: Chicken swarm optimization. In International Conference in Swarm Intelligence; Springer: Cham, Switzerland, 2014; pp. 86–94. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Yi, J. Grey wolf optimizer with cellular topological structure. Expert Syst. Appl. 2018, 107, 89–114. [Google Scholar] [CrossRef]
- Teng, Z.; Lv, J.; Guo, L. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019, 23, 6617–6631. [Google Scholar] [CrossRef]
- Hussien, A.G.; Hassanien, A.E.; Houssein, E.H.; Amin, M.; Azar, A.T. New binary whale optimization algorithm for discrete optimization problems. Eng. Optim. 2020, 52, 945–959. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, C.; Wan, B.; Song, W.W.; Yang, G. An Adaptive Fuzzy Chicken Swarm Optimization Algorithm. Math. Probl. Eng. 2021, 2021, 8896794. [Google Scholar] [CrossRef]
- Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Liu, J. An improved moth-flame optimization algorithm for engineering problems. Symmetry 2020, 12, 1234. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Du, N.; Zhou, Y.; Deng, W.; Luo, Q. Improved chimp optimization algorithm for three-dimensional path planning problem. Multimed. Tools Appl. 2022, 81, 27397–27422. [Google Scholar] [CrossRef]
- Kumari, C.L.; Kamboj, V.K.; Bath, S.K.; Tripathi, S.L.; Khatri, M.; Sehgal, S. A boosted chimp optimizer for numerical and engineering design optimization challenges. Eng. Comput. 2022, 1–52. [Google Scholar] [CrossRef]
- Houssein, E.H.; Emam, M.M.; Ali, A.A. An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst. Appl. 2021, 185, 115651. [Google Scholar] [CrossRef]
- Liu, C.; He, Q. Golden sine chimpanzee optimization algorithm integrating multiple strategies. J. Autom. 2022, 47, 1–14. [Google Scholar]
- Hekmatmanesh, A.; Wu, H.; Handroos, H. Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain Computer Interface Study. Front. Rehabil. Sci. 2022, 2, 802070. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, M.; Guo, Q. Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [Google Scholar] [CrossRef]
- Xiong, X.; Wan, Z. The simulation of double inverted pendulum control based on particle swarm optimization LQR algorithm. In Proceedings of the 2010 IEEE International Conference on Software Engineering and Service Sciences, Beijing, China, 16–18 July 2009; IEEE: Piscataway, NJ, USA, 2010; pp. 253–256. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Y.; Yu, C.; Yang, H.; Gao, H.; Wang, J.; Chang, Q.; Wen, X. Multi-Strategy Improved Sparrow Search Algorithm and Application. Math. Comput. Appl. 2022, 27, 96. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Pang, G.; Song, H.; Yu, Q.; Zhang, H. A Multi-Strategy Improved Arithmetic Optimization Algorithm. Symmetry 2022, 14, 1011. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Yang, H. Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm. Comput. Intell. Neurosci. 2021, 2021, 5556780. [Google Scholar] [CrossRef]
