Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Macroscopic and Microscopic Observation
3.2. Metallography
3.3. Hardness Test
4. Discussion
5. Conclusions
6. Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhadeshia, H. Steels for Bearings. Prog. Mater. Sci. 2012, 57, 268–435. [Google Scholar] [CrossRef]
- Hwang, Y.-K.; Lee, C.-M. A Review on the tightening axial force Technology of the Rolling Bearing for the Spindle of Machine Tools. Int. J. Precis. Eng. Manuf. 2010, 11, 491–498. [Google Scholar] [CrossRef]
- Madar, E.; Galiki, O.; Klein, R.; Bortman, J.; Nickell, J.; Kirsch, M. A New Model for Bearing Spall Size Estimation Based on Oil Debris. Eng. Fail. Anal. 2021, 134, 106011. [Google Scholar] [CrossRef]
- Kishore, K.; Mukhopadhyay, G. Root Cause Failure Analysis of Pinch Roll Bearing at Hot Strip Mill. J. Fail. Anal. Prev. 2019, 19, 219–229. [Google Scholar] [CrossRef]
- Ban, J.; Liu, X.-L.; Luo, Y.; Zhao, Q. Cause Analysis and Prevention of Flaking of W9Cr4V2Mo Steel Rolling Bearing. Fail. Anal. Prev. 2015, 10, 238–242. [Google Scholar]
- Tauqir, A.; Salam, I.; Haq, A.U.; Khan, A. Causes of Fatigue Failure in the Main Bearing of an Aero-Engine. Eng. Fail. Anal. 2000, 7, 127–144. [Google Scholar] [CrossRef]
- Salam, I.; Tauqir, A.; Haq, A.U.; Khan, A. An Air Crash Due to Fatigue Failure of a Ball Bearing. Eng. Fail. Anal. 1998, 5, 261–269. [Google Scholar] [CrossRef]
- Xu, X.-L.; Yu, Z.-W. Failure Analysis of Tapered Roller Bearing Inner Rings Used in Heavy Truck. Eng. Fail. Anal. 2020, 111, 104474. [Google Scholar] [CrossRef]
- Iliev, H. Failure Analysis of Hydro-Generator Thrust Bearing. Wear 1999, 225–229, 913–917. [Google Scholar] [CrossRef]
- Savaskan, T.; Veinot, D. On the Wear and Failure of High Speed Roller Bearings. Wear 1987, 116, 361–380. [Google Scholar] [CrossRef]
- John, S.K.; Mishra, R.K.; Hari, K.; Ramesha, H.P.; Ram, K.K. Investigation of Bearing Failure in a Turbo Shaft Engine. J. Fail. Anal. Prev. 2020, 20, 34–39. [Google Scholar] [CrossRef]
- Ejaz, N.; Salam, I.; Tauqir, A. Failure Analysis of an Aero Engine Ball Bearing. J. Fail. Anal. Prev. 2006, 6, 25–31. [Google Scholar] [CrossRef]
- Mishra, R.K.; Muduli, S.K.; Srinivasan, K.; Ahmed, S.I. Failure Analysis of an Inter-Shaft Bearing of an Aero Gas Turbine Engine. J. Fail. Anal. Prev. 2015, 15, 205–210. [Google Scholar] [CrossRef]
- Harris, T.A.; Barnsby, R.M.; Kotzalas, M.N. A Method to Calculate Frictional Effects in Oil-Lubricated Ball Bearings. Tribol. Trans. 2001, 44, 704–708. [Google Scholar] [CrossRef]
- Averbach, B.L.; Bamberger, E.N. Analysis of Bearing Incidents in Aircraft Gas Turbine Mainshaft Bearings. Tribol. Trans. 1991, 34, 241–247. [Google Scholar] [CrossRef]
- Bhat, R.R.; Nandi, V.; Manohara, V.; Suresh, S.V. Case Study on Failure of Ball Bearing of an Aeroengine. J. Fail. Anal. Prev. 2011, 11, 631–635. [Google Scholar] [CrossRef]
- Murugesan, V.; Sreejith, P.S.; Sundaresan, P.B.; Ramasubramanian, V. Analysis of an Angular Contact Ball Bearing Failure and Strategies for Failure Prevention. J. Fail. Anal. Prev. 2018, 18, 471–485. [Google Scholar] [CrossRef]
- Prashad, H. Diagnosis of Rolling-Element Bearings Failure by Localized Electrical Current Between Track Surfaces of Races and Rolling-Elements. J. Tribol. 2002, 124, 468–473. [Google Scholar] [CrossRef]
- Dornfeld, D.; Lee, D.E. Precision Manufacturing; Springer: Berlin, Germany, 2008; pp. 1–48, 121–166. [Google Scholar]
- Wang, Q.; Jiang, W.; Liu, H. Effects of manufacture and assembly errors on contact stress on the cylindrical roller bearing. Mod. Mach. 2016, 4, 32–37. [Google Scholar]
