Steady-State Fault Detection with Full-Flight Data
Abstract
:1. Introduction
2. Related Research
2.1. Fault Detection
2.2. Feature Extraction
2.3. Steady-State Data Filters
2.4. Conclusions from the Literature Review
- Arbitrary Fault Detection: In the first place, fault-detection schemes are required to identify arbitrary deviations from the nominal engine performance indicating faults to ensure the engine’s safety and operability.
- Processing Multi-Variate Datasets: Several gas path measurements are available for fault detection leading to a multi-dimensional dataset to be processed. Some approaches analyze the different sensors independently, making the definition of alarming rules more complex and requiring separate thresholds for each sensor.
- Visualizability: The fault-detection schemes should allow visualization of the results to allow the maintenance engineer to check and reason the results.
- Efficiency: Analyzing full-flight data requires a considerable amount of data to be processed [42]; therefore, fast and efficient approaches are required for analyzing the datasets.
3. Materials and Methods
3.1. Concept
3.2. Steady-State Data Filter
3.2.1. Low-Pass Filter
3.2.2. Thermal Transient Filter
3.2.3. Regime Recognition
3.2.4. State Transition Logic
3.3. Clustering
3.3.1. Principal Component Analysis
3.3.2. One-Class Support Vector Machine
3.4. Data Synthesis
4. Results
4.1. Test and Verification of the Steady-State Data Filter
4.1.1. Test of the Steady-State Data Filter with Synthetic Datasets
4.1.2. Verification of the Steady-State Data Filter with In-Flight Measurements
4.2. Parameter Study Clustering
4.2.1. Definition of the Principal Components Retained
4.2.2. Definition of the Regularization Parameter and Number of Flights Comprising the Training Dataset
4.2.3. Definition of the Threshold for Fault Detection
4.2.4. Detection Rates for the Extensive Measurement Suite
4.2.5. Detection Rates for the Minimum Measurement Suite
4.3. Verification of the Clustering Toolchain
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IATA. Airline Maintenance Cost Executive Commentary; Technical report; IATA: Montreal, QC, Canada, 2016. [Google Scholar]
- Fentaye, A.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Kurz, R.; Brun, K. Degradation in Gas Turbine Systems. J. Eng. Gas Turb. Power 2001, 123, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Koskoletos, O.A.; Aretakis, N.; Alexiou, A.; Romesis, C.; Mathioudakis, K. Evaluation of Aircraft Engine Diagnostic Methods Through ProDiMES. In Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation, Education; Manufacturing Materials and Metallurgy; ASME: Singapore, 2018; p. V006T05A023. [Google Scholar] [CrossRef]
- Pérez-Ruiz, J.L.; Tang, Y.; Loboda, I. Aircraft Engine Gas-Path Monitoring and Diagnostics Framework Based on a Hybrid Fault Recognition Approach. Aerospace 2021, 8, 232. [Google Scholar] [CrossRef]
- Loboda, I.; Pérez-Ruiz, J.L.; Yepifanov, S. A Benchmarking Analysis of a Data-Driven Gas Turbine Diagnostic Approach. In Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy; ASME: Singapore, 2018; p. V006T05A027. [Google Scholar] [CrossRef]
- Lipowsky, H.; Staudacher, S.; Bauer, M.; Schmidt, K.J. Application of Bayesian Forecasting to Change Detection and Prognosis of Gas Turbine Performance. J. Eng. Gas Turb. Power 2010, 132, 1–8. [Google Scholar] [CrossRef]
- Simon, D.L.; Bird, J.; Davison, C.; Volponi, A.; Iverson, R.E. Benchmarking Gas Path Diagnostic Methods: A Public Approach. Controls Diagnost. Instrum. Cycle Innovat. Electr. Power 2008, 2008, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Fentaye, A.D.; Zaccaria, V.; Kyprianidis, K. Aircraft Engine Performance Monitoring and Diagnostics Based on Deep Convolutional Neural Networks. Machines 2021, 9, 337. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Wang, B.; Lin, J. Deep Belief Network-Based Gas Path Fault Diagnosis for Turbofan Engines. IEEE Access 2019, 7, 170333–170342. [Google Scholar] [CrossRef]
- Fentaye, A.D.; Ul-Haq Gilani, S.I.; Baheta, A.T.; Li, Y.G. Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233, 786–802. [Google Scholar] [CrossRef]