- Mareli, M.; Twala, B. An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform. 2018, 14, 107–115. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Xinming, Z.; Xia, W.; Qiang, K. Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization. Control. Decis. 2019, 34, 2073–2084. [Google Scholar]
- He, Q.; Luo, S.H.H. Hybrid improvement strategy of chimpanzee optimization algorithm and its mechanical application. Control. Decis. Mak. 2022, 1–11. [Google Scholar]
Algorithm | Parameters |
---|---|
PSO | C1 = 1.445; C2 = 1.445; wmax = 2.0; wmin = 0.5 |
GWO | a decreases linearly from 1.5 to 0; r1,r2∈[0, 1] |
IMSChoA | wmax = 2.5; wmin = 0.05; fg = 2.5; λ = 0.4; g = 1000 |
ChoA | m = chaos (3,1,1) |
MFO | t∈[k, 1]; k varies linearly between −1 and −2; b = 1 |
No. | Function Name | Definition Domain | Dimensionality | Optimal Value | Absolute Accuracy Error |
---|---|---|---|---|---|
F1 | Sphere | [−100, 100] | 30 | 0 | 1.00 × 10−3 |
F2 | Schwefel’ problem 2.22 | [−10, 10] | 30 | 0 | 1.00 × 10−3 |
F3 | Schwefel’ problem 1.2 | [−100, 100] | 30 | 0 | 1.00 × 10−3 |
F4 | Schwefel’ problem 2.21 | [−100, 100] | 30 | 0 | 1.00 × 10−3 |
F5 | Generalized Rosenbrock’s Function | [−30, 30] | 30 | 0 | 1.00 × 10−2 |
F6 | Step Function | [−100, 100] | 30 | 0 | 1.00 × 10−2 |
F7 | Quartic Function | [−1.28, 1.28] | 30 | 0 | 1.00 × 10−2 |
F8 | Generalized Schwefel’s problem | [−500, 500] | 30 | −12,569.5 | 1.00 × 102 |
F9 | Generalized Rastrigin’s Function | [−5.12, 5.12] | 30 | 0 | 1.00 × 10−2 |
F10 | Ackley’s Function | [−32, 32] | 30 | 0 | 1.00 × 10−2 |
F11 | Ceneralized Criewank Function | [−600, 600] | 30 | 0 | 1.00 × 10−2 |
F12 | Ceneralized Penalized Function | [−50, 50] | 30 | 0 | 1.00 × 10−2 |
F13 | Branin Function | [−5, 5] | 2 | 0.398 | 1.00 × 10−2 |
F14 | Shekell’s Foxholes Function | [−65, 65] | 2 | 1 | 1.00 × 10−2 |
F15 | Kowalik’s Function | [−5, 5] | 4 | 0.0003 | 1.00 × 10−2 |
F16 | Six-Hump Camel-Back Function | [−5, 5] | 2 | −1.03 | 1.00×10−2 |
F17 | Goldstein-Price Function | [−2, 2] | 2 | 3 | 1.00 × 10−2 |
F18 | Hatman’s Function1 | [0, 1] | 3 | −3.86 | 1.00 × 10−2 |
F19 | Hatman’s Function2 | [0, 1] | 6 | −3.32 | 1.00 × 10−2 |
F20 | Shekel’s Family 1 | [0, 10] | 4 | −10 | 1.00 × 10−2 |
F21 | Shekel’s Family 2 | [0, 10] | 4 | −10 | 1.00 × 10−2 |
Function Name | Algorithm | Optimum Value | Average Value | Standard Deviation |
---|---|---|---|---|
F1 | PSO | 1.7739 × 100 | 4.2242 × 103 | 1.3399 × 104 |
