Selected Aspects of Precision Machining on CNC Machine Tools
Abstract
:1. Introduction
- -
- Geometric inaccuracies of the used means, machines, tools, and preparations. They are inaccuracies of dimensions and shapes such as flatness, cylindricity, conicity, perpendicularity, deviations from the paraboloid, hyperboloid, deviations from the involute, etc.
- -
- Arbitrary inhomogeneity of the workpiece, e.g., chemical composition, structure, existence of voltage, temperature, electric, ultrasonic, or other fields.
- -
- Static or dynamic deviations of the desired relative position of the material (piece) and the cutting edge of the tool in the machine’s coordinate system. For example, mistakes, lack of definition of moving parts, the vibration of a member of the system, or transmission from the surroundings.
- -
- Loss of geometric shape (deformation) of members of the work system due to technological forces, heat, and erosion (wear and tear—loss of particles).
- -
- Deformations of the workpiece due to the release of internal stresses and the action of external forces. Internal stresses can be released by material removal, structural changes, removal, etc.
2. Materials and Methods
2.1. The Machine Tool
2.2. The Cutting Tool
2.3. The Workpiece
2.4. The Cutting Conditions
2.5. The Strategy of Machining
2.6. Description of the Strategy of Machining Movements Divided into Two Days
2.7. The Measurement Conditions
3. Results
4. Discussion
4.1. Finding 1
4.2. Finding 2
4.3. Finding 3
4.4. Finding 4
5. Conclusions
- -
- The generation of heat during machining is an accompanying phenomenon.
- -
- Heat is generated in the process of chip formation, but also in the machine tool in all moving parts of the machine tool, such as the spindle, guide surfaces, etc.
- -
- Heat is removed to colder areas. After some time, stabilization will occur.
- -
- The principle for finishing follows from the experiment and that finishing must be carried out in one shot, in one sequence, without interrupting machining.
- -
- The magnitude of the resulting inaccuracy for the machining method presented in this article will depend on many variables. The biggest variable is the machine tool itself and, above all, the accuracy of its execution with regard to temperature compensations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bekes, J.; Janac, A. Precision technology and three tendencies (in original: Presné technológie a tri tendencie). In Proceedings of the International Congress of Precision Machining, Praha, Czechoslovakia, 3–6 September 2003. [Google Scholar]
- Bekes, J. Engineering technology of metal machining. In Original: Inžinierska Technológia Obrábania Kovov; ALFA: Bratislava, Czechoslovakia, 1981. [Google Scholar]
- Checchi, A.; Costa, G.D.; Merrild, C.H.; Bissacco, G.; Hansen, H.N. Offline tool trajectory compensation for cutting forces induced errors in a portable machine tool. In Proceedings of the 17th CIRP Conference on Modelling of Machining Operations (CIRP CMMO), AMRC, Sheffield, UK, 13–14 June 2019; pp. 527–531. [Google Scholar]
- Foremny, E.; Schenck, C.; Kuhfuss, B. Integrated ultrasonic driven balancer for ultra precision high speed machine tools. In Proceedings of the 3rd International Conference on System-Integrated Intelligence—New Challenges for Product and Production Engineering (SysInt), Paderborn Univ, Heinz Nixdorf Inst, Paderborn, Germany, 13–15 June 2016; pp. 316–323. [Google Scholar]
- Shiou, F.J.; Ding, Z.L.; Lin, S.P. Reduction in the Volumetric Wear of a Ball Polishing Tool Using Ultrasonic-Vibration-Assisted Polishing Process. Lubricants 2022, 10, 339. [Google Scholar] [CrossRef]