- Fu, X.; Luo, H.; Zhong, S.; Lin, L. Aircraft engine fault detection based on grouped convolutional denoising autoencoders. Chin. J. Aeronaut. 2019, 32, 296–307. [Google Scholar] [CrossRef]
- Sheng Zhong, S.; Fu, S.; Lin, L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Meas. J. Int. Meas. Confeder. 2019, 137, 435–453. [Google Scholar] [CrossRef]
- Wang, Z.; Zarader, J.L.; Argentieri, S. A novel aircraft engine fault diagnostic and prognostic system based on SVM. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, CMD 2012, Bali, Indonesia, 23–27 September 2012; pp. 723–728. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, W.; Ji, Y. An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. IEEE Access 2018, 6, 8394–8402. [Google Scholar] [CrossRef]
- Tang, L.; Volponi, A.J.; Prihar, E. Extending engine gas path analysis using full flight data. Proc. ASME Turbo Expo 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Volponi, A.J.; Tang, L. Improved Engine Health Monitoring Using Full Flight Data and Companion Engine Information. SAE Int. J. Aerospace 2016, 9, 91–102. [Google Scholar] [CrossRef]
- Losi, E.; Venturini, M.; Manservigi, L.; Ceschini, G.F.; Bechini, G. Anomaly Detection in Gas Turbine Time Series by Means of Bayesian Hierarchical Models. J. Eng. Gas Turb. Power 2019, 141, 1–9. [Google Scholar] [CrossRef]
- Bai, M.; Liu, J.; Ma, Y.; Zhao, X.; Long, Z.; Yu, D. Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine. Energies 2020, 14, 13. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: California, UK, 1967; Volume 1, pp. 281–297. [Google Scholar] [CrossRef]
- Jung, S.H.; Huh, J.H. A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL. Sustainability 2019, 11, 3499. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Kim, Y.H.; Kim, J.Y.; Kim, J.M. Detecting and Learning Unknown Fault States by Automatically Finding the Optimal Number of Clusters for Online Bearing Fault Diagnosis. Appl. Sci. 2019, 9, 2326. [Google Scholar] [CrossRef] [Green Version]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In The Second International Conference on Knowledge Discovery and Data Mining; AAAI Press: Montreal, QC, Canada, 1996; pp. 226–231. [Google Scholar]
- Dani, M.C.; Freixo, C.; Jollois, F.X.; Nadif, M. Unsupervised anomaly detection for Aircraft Condition Monitoring System. In Proceedings of the IEEE Aerospace, Big Sky, MT, USA, 7–14 March 2015; Volume 2015, pp. 1–7. [Google Scholar] [CrossRef]
- Lee, C.H.; Shin, H.S.; Tsourdos, A.; Skaf, Z. Anomaly detection of aircraft engine in FDR (Flight Data Recorder) data. IET Conf. Publ. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, K.; Puranik, T.G.; Mangortey, E.; Pinon-Fischer, O.J.; Kirby, M.; Mavris, D.N. An Application of DBSCAN Clustering for Flight Anomaly Detection During the Approach Phase. In AIAA Scitech 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; Volume 1. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Wang, Y.F.; Lin, K.C.; Chen, M.Y.; Hsu, J.H.Y. Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning. IEEE Access 2020, 8, 23427–23439. [Google Scholar] [CrossRef]
- Nikpey Somehsaraei, H.; Ghosh, S.; Maity, S.; Pramanik, P.; De, S.; Assadi, M. Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning. Energies 2020, 13, 3750. [Google Scholar] [CrossRef]
- Tax, D.M.; Duin, R.P. Support Vector Data Description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Sadooghi, M.S.; Esmaeilzadeh Khadem, S. Improving one class support vector machine novelty detection scheme using nonlinear features. Pattern Recog. 2018, 83, 14–33. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Xu, W.; Zhou, J. Robust one-class SVM for fault detection. Chemometr. Intell. Lab. Syst. 2016, 151, 15–25. [Google Scholar] [CrossRef]
- Puranik, T.G.; Mavris, D.N. Anomaly Detection in General-Aviation Operations Using Energy Metrics and Flight-Data Records. J. Aerospace Inf. Syst. 2018, 15, 22–36. [Google Scholar] [CrossRef]
- Hayton, P.; Schölkopf, B.; Tarassenko, L.; Anuzis, P. Support vector novelty detection applied to jet engine vibration spectra. Ad. Neural Inf. Process. Syst. 2001, 13, 946–952. [Google Scholar]