GWO | 3.8341 × 10−6 | 3.8284 × 104 | 4.0132 × 104 | |
IMSChoA | 2.3526 × 10−30 | 9.8425 × 102 | 7.5512 × 103 | |
ChoA | 6.2740 × 10−11 | 4.1370 × 104 | 3.9220 × 104 | |
MFO | 7.8368 × 101 | 1.0170 × 104 | 1.8759 × 104 | |
F2 | PSO | 5.8589 × 100 | 9.9897 × 108 | 2.2020 × 1010 |
GWO | 0.0008 × 100 | 5.5000 × 1016 | 7.3352 × 1016 | |
IMSChoA | 3.3714 × 10−18 | 8.1379 × 103 | 1.8164 × 108 | |
ChoA | 9.2287 × 10−6 | 1.4540 × 1013 | 43.4356 × 1013 | |
MFO | 5.0048 × 101 | 2.4481 × 1016 | 3.4463 × 1017 | |
F3 | PSO | 0.6379 × 100 | 5.2282 × 103 | 1.3308 × 104 |
GWO | 5.7064 × 10−6 | 3.2449 × 104 | 3.1888 × 104 | |
IMSChoA | 1.2559 × 10−30 | 7.7739 × 102 | 6.0601 × 103 | |
ChoA | 9.8877 × 10−8 | 4.5275 × 104 | 4.3573 × 104 | |
MFO | 2.0501 × 100 | 1.4254 × 104 | 2.5940 × 104 | |
F4 | PSO | 2.8173 × 100 | 1.2901 × 101 | 1.6815 × 101 |
GWO | 4.9114 × 10−4 | 3.6630 × 101 | 3.0889 × 101 | |
IMSChoA | 2.4606 × 10−4 | 1.2484 × 101 | 2.8149 × 101 | |
ChoA | 1.8419 × 10−2 | 6.0327 × 101 | 4.3718 × 101 | |
MFO | 9.2480 × 101 | 9.2986 × 101 | 1.3286 × 102 | |
F5 | PSO | 6.7185 × 102 | 2.4067 × 106 | 1.6751 × 107 |
GWO | 2.9001 × 101 | 1.4677 × 108 | 2.1058 × 108 | |
IMSChoA | 2.6094 × 101 | 3.8713 × 106 | 3.9511 × 107 | |
ChoA | 2.8961 × 101 | 3.2706 × 107 | 3.2469 × 106 | |
MFO | 9.0475 × 104 | 4.8562 × 107 | 1.0463 × 108 | |
F6 | PSO | 1.2471 × 100 | 4.1923 × 103 | 1.3160 × 104 |
GWO | 7.5015 × 100 | 4.0337 × 104 | 4.3493 × 104 | |
IMSChoA | 0.4743 × 100 | 9.2983 × 102 | 8.0821 × 103 | |
ChoA | 4.0870 × 100 | 4.5433 × 104 | 4.1956 × 104 | |
MFO | 7.7287 × 100 | 2.6025 × 104 | 3.1180 × 104 | |
F7 | PSO | 3.2543 × 100 | 8.8942 × 106 | 5.3271 × 107 |
GWO | 1.6692 × 100 | 2.8689 × 108 | 4.6735 × 108 | |
IMSChoA | 0.7521 × 10−1 | 5.5112 × 106 | 5.1999 × 107 | |
ChoA | 0.3327 × 100 | 8.0941 × 108 | 2.5548 × 108 | |
MFO | 7.918 × 100 | 7.7442 × 107 | 1.7117 × 108 | |
F8 | PSO | 1.2435 × 101 | 2.1457 × 102 | 3.2457 × 103 |
GWO | 4.5876 × 10−3 | 2.1475 × 100 | 2.4785 × 101 | |
IMSChoA | 8.7812 × 10−5 | 7.7865 × 10−1 | 1.5782 × 101 | |
ChoA | 4.7852 × 10−4 | 1.4231 × 102 | 2.4785 × 103 | |
MFO | 7.2145 × 100 | 2.1452 × 101 | 7.8452 × 103 | |
F9 | PSO | 4.2127 × 100 | 1.0856 × 107 | 5.8853 × 107 |
GWO | 1.6693 × 100 | 1.9264 × 108 | 2.9353 × 108 | |
IMSChoA | 0.4157 × 10−1 | 7.6690 × 106 | 7.0082 × 107 | |
ChoA | 0.4032 × 100 | 3.1662 × 108 | 2.8858 × 108 | |
MFO | 3.1148 × 101 | 1.8874 × 108 | 3.0155 × 108 | |
F10 | PSO | 2.3462 × 102 | 1.1810 × 107 | 6.7967 × 107 |
GWO | 1.6697 × 100 | 1.7130 × 108 | 2.5750 × 108 | |
IMSChoA | 0.1330 × 10−1 | 6.1348 × 106 | 6.4309 × 107 | |
ChoA | 0.4086 × 100 | 6.1276 × 108 | 6.0678 × 108 | |