- Nekrasov, S.; Peterka, J.; Zhyhylii, D.; Dovhopolov, A.; Kolesnyk, V. Mathematical Estimation of Roughness Rz of Threaded Surface Obtained by Machining Method. Mm Sci. J. 2022, 2022, 5699–5703. [Google Scholar] [CrossRef]
- Sonia, P.; Jain, J.K.; Saxena, K.K. Influence of ultrasonic vibration assistance in manufacturing processes: A Review. Mater. Manuf. Process. 2021, 36, 1451–1475. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Wang, X.B.; Zhao, B.; Jiao, F. Microstructure of High-Performance Aluminum Alloy Surface Processed by the Single-Excitation Same-Frequency Longitudinal-Torsional Coupled Ultrasonic Vibration Milling. Materials 2018, 11, 1975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Zhao, B.; Wang, Y.Q.; Zhao, B.B. The stability analysis of separated feed ultrasonic milling. J. Vibroeng. 2017, 19, 1062–1073. [Google Scholar] [CrossRef]
- Zou, Y.H.; Guo, S.J.; Li, H.Q.; Deng, X.F. Investigation on cutting performance in ultrasonic assisted helical milling of Ti6Al4V alloy by various parameters and cooling strategies. Int. J. Adv. Manuf. Technol. 2023, 126, 5123–5138. [Google Scholar] [CrossRef]
- Yi, S.C.; Qiao, G.C.; Zheng, W.; Zhou, M. Effect of crack propagation on surface formation mechanism and surface morphology evaluation of longitudinal-torsional composite ultrasonic mill grinding of Si3N4. Int. J. Adv. Manuf. Technol. 2023, 125, 5101–5117. [Google Scholar] [CrossRef]
- Jaskolski, P.; Nadolny, K.; Kukielka, K.; Kaplonek, W.; Pimenov, D.Y.; Sharma, S. Dimensional Analysis of Workpieces Machined Using Prototype Machine Tool Integrating 3D Scanning, Milling and Shaped Grinding. Materials 2020, 13, 5663. [Google Scholar] [CrossRef]
- Werner, A. Method for Enhanced Accuracy in Machining Free-Form Surfaces On Cnc Milling Machines. Acta Mech. Autom. 2022, 16, 103–110. [Google Scholar] [CrossRef]
- Martin, R.A.J.; Stephen, J.D.G.; Vinoth, A.; Muthu, E. Error analysis and point data processing of reconstructed surface by reverse engineering. In Proceedings of the 3rd International Conference on Advances in Mechanical Engineering (ICAME)/1st International Conference on Recent Advances in Composite Materials (ICRACM), Chennai, India, 24–29 February 2020. [Google Scholar]
- Kucera, D.; Linkeova, I.; Stejskal, M. The influence of CAD model continuity on accuracy and productivity of CNC machining. Int. J. Adv. Manuf. Technol. 2023, 124, 1115–1128. [Google Scholar] [CrossRef]
- Dong, J.S.; He, J.M.; Liu, S.; Wan, N.; Chang, Z.Y. A Multi-Scale Tool Orientation Generation Method for Freeform Surface Machining with Bull-Nose Tool. Micromachines 2023, 14, 1199. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Jiang, X.Y.; Zi, W.L.; Shen, X.; Zhang, D. Automatic Data Collecting and Application of the Touch Probing System on the CNC Machine Tool. Math. Probl. Eng. 2021, 2021, 19. [Google Scholar] [CrossRef]
- Nekrasov, S.; Zhyhylii, D.; Dovhopolov, A.; Karatas, M.A. Research on the manufacture and strength of the innovative joint of FRP machine parts. J. Manuf. Process. 2021, 72, 338–349. [Google Scholar] [CrossRef]
- Elmelegy, A.; Zahwi, S. Comparative study of error determination of machine tools. Int. J. Adv. Manuf. Technol. 2023, 124, 4575–4602. [Google Scholar] [CrossRef]
- Ward, R.; Sencer, B.; Jones, B.; Ozturk, E. Accurate prediction of machining feedrate and cycle times considering interpolator dynamics. Int. J. Adv. Manuf. Technol. 2021, 116, 417–438. [Google Scholar] [CrossRef]
- Holub, M.; Jankovych, R.; Vetiska, J.; Sramek, J.; Blecha, P.; Smolik, J.; Heinrich, P. Experimental Study of the Volumetric Error Effect on the Resulting Working Accuracy-Roundness. Appl. Sci. 2020, 10, 6233. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, Q.; Zhang, X.B.; Liu, Q.; Qiao, Y.; Zhang, Y.Q. A Novel Geometric Error Compensation Method for Gantry-Moving CNC Machine Regarding Dominant Errors. Processes 2020, 8, 906. [Google Scholar] [CrossRef]