- Tan, Y.; Tian, H.; Jiang, R.; Lin, Y.; Zhang, J. A comparative investigation of data-driven approaches based on one-class classifiers for condition monitoring of marine machinery system. Ocean Eng. 2020, 201, 107174. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Data Mining; Springer International Publishing: Cham, Switzerland, 2015; p. 734. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educat. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Yan, W. Application of Random Forest to Aircraft Engine Fault Diagnosis. In Proceedings of the Multiconference on Computational Engineering in Systems Applications, Beijing, China, 4–6 October 2006; pp. 468–475. [Google Scholar] [CrossRef]
- Hosseinzadeh, J.; Masoodzadeh, F.; Roshandel, E. Fault detection and classification in smart grids using augmented K-NN algorithm. SN Appl. Sci. 2019, 1, 1627. [Google Scholar] [CrossRef] [Green Version]
- Davison, C.R. Determination of Steady State Gas Turbine Operation. Turbo Expo Power Land Sea Air 2012, 44670, 107–118. [Google Scholar] [CrossRef]
- Simon, D.L.; Litt, J.S. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications. J. Eng. Gas Turb. Power 2011, 133, 071603. [Google Scholar] [CrossRef]
- Wang, P.; Liu, K.; Tang, Z. Turbofan Engine Baseline Model Extraction Based on FDR Data. In Proceedings of the 31st Chinese Control and Decision Conference, CCDC 2019, Nanchang, China, 3–5 June 2019; pp. 4044–4049. [Google Scholar] [CrossRef]
- Badea, V.E.; Zamfiroiu, A.; Boncea, R. Big Data in the Aerospace Industry. Inf. Econ. 2018, 22, 17–24. [Google Scholar] [CrossRef]
- Ren, L.; Qin, H.; Xu, K. A Thermodynamic based and Data Driven Hybrid Network for Gas Turbine Modeling. arXiv 2021, arXiv:2104.14842. [Google Scholar]
- Aretakis, N.; Roumeliotis, I.; Alexiou, A.; Romesis, C.; Mathioudakis, K. Turbofan Engine Health Assessment From Flight Data. J. Eng. Gas Turb. Power 2014, 137, 041203. [Google Scholar] [CrossRef]
- Urban, L.A. Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines. ASME J. Eng. Gas Turb. Power 1974, 1974, 225–230. [Google Scholar] [CrossRef]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliabil. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Castillo, I.G.; Loboda, I.; Pérez Ruiz, J.L. Data-Driven Models for Gas Turbine Online Diagnosis. Machines 2021, 9, 372. [Google Scholar] [CrossRef]
- Tang, L.; Volponi, A.J. Intelligent Reasoning for Gas Turbine Fault Isolation and Ambiguity Resolution. J. Eng. Gas Turb. Power 2019, 141, 1–12. [Google Scholar] [CrossRef]
- Oppenheim, A.; Willsky, A.; Nawab, H. Signals and Systems, 2nd ed.; Pearson: London, UK, 1996. [Google Scholar]
- Bauerfeind, K. Die exakte Bestimmung des Übertragungsverhaltens von Turbostrahltriebwerken unter Berücksichtigung des Instationären Verhaltens seiner Komponenten. Ph.D. Thesis, The Technical University of Munich, Munich, Germany, 1968. [Google Scholar]
- Putz, A. Zustandsüberwachung von Turboflugtriebwerken auf der Basis Instationärer Triebwerksmodellierung. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2017. [Google Scholar]
- Gnielinski, V. Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch. Ing. 1975, 41, 8–16. [Google Scholar] [CrossRef]
- Conners, T. Measurement Effects on the Calculation of In-FIight Thrust for an F404 Turbofan Engine. Int. J. Turbo Jet Engines 1993, 10, 107–126. [Google Scholar] [CrossRef]
- Vanhatalo, E.; Kulahci, M. Impact of Autocorrelation on Principal Components and Their Use in Statistical Process Control. Qual. Reliabil. Eng. Int. 2016, 32, 1483–1500. [Google Scholar] [CrossRef] [Green Version]
- Putz, A.; Staudacher, S.; Koch, C.; Brandes, T. Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots. J. Eng. Gas Turb. Power 2017, 139, 111201. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, E.; Xu, B. Weighted Principal Component Analysis. In Conference: Artificial Intelligence and Computational Intelligence—Third International Conference; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7004 LNAI, pp. 569–574. [Google Scholar] [CrossRef]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- NPSS User Guide; Technical report; Southwest Research Institute: San Antonio, TX, USA, 2016.