- Li, T.; Kolar, P.; Li, X.-Y.; Wu, J. Research Development of Preload Technology on Angular Contact Ball Bearing of High Speed Spindle: A Review. Int. J. Precis. Eng. Manuf. 2020, 21, 1163–1185. [Google Scholar] [CrossRef]
- Zou, L.; Zhou, Q.; Gao, L. Fracture failure analysis of G20Cr2Ni4A steel bearing roller. Heat Treat. Met. 2013, 38, 101–103. [Google Scholar] [CrossRef]
- Mukhopadhyay, G.; Bhattacharya, S. Failure Analysis of a Cylindrical Roller Bearing from a Rolling Mill. J. Fail. Anal. Prev. 2011, 11, 337–343. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Yang, Z.-G. Failure Analysis of Fatigue Fracture on the Outer Ring of a Cylindrical Roller Bearing in an Air Blower Motor. J. Fail. Anal. Prev. 2012, 12, 427–437. [Google Scholar] [CrossRef]
- Halme, J.; Andersson, P. Rolling Contact Fatigue and Wear Fundamentals for Rolling Bearing Diagnostics—State of the Art. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 377–393. [Google Scholar] [CrossRef]
- Cui, L.; He, Y.; Cai, C. Study on Profile Design of Cylinder Roller Bearing and Its Effect on Fatigue Life. Mach. Des. Res. 2015, 31, 67–70. [Google Scholar]
- Gong, P.; Zhang, J.; Yu, Q.; Zheng, Y. Influence of Grinding Undercut on Rib Deformation for Inner Rings of Cylindrical Roller Bearings. Bearing 2018, 4–6, 10. [Google Scholar]
Diameter of Outer Ring (mm) | Diameter of Inner Ring (mm) | Rotational Speed (rpm) | Lubrication | Viscosity of the Lubrication (L/min) | Radial Load (N) |
---|---|---|---|---|---|
68 | 45 | 20000 | 4050 aviation lubricating oil | 0.3 | 3500 |
Elements | C | Cr | Mo | V | Ni | Mn | Si |
---|---|---|---|---|---|---|---|
Content | 0.81 | 4.05 | 4.23 | 1.05 | 0.11 | 0.31 | 0.21 |
Elements | C | Cr | Ni | Mo | Mn | Si |
---|---|---|---|---|---|---|
Content | 0.40 | 0.80 | 1.31 | 0.23 | 0.60 | 0.26 |
Name | Type | Manufacturer |
---|---|---|
Stereo optical microscope | Leica DM6000 | Leica Microsystems Inc., Wetzlar, Gernmany |
Optical metallographic microscope | Olympus GX51 | Olympus Corporation, Tokyo, Japan |
Scanning electron microscope | Camscan 3100 | Obducat Camscan Ltd., Cambridge, United Kingdom |
Microhardness tester | TUKON2500 | Wilson Hardness, Lake Bluff, USA |
Cylindricity tester | Talyrond 295 | Taylor Hobson, Leicester, United Kingdom |
Bearing test equipment | 14K | AECC Harbin Bearing Co., Ltd., Harbin, China |
Name | Test Results (HRC) | Requirement (HRC) |
---|---|---|
Inner ring | 63.0 | 60.0–64.0 |
Outer ring | 62.5 | |
Roller | 63.0 | |
Cage | 34.0 | 33.0–37.0 |
Bearing Number | No Tightening Torque | Tightening Torque (N·m) | ||
---|---|---|---|---|
338 | 350 | 372 | ||
No.1 | 1.02 | 5.41 | 5.69 | 6.71 |
No.2 | 2.24 | 7.47 | 7.65 | 7.92 |
No.3 | 3.60 | 5.19 | 5.21 | 8.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Diao, Q.; Liu, Y.; Liu, C.; Zhang, Z.; Tao, C. Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force. Machines 2022, 10, 322. https://doi.org/10.3390/machines10050322
Hou X, Diao Q, Liu Y, Liu C, Zhang Z, Tao C. Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force. Machines. 2022; 10(5):322. https://doi.org/10.3390/machines10050322
Chicago/Turabian StyleHou, Xueqin, Qing Diao, Yujian Liu, Changkui Liu, Zheng Zhang, and Chunhu Tao. 2022. "Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force" Machines 10, no. 5: 322. https://doi.org/10.3390/machines10050322
APA StyleHou, X., Diao, Q., Liu, Y., Liu, C., Zhang, Z., & Tao, C. (2022). Failure Analysis of a Cylindrical Roller Bearing Caused by Excessive Tightening Axial Force. Machines, 10(5), 322. https://doi.org/10.3390/machines10050322