MFO | 5.2633 × 100 | 5.8286 × 107 | 1.4566 × 108 | |
F11 | PSO | 3.9789 × 10−1 | 3.9946 × 10−1 | 9.5817 × 10−3 |
GWO | 5.1327 × 100 | 5.2427 × 100 | 2.1338 × 10−14 | |
IMSChoA | 3.9789 × 10−1 | 4.1277 × 10−2 | 1.4810 × 10−1 | |
ChoA | 3.9814 × 10−1 | 4.3905 × 10−1 | 1.8777 × 10−1 | |
MFO | 7.8961 × 10−1 | 4.0922 × 10−1 | 1.0551 × 10−1 | |
F12 | PSO | 9.5104 × 10−1 | 4.9024 × 103 | 1.2576 × 104 |
GWO | 7.5020 × 100 | 4.0944 × 104 | 4.4157 × 104 | |
IMSChoA | 4.9153 × 10−1 | 9.6161 × 102 | 7.6567 × 103 | |
ChoA | 3.7205 × 100 | 5.0133 × 104 | 4.4403 × 104 | |
MFO | 1.0101 × 104 | 2.3015 × 104 | 2.2183 × 104 | |
F13 | PSO | 3.9789 × 10−1 | 4.1037 × 10−1 | 1.1297 × 10−1 |
GWO | 4.0002 × 10−1 | 4.6941 × 10−1 | 2.4898 × 10−1 | |
IMSChoA | 3.6787 × 10−1 | 3.1971 × 10−1 | 1.3684 × 10−1 | |
ChoA | 3.9810 × 10−1 | 4.2046 × 10−1 | 5.9657 × 10−1 | |
MFO | 3.9787 × 10−1 | 5.0134 × 10−1 | 9.5415 × 10−1 | |
F14 | PSO | 1.9920 × 100 | 2.2788 × 100 | 1.2463 × 102 |
GWO | 9.9954 × 10−1 | 2.3876 × 101 | 9.0365 × 101 | |
IMSChoA | 9.9800 × 10−1 | 2.0056 × 100 | 1.4190 × 101 | |
ChoA | 9.9961 × 10−1 | 2.1719 × 101 | 9.3934 × 101 | |
MFO | 3.9683 × 100 | 1.1003 × 101 | 5.5468 × 101 | |
F15 | PSO | 9.1133 × 10−4 | 6.6071 × 10−3 | 1.0972 × 10−2 |
GWO | 1.8780 × 10−3 | 4.1942 × 10−2 | 7.6213 × 10−1 | |
IMSChoA | 3.9751 × 10−4 | 2.2051 × 10−3 | 1.0951 × 10−2 | |
ChoA | 1.3171 × 10−3 | 1.6130 × 10−3 | 7.6465 × 10−4 | |
MFO | 1.4888 × 10−3 | 1.6207 × 10−3 | 9.3492 × 10−4 | |
F16 | PSO | 3.3912 × 100 | 1.9896 × 107 | 1.2035 × 108 |
GWO | 3.0040 × 100 | 6.8273 × 108 | 1.0925 × 109 | |
IMSChoA | 4.0537 × 10−1 | 1.5265 × 107 | 1.6062 × 107 | |
ChoA | 2.8445 × 100 | 1.2423 × 109 | 1.2502 × 109 | |
MFO | 3.4422 × 101 | 1.3698 × 108 | 3.1584 × 108 | |
F17 | PSO | 3.0287 × 100 | 3.6754 × 100 | 1.4510 × 100 |
GWO | 3.0159 × 100 | 3.5667 × 100 | 3.8514 × 10−1 | |
IMSChoA | 3.0000 × 100 | 3.3619 × 100 | 9.2576 × 10−2 | |
ChoA | 3.1006 × 100 | 4.0996 × 100 | 4.3993 × 100 | |
MFO | 3.0505 × 100 | 6.6287 × 100 | 3.8731 × 101 | |
F18 | PSO | −3.8538 × 100 | −3.0897 × 10−0 | 4.8218 × 10−1 |
GWO | −3.7439 × 100 | −3.7220 × 100 | 1.4091 × 10−1 | |
IMSChoA | −3.8628 × 100 | −3.8573 × 100 | 3.4272 × 10−2 | |
ChoA | −3.8549 × 100 | −3.8158 × 100 | 2.0926 × 10−1 | |
MFO | −3.7436 × 100 | −3.5870 × 100 | 3.2694 × 10−2 | |
F19 | PSO | −2.8067 × 100 | −1.7476 × 100 | 8.7338 × 10−1 |
GWO | −2.0159 × 10−1 | −2.0159 × 10−1 | 1.1669 × 10−1 | |
IMSChoA | −3.3220 × 100 | −3.2524 × 100 | 2.6905 × 10−2 | |
ChoA | −3.0124 × 100 | −2.8667 × 100 | 4.4520 × 10−1 | |
MFO | −3.3220 × 100 | −3.0003 × 100 | 3.7082 × 10−1 | |
F20 | PSO | −1.0138 × 101 | −9.7699 × 100 | 1.2788 × 10−1 |
