Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends
Abstract
:1. Introduction
2. Occupational Risks and Diseases in Industry 4.0
3. Organizational Culture as a Key Factor in OSH
4. Technologies and Trends in OSH
4.1. Smart Personal Protective Equipment
4.2. Industry 4.0 Related Technologies and the Internet of Things (IoT) in OSH
4.3. IoT Devices
4.4. Protocols for IoT
4.5. Machine Learning
4.5.1. Recommender Systems
4.5.2. Anomaly Detection
4.5.3. Long Short-Term Memory (LSTM)
5. Discussion
- Use of AI to monitor the use of PPE, especially in dangerous activities.
- Monitoring psychosocial risks and risks related to sedentary working conditions.
- Consideration of workers’ health history, together with data obtained from monitoring the work environment, to generate personalized alerts.
- Data privacy issues.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Indicator Description: Occupational Injuries. Available online: https://ilostat.ilo.org/resources/concepts-and-definitions/description-occupational-injuries (accessed on 1 July 2021).
- Teufer, B.; Ebenberger, A.; Affengruber, L.; Kien, C.; Klerings, I.; Szelag, M.; Griebler, U. Evidence-based occupational health and safety interventions: A comprehensive overview of reviews. BMJ Open 2019, 9, e032528. [Google Scholar] [CrossRef] [PubMed]
- WHO/ILO: Almost 2 Million People Die from Work-Related Causes Each Year. Available online: https://www.who.int/news/item/16-09-2021-who-ilo-almost-2-million-people-die-from-work-related-causes-each-year (accessed on 15 July 2022).
- ILO; WHO. WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury, 2000–2016; Global Monitoring Report; ILO/WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Ncube, F.; Kanda, A. Current Status and the Future of Occupational Safety and Health Legislation in Low- and Middle-Income Countries. Saf. Health Work. 2018, 4, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Melchior, C.; Zanini, R.R. Mortality per work accident: A literature mapping. Saf. Sci. 2019, 114, 72–78. [Google Scholar] [CrossRef]
- Ronda-Perez, E.; Gosslin, A.; Martínez, J.M.; Reid, A. Injury vulnerability in Spain. Examination of risk among migrant and native workers. Saf. Sci. 2019, 115, 36–41. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A Glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Yu, F.; Schweisfurth, T. Industry 4.0 technology implementation in SMEs—A survey in the Danish-German border region. Int. J. Innov. Stud. 2020, 4, 76–84. [Google Scholar] [CrossRef]
- Atuação dos Industriais no Âmbito do Sistema da Indústria Responsável-SIR. Available online: https://www.act.gov.pt/(pt-PT)/crc/PublicacoesElectronicas/Documents/atuacaodosindustriaisnoambitodosistemadaindustriaresponsavel_SIR.pdf (accessed on 18 June 2022).
- Kelly, K.; Poole, J. Pollutants in the workplace: Effect on occupational asthma. J. Allergy Clin. Immunol. 2019, 143, 2014–2015. [Google Scholar] [CrossRef]
- Kociolek, A.; Lang, A.; Trask, C.; Vasiljev, R.; Milosavljevic, S. Exploring head and neck vibration exposure from quad bike use in agriculture. Int. J. Ind. Ergon. 2018, 66, 63–69. [Google Scholar] [CrossRef]
- Lundström, R.; Noor Baloch, A.; Hagberg, M.; Nilsson, T.; Gerhardsson, L. Long-term effect of hand-arm vibration on thermotactile perception thresholds. J. Occup. Med. Toxicol. 2018, 13, 19. [Google Scholar] [CrossRef]
- Gerhardsson, L.; Hagberg, M. Vibration induced injuries in hands in long-term vibration exposed workers. J. Occup. Med. Toxicol. 2019, 14, 21. [Google Scholar] [CrossRef]
- Factsheet 57—O Impacto do Ruído no Trabalho. Available online: https://osha.europa.eu/pt/publications/factsheet-57-impact-noise-work (accessed on 18 July 2022).
- Álvarez, R.; González, C.; Martínez, A.; Pérez, J.; Fernández, L.; Fernández, A. Guidelines for the Diagnosis and Monitoring of Silicosis. Arch. Bronconeumol. Engl. Ed. 2015, 51, 86–93. [Google Scholar] [CrossRef]
- Kratzke, P.; Kratzke, R. Asbestos-Related Disease. J. Radiol. Nurs. 2018, 37, 21–26. [Google Scholar] [CrossRef]
- World Cancer Report. 2014. Available online: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014 (accessed on 23 July 2021).