- Kolesnyk, V.; Peterka, J.; Kuruc, M.; Simna, V.; Moravcikova, J.; Vopat, T.; Lisovenko, D. Experimental Study of Drilling Temperature, Geometrical Errors and Thermal Expansion of Drill on Hole Accuracy When Drilling CFRP/Ti Alloy Stacks. Materials 2020, 13, 3232. [Google Scholar] [CrossRef]
- Soori, M. Deformation error compensation in 5-Axis milling operations of turbine blades. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 16. [Google Scholar] [CrossRef]
- Zhao, C.L.; Li, M.; Yang, J.B.; Ma, C.; Ma, Z.R. Research on the Measurement of Thermal Deformation of Tools on High-speed Machining Centers Based on Image Processing Technology. Manuf. Technol. 2022, 22, 484–493. [Google Scholar] [CrossRef]
- Dai, Y.; Li, Y.; Li, Z.L.; Wen, W.J.; Zhan, S.Q. Temperature measurement point optimization and experimental research for bi-rotary milling head of five-axis CNC machine tool. Int. J. Adv. Manuf. Technol. 2022, 121, 309–322. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Huang, H.C.; Feng, T.C. Prediction of Thermal Deformation and Real-Time Error Compensation of a CNC Milling Machine in Cutting Processes. Machines 2023, 11, 248. [Google Scholar] [CrossRef]
- Mares, M.; Horejs, O.; Havlik, L. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2020, 66, 21–30. [Google Scholar] [CrossRef]
- Korpysa, J.; Kuczmaszewski, J.; Zagorski, I. Dimensional Accuracy and Surface Quality of AZ91D Magnesium Alloy Components after Precision Milling. Materials 2021, 14, 6446. [Google Scholar] [CrossRef]
- Rock, S. Predicting regenerative chatter in milling with hardware-in-the-loop simulation using a dexel-based cutting model. Prod. Eng.-Res. Dev. 2021, 15, 605–617. [Google Scholar] [CrossRef]
- Dvorak, J.; Cornelius, A.; Corson, G.; Zameroski, R.; Jacobs, L.; Penney, J.; Schmitz, T. A machining digital twin for hybrid manufacturing. Manuf. Lett. 2022, 33, 786–793. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Schmitz, T.L.; Payne, S.W.T.; Choudhury, P.R.; Schueller, J.K. Introducing engineering undergraduates to CNC machine tool error compensation. Adv. Ind. Manuf. Eng. 2022, 5, 11. [Google Scholar] [CrossRef]
- Jiang, J.L.; Li, B.R.; Lin, F.Y.; Zhang, H.; Ye, P.Q. Prediction and compensation strategy of contour error in multi-axis motion system. Int. J. Adv. Manuf. Technol. 2022, 119, 163–175. [Google Scholar] [CrossRef]
- Yeh, S.S.; Jiang, W.J. Development of Pitch Cycle-Based Iterative Learning Contour Control for Thread Milling Operations in CNC Machine Tools. Appl. Sci. 2023, 13, 6447. [Google Scholar] [CrossRef]
- Neshta, A.; Kryvoruchko, D.; Hatala, M.; Ivanov, V.; Botko, F.; Radchenko, S.; Mital, D. Technological Assurance of High-Efficiency Machining of Internal Rope Threads on Computer Numerical Control Milling Machines. J. Manuf. Sci. Eng.-Trans. Asme 2018, 140, 8. [Google Scholar] [CrossRef]
- Feng, C.H.; Guo, H.H.; Zhang, J.Y.; Huang, Y.G.; Huang, S. A systematic method of optimization of machining parameters considering energy consumption, machining time, and surface roughness with experimental analysis. Int. J. Adv. Manuf. Technol. 2022, 119, 7383–7401. [Google Scholar] [CrossRef]
- Hojati, F.; Azarhoushang, B.; Daneshi, A.; Khiabani, R.H. Prediction of Machining Condition Using Time Series Imaging and Deep Learning in Slot Milling of Titanium Alloy. J. Manuf. Mater. Process. 2022, 6, 145. [Google Scholar] [CrossRef]