GWO | −2.7312 × 10−1 | −2.7312 × 10−1 | 1.6670 × 100 | |
IMSChoA | −1.0152 × 101 | −7.2606 × 100 | 2.7155 × 10−1 | |
ChoA | −4.9481 × 10−1 | −4.2491 × 100 | 1.1362 × 100 | |
MFO | −5.0552 × 100 | −4.8248 × 100 | 8.9123 × 10−1 | |
F21 | PSO | −1.0518 × 101 | −1.0113 × 101 | 1.3731 × 100 |
GWO | −1.6697 × 100 | −1.5444 × 100 | 2.8352 × 10−1 | |
IMSChoA | −1.0536 × 101 | −7.3240 × 100 | 2.6989 × 10−1 | |
ChoA | −5.0690 × 100 | −4.3478 × 10−1 | 1.1266 × 100 | |
MFO | −5.1285 × 100 | −4.9702 × 100 | 7.2547 × 100 |
No. | PSO | GWO | ChoA | MFO |
---|---|---|---|---|
F1 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 |
F2 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 |
F3 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 |
F4 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 | 3.04 × 10−20 |
F5 | 1.29 × 10−17 | 2.69 × 10−17 | 2.33 × 10−10 | 1.06 × 10−10 |
F6 | 7.24 × 10−18 | 7.11 × 10−18 | 1.39 × 10−17 | 1.43 × 10−10 |
F7 | 4.28 × 10−17 | 7.09 × 10−18 | 1.38 × 10−17 | 6.77 × 10−14 |
F8 | 7.09 × 10−18 | 7.09 × 10−18 | 7.24 × 10−18 | 2.24 × 10−10 |
F9 | 3.45 × 10−20 | 3.33 × 10−20 | 1.23 × 10−19 | NaN |
F10 | 3.45 × 10−20 | 3.33 × 10−20 | 2.98 × 10−20 | 2.42 × 10−16 |
F11 | 3.49 × 10−20 | 3.31 × 10−20 | 2.69 × 10−04 | 3.65 × 10−14 |
F12 | 7.07 × 10−20 | 9.55 × 10−11 | 8.01 × 10−10 | 1.85 × 10−17 |
+/=/− | 12/0/0 | 12/0/0 | 12/0/0 | 11/0/1 |
Algorithm | Kp | Ki | Kd | Adaptability Value |
---|---|---|---|---|
PSO | 0.5232 | 0.0603 | 0.5821 | 64.7664 |
GWO | 0.5114 | 0.3415 | 0.0734 | 55.3211 |
IMSChoA | 0.2615 | 0.0215 | 0.4115 | 43.1124 |
ChoA | 0.4562 | 0.4754 | 0.4214 | 53.1451 |
MFO | 0.6533 | 0.3147 | 0.4315 | 57.5521 |
Algorithm | Kp | Ki | Kd | Adaptability Value |
---|---|---|---|---|
PSO | 0.5232 | 0.0603 | 0.5821 | 64.7664 |
GWO | 0.5114 | 0.3415 | 0.0734 | 55.3211 |
IMSChoA | 0.2615 | 0.0215 | 0.4115 | 43.1124 |
ChoA | 0.4562 | 0.4754 | 0.4214 | 53.1451 |
MFO | 0.6533 | 0.3147 | 0.4315 | 57.5521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhang, F.; Gao, T. Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application. Machines 2023, 11, 250. https://doi.org/10.3390/machines11020250
Wu H, Zhang F, Gao T. Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application. Machines. 2023; 11(2):250. https://doi.org/10.3390/machines11020250
Chicago/Turabian StyleWu, Hongda, Fuxing Zhang, and Teng Gao. 2023. "Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application" Machines 11, no. 2: 250. https://doi.org/10.3390/machines11020250
APA StyleWu, H., Zhang, F., & Gao, T. (2023). Improved Chimpanzee Search Algorithm with Multi-Strategy Fusion and Its Application. Machines, 11(2), 250. https://doi.org/10.3390/machines11020250