- Coenen, P.; Gilson, N.; Healy, G.; Dunstan, D.; Straker, L. A qualitative review of existing national and international occupational safety and health policies relating to occupational sedentary behavior. Appl. Ergon. 2017, 60, 320–333. [Google Scholar] [CrossRef]
- Do, H.; Nguyen, A.; Nguyen, H.; Bui, T.; Nguyen, Q.; Tran, N.; Ho, C. Depressive Symptoms, Suicidal Ideation, and Mental Health Service Use of Industrial Workers: Evidence from Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 2929. [Google Scholar] [CrossRef]
- Leso, V.; Fontana, L.; Iavicoli, I. The occupational health and safety dimension of Industry 4.0. La Med. Lav. 2018, 109, 327–338. [Google Scholar] [CrossRef]
- De Guzman, H. Microcontroller Based Automated Lighting Control System for Workplaces. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–6. [Google Scholar]
- Cardella, B. Segurança no Trabalho e Prevenção de Acidentes: Uma Abordagem Holística; Atlas: São Paulo, Brazil, 2016. [Google Scholar]
- Kim, Y.; Park, J.; Park, M. Creating a Culture of Prevention in Occupational Safety and Health Practice. Saf. Health Work 2016, 7, 89–96. [Google Scholar] [CrossRef]
- Leoni, T. What drives the perception of health and safety risks in the workplace? Evidence from European labour markets. Empirica 2010, 37, 165–195. [Google Scholar] [CrossRef]
- Xia, N.; Wang, X.; Griffin, M.; Wu, C.; Liu, B. Do we see how they perceive risk? An integrated analysis of risk perception and its effect on workplace safety behavior. Accid. Anal. Prev. 2017, 106, 234–242. [Google Scholar] [CrossRef]
- Swuste, P.; Groeneweg, J.; van Gulijk, C.; Zwaard, W.; Lemkowitz, S.; Oostendorp, Y. The future of safety science. Saf. Sci. 2020, 125, 104593. [Google Scholar] [CrossRef]
- ISO 45001—Occupational Health and Safety. Available online: https://www.iso.org/publication/PUB100427.html (accessed on 12 July 2022).
- Podgórski, D.; Majchrzycka, K.; Dąbrowska, A.; Gralewicz, G.; Okrasa, M. Towards a conceptual framework of OSH risk management in smart working environments based on smart PPE, ambient intelligence and the Internet of Things technologies. Int. J. Occup. Saf. Ergon. 2016, 23, 1–20. [Google Scholar] [CrossRef]
- Smart Personal Protective Equipment: Intelligent Protection for the Future. Available online: https://osha.europa.eu/pt/publications/smart-personal-protective-equipment-intelligent-protection-future/view (accessed on 23 July 2022).
- Khan, W.; Rehman, M.; Zangoti, H.; Afzal, M.; Armi, N.; Salah, K. Industrial internet of things: Recent advances, enabling technologies and open challenges. Comput. Electr. Eng. 2020, 81, 106522. [Google Scholar] [CrossRef]
- Li, W.; Kara, S. Methodology for Monitoring Manufacturing Environment by Using Wireless Sensor Networks (WSN) and the Internet of Things (IoT). Procedia CIRP 2017, 61, 323–328. [Google Scholar] [CrossRef]
- Awolusi, I.; Marks, E.; Hallowell, M. Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Autom. Constr. 2018, 85, 96–106. [Google Scholar] [CrossRef]
- Aqueveque, P.; Gutiérrez, C.; Rodríguez, F.; Pino, E.; Morales, A.; Wiechmann, E. Monitoring Physiological Variables of Mining Workers at High Altitude. IEEE Trans. Ind. Appl. 2017, 53, 2628–2634. [Google Scholar] [CrossRef]
- Yu, B.; Wei, W.; Xianyi, Z.; Koehl, L.; Tartare, G. A wearable intelligent system for real time monitoring firefighter’s physiological state and predicting dangers. In Proceedings of the 2015 IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–21 October 2015. [Google Scholar] [CrossRef]
- Wu, F.; Wu, T.; Yuce, M. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2019, 19, 21. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. mHealth: Indoor Environmental Quality Measuring System for Enhanced Health and Well-Being Based on Internet of Things. J. Sens. Actuator Netw. 2019, 8, 43. [Google Scholar] [CrossRef]