- Nielsen, A.E.; Moll, C.W.; Staudacher, S. Modeling and Validation of the Thermal Effects on Gas Turbine Transients. J. Eng. Gas Turb. Power 2005, 127, 564. [Google Scholar] [CrossRef]
- Matthews, B.; Oza, N. NASA—Sample Flight Data. 2012. Available online: https://c3.ndc.nasa.gov/dashlink/projects/85/ (accessed on 8 May 2021).
- Curnock, B. Obidicote Project—Work Package 4: Steady-State Test Cases; Rolls-Royce PLC: Manchester, UK, 2000. [Google Scholar]
HPC | Burner | HPT | LPT | |
---|---|---|---|---|
[s] | 2 | - | 15 | 10 |
[s] | 6 | 7 | 37 | 82 |
[s] | 96 | - | 160 | 82 |
Requirements | Parameter |
---|---|
const. flight condition | Altitude |
Total Air Temperature | |
Mach-Number | |
thermal equilibrium | Exhaust Gas Temperature |
mechanical equilibrium | Shaft Speed Fan |
Shaft Speed Core | |
const. power setting | Fuelflow |
Label | Fault Description | Faulty Component | |
---|---|---|---|
a | Fan | ||
LPC | |||
b | − | Fan | |
c | HPC | ||
d | − | ||
e | − | ||
f | − | HPT | |
g | |||
h | − | ||
i | − | LPT | |
j | |||
k | − | ||
l |
Measurement | Bias | Units | |
---|---|---|---|
1/s | |||
1/s | |||
Pa | |||
Pa | |||
Pa | |||
Pa | |||
deg·K | |||
deg·K | |||
deg·K | |||
deg·K |
TP | FP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | k | l | Nominal | |
0.05 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.41 |
0.10 | 1.00 | 0.78 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.07 |
0.15 | 0.99 | 0.55 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.02 |
0.20 | 0.95 | 0.38 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.01 |
0.25 | 0.85 | 0.27 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.01 |
0.30 | 0.74 | 0.21 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.00 |
0.35 | 0.67 | 0.15 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.00 |
0.40 | 0.58 | 0.11 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.00 |
0.45 | 0.54 | 0.07 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.00 |
0.50 | 0.48 | 0.05 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.00 |
TP | FP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | k | l | Nominal | |
0.05 | 1.00 | 0.75 | 1.00 | 1.00 | 1.00 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.05 |
0.10 | 1.00 | 0.37 | 1.00 | 1.00 | 1.00 | 0.58 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.01 |
0.15 | 0.99 | 0.23 | 0.99 | 0.99 | 0.99 | 0.37 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.01 |
0.20 | 0.95 | 0.12 | 0.95 | 0.95 | 0.95 | 0.22 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.01 |
0.25 | 0.83 | 0.06 | 0.85 | 0.85 | 0.85 | 0.17 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.01 |
0.30 | 0.74 | 0.06 | 0.74 | 0.74 | 0.74 | 0.13 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.01 |
0.35 | 0.67 | 0.05 | 0.67 | 0.67 | 0.67 | 0.06 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.01 |
0.40 | 0.58 | 0.05 | 0.58 | 0.58 | 0.58 | 0.04 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.00 |
0.45 | 0.54 | 0.05 | 0.54 | 0.54 | 0.54 | 0.03 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.00 |
0.50 | 0.47 | 0.03 | 0.48 | 0.48 | 0.48 | 0.01 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, M.; Staudacher, S.; Becchio, D.; Keller, C.; Mathes, J. Steady-State Fault Detection with Full-Flight Data. Machines 2022, 10, 140. https://doi.org/10.3390/machines10020140
Weiss M, Staudacher S, Becchio D, Keller C, Mathes J. Steady-State Fault Detection with Full-Flight Data. Machines. 2022; 10(2):140. https://doi.org/10.3390/machines10020140
Chicago/Turabian StyleWeiss, Matthias, Stephan Staudacher, Duilio Becchio, Christian Keller, and Jürgen Mathes. 2022. "Steady-State Fault Detection with Full-Flight Data" Machines 10, no. 2: 140. https://doi.org/10.3390/machines10020140
APA StyleWeiss, M., Staudacher, S., Becchio, D., Keller, C., & Mathes, J. (2022). Steady-State Fault Detection with Full-Flight Data. Machines, 10(2), 140. https://doi.org/10.3390/machines10020140