- Hu, N.; Liu, Z.G.; Jiang, S.X.; Li, Q.Z.; Zhong, S.Q.; Chen, B.Q. Remaining Useful Life Prediction of Milling Tool Based on Pyramid CNN. Shock. Vib. 2023, 2023, 14. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, R.L.; Zeng, Y.F. Tool wear condition monitoring based on multi-sensor integration and deep residual convolution network. Eng. Res. Express 2023, 5, 12. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 2005, 51, 191. [Google Scholar] [CrossRef]
- Satyanarayana, T.S.V.; Rai, R. Nanotechnology: The future. J. Interdiscip. Dent. 2011, 1, 93–100. [Google Scholar] [CrossRef]
Linear Movements X/Y/Z [mm] | Velocity of Working Feed Rate [mm/min] | Rotation Movements A/C [°] | Velocity of Rotational Motions, Max [rpm] | Acceleration of Movements [g] | Accuracy of Positioning [μm] |
---|---|---|---|---|---|
201/201/281.1 | 40,000 | −10.514° to 130.486°/not limited | 200 | 2 | ±2.5 |
Spindle Speed, Max [rpm] | Performance of the Machine at Top Spindle Speed [kW] | Torque Momentum [Nm] | Frequency of Ultrasound [kHz] | Magazine of the Tools [number] | Pneumatic Clamping System |
---|---|---|---|---|---|
42,000 | 15 | 6 | 20 ÷ 30 | 24 | HSK 32 E/S |
Diameter [mm] | Length of Active Part [mm] | Whole Length [mm] | Harmonic Frequency [kHz] | Vertical Amplitude [μm] | Horizontal Amplitude [μm] |
---|---|---|---|---|---|
24.096 | 6 | 112.285 | 21.6 | 10 | 0 |
Diameter of Tool [mm] | Depth of Cut ap [mm] | Radial Depth of Cut ae [%]/[mm] | Cutting Speed vc [m/min] | Cutting Feed Rate vf [mm/min] |
---|---|---|---|---|
24.096 | 0.02 | 50/12 | 400 | 1000 |
1. Phase | 2. Phase | 2. Phase | 3. Phase | 4. Phase | 4. Phase |
---|---|---|---|---|---|
Without cutting | Continual cutting process | Without cutting | Continual cutting process | ||
Idling spindle | The machine did not work | ||||
Time of heating | Time of continual cutting | The final temperature of the spindle | Time without cutting, cooling time of spindle | Time of continual cutting | The final temperature of the spindle |
[h] | [h] | [°C] | [h] | [s] | [°C] |
4 | 4 | 35 | 16 | 20 | 23 |
Measure Length [mm] | Measure Speed [mm/s] | Temperature during Measurement [°C] | Humidity during Measurement [%] | Stylus Radius [mm] |
---|---|---|---|---|
80 | 0.3 | 20 | 60 | 0.002 |
Measurement Position | Measurement Profile [μm] | Average Value [μm] | Standard Deviation [μm] | ||
---|---|---|---|---|---|
y1 | y2 | y3 | |||
A | 11.8 | 10.1 | 7.9 | 9.933 | 1.955 |
B | 3.7 | 9.6 | 7.9 | 7.067 | 3.037 |
C | 4.3 | 4.3 | 4.2 | 4.267 | 0.058 |
D | 5.0 | 2.1 | 4.8 | 3.967 | 1.620 |
E | 3.7 | 3.1 | 2.9 | 3.233 | 0.416 |
F | 2.9 | 4.8 | 3.7 | 3.800 | 0.954 |
Average value [μm] | 5.233 | 5.667 | 5.233 |
Measurement Area | Measurement Profile y2 |
---|---|
[μm] | |
0 ÷ A | −6.6 |
A ÷ B | −11.7 |
B ÷ C | −14.6 |
C ÷ D | −17.0 |
D ÷ E | −9.2 |
E ÷ F | −12.6 |
F ÷ _ | −8.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterka, J.; Kuruc, M.; Kolesnyk, V.; Dehtiarov, I.; Moravcikova, J.; Vopat, T.; Pokorny, P.; Jurina, F.; Simna, V. Selected Aspects of Precision Machining on CNC Machine Tools. Machines 2023, 11, 946. https://doi.org/10.3390/machines11100946
Peterka J, Kuruc M, Kolesnyk V, Dehtiarov I, Moravcikova J, Vopat T, Pokorny P, Jurina F, Simna V. Selected Aspects of Precision Machining on CNC Machine Tools. Machines. 2023; 11(10):946. https://doi.org/10.3390/machines11100946
Chicago/Turabian StylePeterka, Jozef, Marcel Kuruc, Vitalii Kolesnyk, Ivan Dehtiarov, Jana Moravcikova, Tomas Vopat, Peter Pokorny, Frantisek Jurina, and Vladimir Simna. 2023. "Selected Aspects of Precision Machining on CNC Machine Tools" Machines 11, no. 10: 946. https://doi.org/10.3390/machines11100946
APA StylePeterka, J., Kuruc, M., Kolesnyk, V., Dehtiarov, I., Moravcikova, J., Vopat, T., Pokorny, P., Jurina, F., & Simna, V. (2023). Selected Aspects of Precision Machining on CNC Machine Tools. Machines, 11(10), 946. https://doi.org/10.3390/machines11100946