- Balakreshnan, B.; Richards, G.; Nanda, G.; Mao, H.; Athinarayanan, R.; Zaccaria, J. PPE Compliance Detection using Artificial Intelligence in Learning Factories. Procedia Manuf. 2020, 45, 277–282. [Google Scholar] [CrossRef]
- Sanchez, M.; Sergio Rodriguez, C.; Manuel, J. Smart Protective Protection Equipment for an accessible work environment and occupational hazard prevention. In Proceedings of the 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 29–31 January 2020; pp. 581–585. [Google Scholar] [CrossRef]
- Márquez-Sánchez, S.; Campero-Jurado, I.; Herrera-Santos, J.; Rodríguez, S.; Corchado, J.M. Intelligent Platform Based on Smart PPE for Safety in Workplaces. Sensors 2021, 21, 4652. [Google Scholar] [CrossRef]
- Shakerian, S.; Habibnezhad, M.; Ojha, A.; Lee, G.; Liu, Y.; Jebelli, H.; Lee, S. Assessing occupational risk of heat stress at construction: A worker-centric wearable sensor-based approach. Saf. Sci. 2021, 142, 105395. [Google Scholar] [CrossRef]
- Kim, J.; Jo, B.; Jo, J.; Kim, D. Development of an IoT-Based Construction Worker Physiological Data Monitoring Platform at High Temperatures. Sensors 2020, 20, 5682. [Google Scholar] [CrossRef]
- Yang, K.; Ahn, C.; Kim, H. Deep learning-based classification of work-related physical load levels in construction. Adv. Eng. Inform. 2020, 45, 101104. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. A Real-Time Noise Monitoring System Based on Internet of Things for Enhanced Acoustic Comfort and Occupational Health. IEEE Access 2020, 8, 139741–139755. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.M.H.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A.R. Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electronics 2021, 10, 184. [Google Scholar] [CrossRef]
- Zhou, C.; Ding, L. Safety barrier warning system for underground construction sites using Internet-of-Things technologies. Autom. Constr. 2017, 83, 372–389. [Google Scholar] [CrossRef]
- Zhan, X.; Wu, W.; Shen, L.; Liao, W.; Zhao, Z.; Xia, J. Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse. Saf. Sci. 2022, 152, 105766. [Google Scholar] [CrossRef]
- Campero-Jurado, I.; Márquez-Sánchez, S.; Quintanar-Gómez, J.; Rodríguez, S.; Corchado, J. Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence. Sensors 2020, 20, 6241. [Google Scholar] [CrossRef]
- Lacamera, D. Embedded Systems Architecture: Explore Architectural Concepts, Pragmatic Design Patterns, and Best Practices to Produce Robust Systems; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Understanding the IEEE 802.11 Standard for Wireless Networks. Available online: https://www.juniper.net/documentation/en_US/junos-space-apps/network-director3.7/topics/concept/wireless-80211.html (accessed on 22 June 2022).
- What Is Arduino? Available online: https://www.arduino.cc/en/Guide/Introduction (accessed on 15 February 2022).
- Bluetooth Wireless Technology. Available online: https://www.bluetooth.com/learn-about-bluetooth/radio-versions (accessed on 10 January 2022).
- Sauter, M. Global System for Mobile Communications (GSM). In From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile Broadband; Wiley: Hoboken, NJ, USA, 2014; pp. 1–71. [Google Scholar] [CrossRef]
- ESP 32. Available online: https://www.espressif.com/en/products/socs/esp32 (accessed on 6 January 2022).
- Shelby, Z.; Hartke, K.; Bormann, C. RFC 7252—The Constrained Application Protocol (CoAP). Available online: https://tools.ietf.org/html/rfc7252 (accessed on 10 January 2022).
- Rescorla, E.; Modadugu, N. RFC 6347—Datagram Transport Layer Security Version 1.2. Available online: https://tools.ietf.org/html/rfc6347 (accessed on 10 January 2022).
- MQTT Version 5.0. MQTT. Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on 13 November 2021).
- Abiodun, O.; Jantan, A.; Omolara, A.; Dada, K.; Mohamed, N.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Portugal, I.; Alencar, P.; Cowan, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert Syst. Appl. 2018, 97, 205–227. [Google Scholar] [CrossRef]
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.; Campos, R.M.; Girão, I.; Monteiro, J.; Lopes, C.M. A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sens. 2022, 14, 638. [Google Scholar] [CrossRef]
- Tran, T.; Felfernig, A.; Trattner, C.; Holzinger, A. Recommender systems in the healthcare domain: State-of-the-art and research issues. J. Intell. Inf. Syst. 2021, 57, 171–201. [Google Scholar] [CrossRef]
- Cook, A.; Mısırlı, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–6494. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Van Den Hengel, A. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2022, 54, 2. [Google Scholar] [CrossRef]
- Manaswi, N. RNN and LSTM. In Deep Learning with Applications Using Python; Apress: Berkeley, CA, USA, 2018. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T. Modeling soil water content and reference evapotranspiration from climate data using Deep Learning methods. Appl. Sci. 2021, 11, 5029. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T. Crop yield estimation using Deep Learning based on climate big data. Energies 2021, 14, 3004. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T. Irrigation with a deep reinforcement learning model - Case study on a site in Portugal. Agric. Water Manag. 2022, 263, 107480. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M.; Soares, V.N.G.J.; Caldeira, J.M.L.P. Comparison of on-policy deep reinforcement learning A2C with off-policy DQN in irrigation optimization: A case study at a site in Portugal. Computers 2022, 11, 104. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef]
- Choi, B.; Hwang, S.; Lee, S. What drives construction workers’ acceptance of wearable technologies in the workplace?: Indoor localization and wearable health devices for occupational safety and health. Autom. Constr. 2017, 84, 31–41. [Google Scholar] [CrossRef]
- Häikiö, J.; Kallio, J.; Mäkelä, S.-M.; Keränen, J. IoT-based safety monitoring from the perspective of construction site workers. Int. J. Occup. Environ. Saf. 2020, 4, 1–14. [Google Scholar] [CrossRef]
- Data Protection in the EU. Available online: https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en (accessed on 25 July 2022).
- Zamfir, S.; Balan, T.; Iliescu, I.; Sandu, F. A security analysis on standard IoT protocols. In Proceedings of the 2016 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Maltseva, K. Wearables in the workplace: The brave new world of employee engagement. Bus. Horiz. 2020, 63, 493–505. [Google Scholar] [CrossRef]
- Erol, S.; Jäger, A.; Hold, P.; Ott, K.; Sihn, W. Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Badri, A.; Boudreau-Trudel, B.; Souissi, A. Occupational health and safety in the industry 4.0 era: A cause for major concern? Saf. Sci. 2018, 109, 403–411. [Google Scholar] [CrossRef]
- Verra, S.; Benzerga, A.; Jiao, B.; Ruggeri, K. Health Promotion at Work: A Comparison of Policy and Practice Across Europe. Saf. Health Work. 2019, 10, 21–29. [Google Scholar] [CrossRef]
Title | Data Privacy | AI |
---|---|---|
Monitoring Physiological Variables of Mining Workers at High Altitude [34] | NO | NO |
A wearable intelligent system for real time monitoring firefighter’s physiological state and predicting dangers [35] | NO | NO |
An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications [36] | YES | NO |
mHealth: Indoor Environmental Quality Measuring System for Enhanced Health and Well-Being Based on Internet of Things [37] | NO * | NO |
PPE Compliance Detection using Artificial Intelligence in Learning Factories [38] | YES | YES |
Smart Protective Protection Equipment for an accessible work environment and occupational hazard prevention [39] | NO | YES |
Intelligent Platform Based on Smart PPE for Safety in Workplaces [40] | NO | YES |
Assessing occupational risk of heat stress at construction: A worker-centric wearable sensor-based approach [41] | NO | YES |
Development of an IoT-Based Construction Worker Physiological Data Monitoring Platform at High Temperatures [42] | NO | NO |
Deep learning-based classification of work-related physical load levels in construction [43] | NO | YES |
A Real-Time Noise Monitoring System Based on Internet of Things for Enhanced Acoustic Comfort and Occupational Health [44] | NO | NO |
Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective [45] | NO * | YES |
Safety barrier warning system for underground construction sites using Internet-of-Things technologies [46] | NO | NO |
Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse [47] | NO | YES |
Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence [49] | NO | YES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, J.; Gaspar, P.D.; Lima, T.M. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends. Machines 2022, 10, 702. https://doi.org/10.3390/machines10080702
Lemos J, Gaspar PD, Lima TM. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends. Machines. 2022; 10(8):702. https://doi.org/10.3390/machines10080702
Chicago/Turabian StyleLemos, Janaína, Pedro D. Gaspar, and Tânia M. Lima. 2022. "Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends" Machines 10, no. 8: 702. https://doi.org/10.3390/machines10080702